Eidgenossische Berichte der

Technische Fachgruppe
Hochschule Computer-
Zurich Wissenschaften
Niklaus Wirth

The Programming
Language Pascal
(Revised Report)

Juli 1975 5

Niklaus Wirth

The Programming
Language Pascal
(Revised Report)

Abstract

A programming language called Pascal is described which was
developed on the basis of Algol 60. Compared to Algol 60, its
range of applicability is considerably increased due to a variety
of data structuring facilities. In view of its intended usage

both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the
number of fundamental concepts reasonably small, on a simple and
systematic language structure, and on efficient implementability.
A one-pass compiler has been constructed for the CDC 6000 computer
family. This Report may serve as a programmers manual for PASCAL
6000.

Preface to the Revised Report

The language PASCAL has now been in use for several years, during
which considerable experience has been gained through its use, its
teaching, and its implementation. Although many reasons suggest
that a language should be kept unchanged as soon as it has gained
a user community, it would be unwise to ignore this experience and
to refrain from making good use of it. This Report therefore
describes a revised language which includes some changes suggested
by the work of the last two years. It is still of the form of the
original definition, and in fact the changes are very few and

relatively minor. They concern the following subjects:

- Constant parameters are replaced by value parameters (in the sense
of ALGOL 60).

- The class structure is eliminated: pointer variables are bound to

a data type instead of a class variable.

- The handling of files is changed such that the buffer variasble

ft always has a defined value except when the condition eof(f)

is true.

- Packed records and packed arrays are introduced. As a consequence,
the type alfa becomes a special case of a packed character array.
The generalization has some consequences on the denotation of

strings (formerly called alfa constants).

- All labels require a declaration.

Moreover, there are a few minor syntactic changes, such as the

renaming of the powerset structure to set structure.

Implementation efforts on various computers have brought the problem
of portability and machine independence of software systems to our
closer attention. Many of the above mentioned changes, and also same

additional restrictions, were adopted and imposed in the interest of

program portability and machine independent definability. They

made it possible to define almost the entire language by a set of
abstract axioms and rules of inference. Such a rigorous definition
is necessary to be able to prove properties of programs. This rigour
and machine independence has notably been achieved without sacrifice

in the efficiency of program execution.

The chapter on PASCAL for the CDC 6000 computer has been removed

from the Report and replaced by a general chapter on suggested
standards for implementation and program interchange. This standard
specifies ways to represent programs in terms of available character
sets, and lists a number of restrictions on the language with the
intent of simplifying implementations. Programs to be used on several

computers where PASCAL is available should adhere to this standard.

The two procedures read and write have been included in the set of
standard procedures and are described in a new Chapter 13. They now

constitute & binding standard for legible input and output.

References

N. Wirth, "The Programming Language PASCAL", ACTA INFORMATICA 1,
35-63, (1971) and Berichte der Fachgruppe Computer-Wissenschaften
Nr. 1 (Nov. 1970)

"Systematisches Programmieren", Teubner Verlag, Stuttgart, 1972

"Systematic Programming", Prentice-Hall, Englewood Cliffs, 1973

C.A.R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming
Language PASCAL", Berichte der Fachgruppe Computer-Wissenschaften
Nr. 6 (Nov. 1972)

Contents

Preface

2. Summary of the language
3. Notation, terminology, and vocabulary
4. Identifiers, Numbers, and Strings
5. Constant definitions
6. Data type definitions
6.1. Simple types
6.2. Structured types
6.3. Pointer types
7. Declarations and denotations of variables
7.1. Entire variables
7.2. Component variables
7.3. Referenced variables
B. Expressions
8.1. Operators
8.2. Function designators
9. Statements
9.1. Simple statements
9.2. Structured statements
10. Procedure declarations
10.1. Standard procedures
11. Function declarations
11.1. Standard functions
12. Programs
13. Input and Output
14. A Standard for implementation and
program interchange
15. Glossary
Appendix:

Introduction

Syntax diagrams

10

10
10
12
15

16
17
17
19
19
21
22
23
23
25

31
34

36
3T

39

39

42

45

47

1. Introduction

The development of the language Pascal is based on two principal
aims. The first is to make available a language suitable to teach
programming as a systematic discipline based on certain fundamental
concepts clearly and naturally reflected by the language. The
second is to develop implementations of this language which are

both reliable and efficient on presently available computers.

The desire for a new language for the purpose of teaching program-
ming is due to my deep dissatisfaction with the presently used
major languages whose features and constructs too often ﬁannot be
explained logically and convincingly and which too often represent
an insult to minds trained in systematic reasoning. Along with

this dissatisfaction goes my conviction that the language in

which the student is taught to express his ideas profoundly influ-
ences his habits of thought and invention, and that the disorder
governing these languages directly imposes itself onto the program-

ming style of the students.

There is of course plenty of reascn to be cautious with the intro-
duction of yet another programming language, and the objection
against teaching programming in a language which is not widely
used and accepted has undoubtedly some justification - at least
based on short-term commercial reasoning. However, the choice of

a language for teaching based on its widespread acceptance and
availability, together with the fact that the language most widely
taught is thereafter going to be the one most widely used, forms
the safest recipe for stagnation in a subject of such profound
pedagogical influence. I consider it therefore well worth-while

to make an effort to break this vicious circle.

Of course a new language should not be developed just for the sake

of noveltys; existing languages should be used as a basis for

-2 -

development wherever they meet the criteria mentioned and do not
impede a systematic structure. In that sense Algol 60 was used as

a basis for Pascal, since it meets the demands with respsct to
teaching to a much higher degree than any other standard language.
Thus the principles of structuring, and in fact the form of
expressions, are copied from Algol 60. It was, however, not deemed
appropriate to adopt Algol 60 as a subset of Pascal; certain con-
struction principles, particularly those of declarations, would
have been incompatible with those allowing a natural and convenient

representation of the additional features of Pascal.

The meain extensions relative to Algol 60 lie in the domain of data
structuring facilities, since their lack in Algol 60 was considered
as the prime cause for its relatively narrow range of applicability.
The introduction of record and file structures should make it
possible to solve commercial type problems with Pascal, ar at least
to employ it successfully to demonstrate such problems in a pro-
gramming course. The syntax of Pascal is summarised in graphical

form in the Appendix.

2. Summary of the language

An algorithm or computer program consists of two essential parts,
a description of actions which are to be performed, and a
description of the data, which are manipulated by these actions.
Actions are described by so-called gtatements, and data are

described by so-called declarations and definitions.

The data are represented by values of yariables. Every variable

occuring in a statement must be introduced by a variable declara-

tion which associates an identifier and a data type with that
variable. The data type essentially defines the set of values
which mayby assumed by that variable. A data type may in Pascal be
either directly described in the variable declaration, or it may
be referenced by a type identifier, in which case this identifier

must be described by an explicit type definition.

The basic data types are the stalar types. Their definition indicates
an ordered set of values, i.e. introduces identifiers standing for
gach value in the set. Apart from the definable scalar types, there

exist four standard scalar types: Boolean, integer, char, and real.

Except for the type Boolean, their values are not denoted by
identifiers, but instead by numbers and quotations respectively.
These are syntactically distinct from identifiers. The set of
values of type char is the character set available on a particular

installatiaon.

A type may also be defined as a gubrenge of a scalar type by indicat-

ing the smallest and the largest value of the subrange.

Structured types are defined by describing the types of their

components and by indicating a structuring method. The various

structuring methods differ in the selection mechanism serving to
select the componenté of a variable of the structured type. In
Pascal, there are four structuring methods available: array

structure, record structure, set structure, and file structure.

In an array structure, all components are of the same type. A com-

ponent is selected by an array selector, or computable index,

whose type is indicated in the array type definition and which must
be scalar. It is usually a programmer-defined scalar type, or a
subrange of the type integer. Given a value of the index type, an

array selector yields a value of the campaonent type. Every array

variable can therefore be regarded as a mapping of the index type
onto the component type. The time needed for a selection does not
depend on the value of the selector (index). The array structure

is therefore called a random-access structure.

In & record structure, the components (celled fields) are not

necessarily of the same type. In order that the type of a selected
component be evident from the program text (without executing the
program), a record selector is not a computable value, but instead
is an identifier uniquely denoting the component to be selected.
These component identifiers are declared in the record type defini-
tion. Again, the time needed to access a selected component does
not depend on the selector, and the record is therefore also a

random~access structure.

A record type may be specified as consisting of several variants.
This implies 'that different variables, although said to be of the
same type, may assume structures which differ in a certain manner.
The difference may consist of a different number and different
types of components. The variant which is assumed by the current
value of a record variable is indicated by a component field which
is common to all variants and is called the tag field. Usually,

the part common to all variants will consist of several components,

including the tag field.

A set structure defines the set of values which is the powerset

of its base type, i.e. the set of all subsets of values of the |
base type. The base type must be a scalar type, and will usually
be a programmer-defined scalar type or a subrange of the type

integer.

A file structure is a gseguence of components of the same type. A
natural ordering of the components is defined through the sequence.

At any instance, only one component is directly accessible. The

other components are made accessible hy progressing sequentially
through the file. A file is generated by sequentially appending
components at its end. Consequently, the file type definition does

not determine the number of components.

Variables declared in explicit declarations are called static. The
declaration associates an identifier with the variable which is
usedto refer to the variable. In contrast, variables may be generated
by an executable statement. Such a dynamic generation yields a
so-called pointer (a substitute for an explicit identifier) which
subsequently serves to refer to the variable. This pointer may be
assigned to other variables, namely variables of type pointer.

Every pointer variable may obtain pointers pointing to variables

of the same type T only, and it is said to be bound to this type T.
It may, however, also obtain the value nil, which points to no
variable. Because pointer variables may also occur as components

of structured variables, which are themselves dynamically generated,
the use of pointers permits the representation of finite graphs in

full generality.

The most fundamental statement is the assignment statement. It

specifies that a newly computed value be assigned to a variable (aor
components of a variable). The value is obtained by evaluating an
expression. Expressions consist of variables, constants, sets,
operators and functions operating on the denoted quantities and
producing new values. Variables, constants, and functions are
either declared in the program or are standard entities. Pascal
defines a fixed set of operators, each of which can be regarded as
describing a mapping from the operand types into the result type.

The set of operators is subdivided into groups of

1. arithmetic operators of addition, subtraction, sign inversion,

multiplication, division, and computing the remainder.

2. Boglean gperators of negation, union (OR), and conjunction (AND).

-6 -

3. set operators of union, intersection, and set difference.

4. relational operators of equality, inequality, ordering,

set membership and set inclusion. The results of relational
operations are of type Boolean. The ordering relations apply

only to scalar types.

The procedure statement causes the execution of the designated

procedure (see below). Assignment and procedure statements are
the components or building blocks of structured statements, which
specify sequential, selective, or repeated execution aof their
companents. Sequential execution of statements is specified by

the compound statement, conditional or selective execution by

the if statement and the case statement, and repeated executiaon

by the repeat statement, the while statement, and the for state-

ment. The if statement serves to make the execution of a statement
dependent on the value of a Boolean expression, and the case state-
ment allows for the selection among many statements according to
the value of a selector. The for statement is used when the number
of iterations is known beforehand, and the repeat and while state-

ments are used otherwise.

A statement can be given a name (identifier), and be referenced
through that identifier. The statement is then called a procedure,
and its declaration a procedure declaration. Such a declaration
may additgonally contain a set of variable declarations, type
definitions and further procedure declarations. The variables,
types and procedures thus declared can be referenced only within
the procedure itself, and are therefore called local to the
procedure. Their identifiers have significance only within the
program text which constitutes the procedure declaration and which
is called the gcope of these identifiers. Since procedures may be
declared local to other procedures, scopes may be nested. Entities
which are declared in the main program, i.e. not local to same

procedure, are called glgbal.

A procedure has a fixed number of parameters, each of which is

denoted within the procedure by an identifier called the

formal parameter. Upon an activitation of the procedure statement,
an actual guantity has to be indicated for each parameter which
can be referenced from within the procedure through the formal

parameter. This quantity is called the actual parameter. There

are three kinds of parameters: value parameters, variable para-
meters, and procedure or function parameters. In the first case,
the actual parameter is an expression which is evaluated once. The
formal parameter represents a local variable to which the result of
this evaluation is assigned before the execution of the procedure
(or function). In the case of a variable parameter, the actual
parameter is & variable and the formal parameter stands for this
variable. Possible indices are evaluated before execution aof the
procedure (or function). In the case of procedure or function
parameters, the actual parameter is a procedure or function

identifier.

Functions are declared analogously to procedures. The aonly

difference lies in the fact that a function yields a result which
is confined to a scalar type and must be specified in the function
declaration. Functions may therefore be used as constituents of
expressions. In order to eliminate side-effects, assignments to

non-local variables should be avoided within function declarations.

3. Notation, terminology, and vocabulary

According to traditional Backus-Naur form, syntactic constructs
are denoted by English words enclosed between the angular brackets
< and > . These words also describe the nature or meaning of the
construct, and are used in the accompanying description of
semantics. Possible repetition of a construct is indicated by an

asterisk (0 or more repetitions) or a circled plus sign (1 or more

-8 -

repetitions). If a sequence of constructs to be repeated consists
of more than aone element, it is enclosed by the meta-brackets {

and } which imply a repetition of 0 or more times.

The basic vocabulary consists of basic symbols classified into

letters, digits, and special symbols.

<letter> ::= A|B|C|D|E|F|G|H|T|J]K|L|M|N]|OlP|alR|S|T|U[V|W|X]|Y]|Z]
albleldle|flalnlililklLIm|nlelplalz]s|t]ulv]w]x]|y|z
<digit> =0|1]2]|3la]5]6]|7]|8]9

{special symbol> ::=
wl= [/ [alal=[£ 1< L2 O TTTTIC 3 =]
s lsle] [t]div | mod |ndil|4n|

;ﬁ|thenlelse}caselgilrepeat|untilIwhile‘gg]

Far!igldownto|beqin|end]with]qotaI

canst]var]tvpe|arravlrecordIset|file|

function|procedure|label |packed|program

The construct

{<any sequence of symbols not containing "}"> }
may be inserted between two identifiers, numbers (cf. 4), or special
symbols. It is called a comment and may be removed from the program
text without altering its meaning. The symbols { and } do not
occur otherwise in the language, and when appearing in syntactic

descriptions they denote meta-symbols like] and = .

4. Identifiers, Numbers, and Strings

Identifiers serve to denote constants, types, variables, procedures
and functions. Their association must be unique within their scope
of validity, i.e. within the procedure or function in which they

are declared (cf. 10 and 11).

{identifier> ::= <letter><letter or digit>*
{letter or digitd> ::= <letter> I <digit>

The usual decimal notation is used for numbers, which are the

. The

letter E preceding the scale factor is pronounced as "times 10

constants of the data types integer and real (see 6.1.2)

to the power of".

{unsigned integer> ::= <digit>B

{unsigned real> ::= <unsigned integer> . <digit>@ l
{unsigned integer) . <digit>EE E <scale factor> l
unsigned integer> E <scale factor)

{unsigned number> ::= <unsigned integer> | {unsigned real>

<scale factor> ::= <digitd® | <sign> <digit>®

{sign> ::= + | -

Examples:

1 100 0.1 SE-3 B7.35E+8

Sequences of characters enclosed by quote marks are called strings.
Strings consisting of a single character are the constants of the
standard type char (see 6.1.2). Strings consisting of n (>1)

enclosed characters are the constants of the types (see 6.2.1)

packed array [1..n] of char

Note: If the string is to contain a quote mark, then this guote

mark is to be written twice.

<string> ::= '<character>®!

Examples:

tro

IA! 1
"PASCAL! '"THIS IS A STRING'

-

5. Constant definitions

A constant definition introduces an identifier as a synonym to

a constant.

{constant identifier> ::= <identifier>
<unsigned constant> ::= <unsigned number>] {string> |
{constant identifier> | pil
{constant> ::= <unsigned number> | <sign><unsigned number> |
{constant identifier> | <sign><constant identifier> | <string>

{constant definition> ::= <identifier> = <constant>

The following are standard constant identifiers defined in every

implementation:

eol = control character denoting end of line = 'gol'

6. Data type definitions

A data type determines the set of values which variables of that

type may assume and associates an identifier with the type.

{type>.:1:= <simple type> | {structured type> | {pointer type>
{type definition> ::= <identifier> = <typed>

6.1. Simple types

{simple type> ::= <scalar type> | {subrange type> |
{type identifier>
{type identifier> ::= <{identifier>

6.1.1. Scalar types

A scalar type defines an ordered set of values by enumeration of

the identifiers which denote these values.

{scalar type> ::= (<identifier> {Kidentifier>})

Examples:
(red, orange, yellow, green, blue)
(club, diamond, heart, spade)
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday)

Functions applying to all scalar types (except real) are:
succ the succeeding value (in the enumeration)

pred the preceding value (in the enumeration)

6.1.2. Standard scalar types

The following types are standard in Pascal:

integer The values are a subset of the whole numbers defined
by individual implementations. Its values are the

integers (see 4.).

real Its values are a subset of the real numbers depending
on the particular implementation. The values are

denoted hy real numbers (see 4.).

Boolean Its values are the truth values denoted by the

identifiers true and false.

char Its values are a set of characters determined by
particular implementations. They are dencted by the

characters themselves enclosed within quotes.

6.1.3. Subrange types

A type may be defined as a subrange of another scalar type by
indication of the least and the largest value in the subrange. The
first constant specifies the lower bound, and must not be greater

than the upper bound.

{subrange type> ::= <constant>..<{constant>

Examples: 1..100
-10 .. +10
Manday .. Friday

6.2. Structured types

A structured type is characterised by the type(s) of its components
and by its structuring method. Moreover, a structured type defini-
tion may contain an indication of the preferred data representation.
If a definition is prefixed with the symbol packed, this has no
effect on the meaning of a program, but is a hint to the compiler
that storage should be economised even at the price of some loss

in efficiency of access, and even if this may expand the code

necessary for expressing access to components of the structure.

{structured type> ::= <unpacked structured type> |
packed <unpacked structured type>
<unpacked structured type> ::= <{array type> |
{record type> l <set type> | <file type>

6.2.1. Axrray tvypes

An array type is a structure consisting of a fixed number of
‘components which are all of the same type, called the component
type. The elements of the array are designated by indices, values
belonging to the so-called index type. The array type definition

specifies the component type as well as the index type.

Carray type> 1::

array [<index type> {,<index type>}] of
{component type>

{index type> ::= <simple type>

{component type> ::= <type>

If n 4index types are specified, the array type is called

fn-dimensional, and a component is designated by n indices.

- 13 =
Examples: array [1..100] of real
array [1..10, 1..20] of 0..99

array [Boolean] of Color

6.2.2. Record types

A record type is a structure consisting of a fixed number of
components, possibly of different types. The record type defini-
tion specifies for each component, called field, its type and an
identifier which denotes it. The scope of these so-called field
identifiers is the record definition itself, and they are also
accessible within a field designator (cf. 7.2) referring to a

record variable of this type.

A record type may have several yariants, in which case a certain
field is designated as the tag field, whose value indicates which
variant is assumed by the record variable at a given time. Each
variant structure is idenrified by a case label which is a constant

of the type of the tag field.

{record type> ::= pecord <field list> end
{field list> ::= <fixed part)[(fixed part>j;<variant partd|
{variant part>

{fixed part> ::= <record section> {;<record section)}

{record section> ::= <field identifier> {,<Field identifier>}:<type>

{variant part> ::= case <tag field> : <type identifier> of
{variant> {;(variantﬁ

{variant> ::= <{case label list> : (<field list>)|<case label list>:
{case label list> ::= <case labeld }{,<case label>}
{case label> ::= <constant>

{tag field> ::= <{identifiex>

- 14 -

‘Examples: record day: 1..31;
month: 1..12;

year: integer

u]
=
[l

record name, firstname: Alfa;
age: 0..99;

married: Boolean

record x,y: real;
area: real;
case s: Shape of
triangle: (side: real;
inclination, anglel, angle2: Angle);
rectangle: (sidel, side2: real;
skew, angle3: Angle);
circle: (diameter: real)

end

6.2.3. Set types

A set type defines the range of values which is the powerset of
its so-called base tvpe. Base types must not be structured types.
Operators applicable to all set types are:

v union
A intersection
- set difference

in membership

{set type> ::= set of <base type>

{base type> ::= <simple type>

- 15 =

6.2.4. File tvpes

A file type definition specifies a structure consisting of a
sequence of components which are all of the same type. The number
of components, called the length of the file, is not fixed by the
file type definition. A file with O components is called empt ,

and files with components of type char are called textfiles.

{file type> ::= file of <type>

The following is a standard type:

type text = packed file of char

6.3. Pointer tvpes

Variables which are declared in a program (see 7.) are accessible
by their identifier. They exist during the entire execution process
of the procedure (scope) to which the variable is local, and these
variables are therefore called static (or statically allocated). In
contrast, variables may also be generated dynamically, i.e. without
any correlation to the structure of the program. These dynamic
variables are generated by the standard procedure new (see 10.1.2);
since they do not occur in an explicit variable declaration, they
cannot be referred to by a name. Instead, access is achieved via

a so-called pointer value which is provided upaon generation of the
dynamic variable. A pointer type thus consists of an unbounded set
of values pointing to elements of the same type. No operations are

defined on pointers except the test for equality.

The pointer value pil belongs to every pointer type; it points to

no element at all.

<{pointer type> ::= A<type identifier>

- 16 -

Examples of type definitions:

Color = (red, yellow, green, blue)

Sex = (male, female)

Text = file of char

Shape = (triangle, rectangle, circle)
Card = array[1..80] of char

Alfa = packed g££§¥[1..alfalang] af char
Complex = record re, im: real end

Person = record name, firstname: alfaj

age: integer;
married: Boolean;
father, child, sibling: tPerson;
case s: Sex of
male: (enlisted, bold: Boolean);
female: (pregnant: Boolean;
size: array[1..3] of integer)
end

7. Declarations and denotations of variables

Variable declarations consist of a list of identifiers denoting

the new variables, followed by their type.

{variable declaration> ::= <{identifier> £<identifier5} : <type>

Every declaration of a file variable f with components of type T
implies the additional declaration of a so-called buffer variable
of type T . This buffer variable is dencted by f% and serves

to append components to the file during generation, and to access

the file during inspection {(see 7.2.3 and 10.1.1).

The standard file variables input and putput are predeclared as

textfiles. A Pascal program should be regarded as a procedure

with these two variables as formal parameters. The corresponding
actual parameters are expected to be either the standard input and
output media of the computer installation, or to be specifyable in

the system command activating the Pascal system.

Examples:
X,y,z: real
u,v: Complex
i,j: integer
k: 0..9
p,q: Boolean
operator: (plus, minus, times)
a: array[0..63] of real
b: array[Color,Boolean] of Complex

c: Color
f:+ file of char

huel, hue2: get of Color

pl,p2: $Person

Denotations of variables either designate an entire variable, a
camponent of a variable, or a variable referenced by a pointer
(see 6.3). Variables in examples in subsequent chapters are assumed

to be declared as indicated above.

{variable> ::= <{entire variable> | <component variable> [

{referenced variable>

7.17. Entire variables

An entire variable is denoted by its identifier.

{entire variable> ::= <variable identifier>

{variable identifier> ::= <identifier>

7.2. Component variables

A component of a variable is denoted by the denotation for the
variable followed by a selector specifying the component. The

form of the selector depends on the structuring type of the variable.

component variable> ::= <indexed variable> |

<field designator> | <file buffer>

- 18 -

7.2.1. Indexed variables

A component of ‘an n-dimensional array variable is denoted by the

denatation of the variable followed by n index expressions.

{indexed variable> ::=
<array variable> [<expression> {,<expression>}]

{array variable> ::= <{variable>

The types of the index expressions must correspond with the index

types declared in the definition of the array type.

Examples:
al12]
ali+j]
b[red, true]
b{succ(e), paqg]

7.2.2. Field designators

A compaonent of a record variable is denoted by the denotation
of the record variable followed by the field identifier of the

companent.

{field designator> ::= <record variable>.<field identifier>
{record variable> ::= <variable>

{field identifier> ::= <identifier>

Examples:
u.re
b[red, true].im

p2%.size

- 19 -

7.2.3. File buffers

At any time, only the one component determined by the current
file position (read/write head) is directly accessible. This

component is called the current file component and is represented

by the file's buffer variable.

{file buffer> ::= <file variabledt
{file variable> ::= <variable)

7.3. Referenced variables

{referenced variable> ::= <{pointer variable>®

<pointer variable> ::= <variable>

If p 1is a pointer variable which is bound to a type T , p
denotes that variable and its pointer value, whereas pt' denotes

the variable of type T referenced by p

Examples:
p1%.father
p14.sibling®.child

8. Expressions

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operands, i.e.

variables and constants, operators, and functions.

The rules of composition specify operator precedences according
to four classes of operators. The operator =~ has the highest
precedence, followed by the so-called multiplying operators, then
the so-called adding operators, and finally, with the lowest
precedence, the relational operators. Sequences of operators of

the same precedence are executed from left to right. The rules

- 20 -

of precedence are reflected by the following syntax:

{factor> ::= <variable> | <unsigned constant> |
{function designator> | {set> l(<expression>)]
4 <factor>

<{set> ::= [<expression> {,(expression)}] l []
<term> ::= <factor> | {term><multiplying operator><{factor>
{simple expression> :i= <term> I
{simple expression> <adding operator><{term>]
{adding operator><{term>
{expression> ::= <simple expression> l
<simple expression><{relational operator>

{simple expression>

Expressions which are members of a set must all be of the same

type, which is the base type of the set. [] denotes the empty set.

Examples:

Factors: X
15
{(x+y+z)
sin(x+y)

(red,c,green]
ap

Terms: x ¥y

i/(1-1)

PAQ

(x L yIA (y < z)
Simple expressions: x + y

~-X

huel v hue2

i*ji + 1

Expressions: X

]
_
.
w

8.1. Operators

g.1.1.

The operator =3

The operator =

§.1.2.

Multiplving operators

applied to a Boolean operand denotes negation.

<multiplying operator> ::= * | / | div | mod | A
operator operation type of operands type of result
integer, if both ope-
. . . real .
* multiplication . rands are of type in-
integer .
teger, real otherwise
/ divisiaon ;eal real
integer
div division integer intege
with truncation 9 eger
mod modulus integer integer
lJogical "and" Boolean Boolean
N set intersection|any set type T T
8.1.3. Adding operators
{adding operator> ::= + | - 'V
operator operatiaon type of operands type of result
integer, if both
+ additian :} integer operands are of
. real type integer,
{: subtraction real otherwise
set difference any set type T T
set union
A4 logical "ox" Boolean Boolean
When used as operators with one operand only, - denotes sign

inversion,

and +

denotes the identity operation.

- 22 -

8.1.4. Relational operators

{relational operator> ::= =|¥|<]S|2}>I;ﬂ
operator | type of operands result
= # any type. (except file types) Boolean
<> any scalar or subrange type Boolean
L2
in any scalar or subrange type and Boolean
its set type respectively

Notice that all scalar types define prdered sets of values. In

particular, false < true.

The operators < and 2 may also be used for comparing values

of set type, and then denote set inclusion € and 2 &respectively.

The operators <, £, >, > may also be applied to packed arrays
with components of type char, and then denote alphabetical

ordering according to the underlying set of characters.

B.2. Function designators

A function designator specifies the activation of a function. It
consists of the identifier designating the function and a list of
actual parameters. The parameters are variables, expressions,
procedures, and functions, and are substituted for the

corresponding formal parameters (cf. 9.1.2., 10, and 11).

{function designator> ::= <function identifier> |
{function identifier> (<actual parameter {,<actual parameter>})

{function identifier> ::= <identifier)>

Examples: Sum(a,100)

- 23 -

9. Statements

Statements denote algorithmic actions, and are said to be

executable. They may be provided with a label which can be

referenced by goto statements.

{statement> ::= <unlabelled statement>|<labal>:<unlabelled statement>

unlebelled statement> ::= <simple statement>|<structured statement>
{label> ::= <unsigned integer>

9.1. Simple statements

A simple statement is a statement of which no part constitutes

another statement.

{simple statement> ::= <assignment statement> |

{procedure statement> | <goto statement> | <empty statementd>

9.1.1. Assignment statements

The assignment statement serves to replace the current value of a

variable by a new value specified as an expression.

{assignment statement> ::= <variable> := <expression> |

{function identifier> := <expression>

The variable (or the function) and the expression must be of

identical type, with the following exceptions being permitted:
1. the type of the variable is real, and the type of the
expression is integer or a subrange thereof.

2. the type of the expression is a subrange of the type of the

variable, or vice-versa.

Examples: X 1= y+z
i= (1 £ i)Aa (1 < 100)
i := sqr(k) - (i¥*j)
hue := [blue,succ(c)]

- 24 -

9.1.2. Procedure statements

A procedure statement serves to execute the procedure denoted by

the procedure identifier. The procedure statement may contain a

list of actual parameters which are substituted in place of their
corresponding formal parameters defined in the procedure declara-
tion (cf. 10). The correspondence is established by the positions

of the parameters in the lists of actual and formal parameters
respectively. There exist four kinds of parameters: so-called

value parameters, variable parameters, procedure parameters (the
actual parameter is a procedure identifier), and function parameters

(the actual parameter is a function identifier).

In the case of a value parameter, the actual parameter must be an
expression (of which a variable is a simple case). The correspon-
ding formal parameter represents a local variable of the called
procedure, and the current value of the expression is initially
assigned to this variable. In the case of a variable parameter,
the actual parameter must be a variable, and the corresponding
formal parameter represents this actual variable during the

entire execution of the procedure. If this variable is a component
of an array, its index is evaluated when the procedure is called.

A variable parameter must be used whenever the parameter represents

a result of the procedure.

{procedure statement> ::= <{procedure identifier> l
{procedure identifier> (<actual parameter>
{,<actual parameter>})

{procedure identifier> ::= <identifier>

<actual parameter> ::= <expression> l {variable>

{procedure identifier> | <function identifier>

Examples: next

Transpose (a,n,m)
Bisect (Fct,—1.0,+1.0,x)

- 25 -

9.1.3. Goto statements

A goto statement serves to indicate that further processing should

continue at another part of the program text, namely at the place
of the label.

{goto statement> ::= goto <labeld

The following restrictions hold concerning the applicability of
labels:

1. The scope of a label is the procedure within which it is

defined. It is therefore not possible to jump into a procedure.

2. Every label must be specified in a label declaration in the

heading of the procedure in which the label marks a statement.

9.1.4. The empty statement

The empty statement consists of no symbols and denotes no actions.

{empty statement> ::=

9.2. Structured statements

Structured statements are constructs composed of other statements
which have to be executed either in sequence (compound statement),
conditionally (conditional statements), or repeatedly (repetitive

statements).

{structured statement> ::= <compound statement> I
{conditional statement> | <repetitive statementd> |

with statement>

9.2.1. Compound statements

The compound statement specifies that its component statements
are to be executed in the same seguence as they are written. The

symbols begin and gnd act as statement brackets.

- 26 -

{compound statement> ::= begin {statement> {;<statement>} end

Example: begin z := x; x 3= y; y := z end

9.2.2. Conditional statements

A conditicnal statement selects for execution a single one of its

component statements.

{conditional statement> ::=

<if statement> | <case statement>

9.2.2.1. If statements

The if statement specifies that a statement be executed only if a

certain condition (Boolean expression) is true.
If it is false, then either no statement is to be executed, or
the statement following the symbol glse is to be executed.

{if statement> ::= if <expression> then <statement>]

if <expression> then <statement> else <statement>

The expression between the symbols if and then must be of type

Boolean.
Note:
The syntactic ambiguity arising from the construct

if <expression-1> then if <expression-2> then <statement-1>

gelse <statement-2>
is resolved by interpreting the construct as equivalent to

if <expression-1> then

begin if <expression-2> then <statement-1> glse <statement-2>

end

Examples: x < 1.5 then z := x+y glse z := 1.5

pi1 £ nil then pt1 := plt.father

F‘IH.
- I

- 27 -

0.2.2.2. Case statements

The case statement consists of an expression (the selector) and
a list of statements, each being labeled by a constant of the
type of the selector. It specifies that the one statement be

executed whose label is equal to the current value of the selector.

{case statement> ::= case <expression> of

{case list element> {;<case list element)} end
{ecase list element> ::= <case label list> : <statement>
<case label list> ::= <case label> {,<case label>}

Examples:

case operator pf case i of
plus: X 1= X+y; 11 x := sin(x);
minus: X 1= X-Yy3 2 x := cos(x);
times: x := x*y 3: x 1= exp(x);
end 4: x := 1In(x)
en

9.2.3. Repetitive statements

Repetitive statements specify that certain statements are to be
executed repeatedly. If +the number of repetitions is known
beforehand, i.e. before the repetitions are started, the for
statement is the appropriate construct to express this situation;

otherwise the while or repeat statement should be used.

{repetitive statement> ::= <while statementd> |

{for statement>

{repeat statement>

9.2.3.1. While statements

<while statement> ::= while <{expression> do <statement>

The expression controlling repetition must be of type Boolean.
The statement is repeatedly executed until the expression becomes

false. If its value is false at the beginning, the statement is

- 28 -

not executed at all. The while statement

hile e do 5

<

is egquivalent to

if e then

- begin 5%
while e do S
end

Examples:

while ali] # x do i := i+l

while i > 0 do

begin if odd(i) then z := z¥*x;
i := 1 div 2;
x = sqr(x)

end

while eof(f) do
begin P(f*); get(f)
end

9.2.3.2. Repeat statements

{repeat statement> ::=

repeat <statement> {;(statement>} until <expression>

The expression controlling repetition must be of type Boolean.
The sequence of statements between the symbols repeat and until
is repeatedly (and at least once) executed until the expression

becomes true. The repeat statement

repeat S5 until e

is equivalent to

begin 53
if e then

repeat S until e
end

Examples:
repeat k := i mod j;
i :=j;
Jj =k
until 3 =0

repeat P(f%); get(f)
until eof(f)

9.2.3.3. For statements

The for statement indicates that a statement is to be repeatedly
executed while a progression of values is assigned to a variable

which is called the control variable of the for statement.

{for statement> ::=
for <control variable> := <{for list> do <{statement>
{for list> ::= <initial value> %o <final value> |

<initial value> downto <final value>

{control variable> ::= <identifier>
{initial value> ::= <expression>
{final value> ::= <expression>

The control variable, the initial value, and the final value must
be of the same scalar type (or subrange thereof), and must not be
altered by the repeated statement.
A for statement of the form

for v := el to e2 do S
is equivalent to the sequence of statements

v = el; 53 v := succ(v); S; ...5 v := e2; S
and a for statement of the form

for v := el downto e2 do S

is equivalent to the statement
v 1= el; S; v s= pred{(5); S; ...; v 1= e2; 5

Note: The final value of the control variable is left undefined.

- 30 -

for i := 2 to 100 do if a[i] > max then max := a[i]

for i := 1 to n do

for j := 1 to n dg

begin x := 03
For k := 1 to n do x := x+a[i,k]*b[k,il;
C[i’J] =X

end

9.2.4. With statements

{with statement> ::= with <record variable list> dg <{statement>
{record variable list> ::= <record variabla>{,<record variable>}

Within the component statement of the with statement, the components

(fields) of the record variable specified by the with clause can be

denoted by their field identifier only, i.e. without preceding them

with the denctation of the entire record variable. The with clause

effectively opens the scope containing the field identifiers of the

specified record variable, so that the field identifiers may occur

as variable identifiers.

Example:

with date do
if month = 12 then

begin month := 1; year := year+!
end
else manth := month+1

is eguivalent to

if date.month = 12 then
begin date.month := 1; date.year
end

glse date.month := date.month-+1

1= date.year+]

No assignments may be made by the qualified statement to any

constituents of the record variable list.

10. Procedure declarations

Procedure declarations serve to define parts of programs and to
assaciate identifiers with them so that they can be activated by
procedure statements. A procedure declaration consists aof the
following parts, any of which, except the first and the last, may
be empty:

{procedure declaration> ::=
{procedure heading><label declaration part>
{constant definition part><{type definition part>
{variable declaration partd>

{procedure and function declaration part><{statement part)

The procedure_heading specifies the identifier naming the procedure
and the formal parameter identifiers (if any).
The parameters are either value~-, variable-, procedure-, or functian

parameters (cf. also 9.1.2).

{procedure heading> ::= procedure <identifier> ;]
procedure <identifier> (Kformal parameter section>

£;<f0rmal parameter sectiond}) ;

{formal parameter section> ::=
{parameter group> I
var {parameter group> I
function <parameter group>]
procedureg <identifier> {,(identifier>}
{parameter group> ::= <identifiar>{,<identifieri}:
{type identifier>

A parameter group without preceding specifier implies that its

canstituents are value parameters.

The label declaration part specifies all labels which mark a

statement in the statement part.

{label declaration part> ::= <empty> l
label <label> {,<label>} ;

The constant definition part contains all constant synonym de-

finitions local to the procedure.

{constant definition part> ::= <empty> i

const <constant definition> {;<cunstant definition>} 3

The type definition part contains all type definitions which are

local to the procedure declaration.

{type definitions part> ::i= <empty> |
type <{type definition> {;(type definition)} ;

The variable declaratign part contains all variable declarations

local to the procedure declaration.

{variable declaration part> ::= <empty> |

var <variable declaratiun){;(variable declaratiun)} ;

The procedure and function declaration part contains all procedure

and function declarations local to the procedure declaration.

{procedure and function declaration part> ::=
{kprocedure or function declaration> ;}
{procedure or function declaration> ::=

{procedure declaratiaon> ! {function declaration>

The statement part specifies the algorithmic actions to be executed

upan an activation of the procedure by a procedure statement.

{statement part> ::= <{compound statement>

All identifiers introduced in the formal parameter part, the
constant definition part, the type definition part, the variable-,

procedure or function declaration parts are local to the procedure

- 33 -

declaration which is called the scope of these identifiers. They

are not known outside their scope. In the case of local variables,

their values are undefined at the beginning of the statement part.

The use of the procedure identifier ina procedure statement within

its declaration implies recursive execution of the procedure.

Examples of procedure declaraticons:

procedure readinteger (yar x: integer);

var i,j: integer;

begin i := 0;
while (input® 2 '0')A (inputd <
begin j := ord(input®) - ord('0’
it= 10%i + s
get(input)
end;
X = i
end

procedure Bisect(function f: real; a,b:

var m: real;
begin {assume f(a) < 0 and f(b) > 0}
while abs(a-b) > 1E-10%abs(a) do

begin m := (a+b)/2.0;

if f(m) < 0 then a :=m glse b
end;
z 1= m

lu]
3
jnl

|91)
) s

[a]

-+

real;

=M

var z: real);

- 34 -

procedure GCD(m,n: integer; var X,¥,2% integer) ;
var al,a2,b1,b2,c,d,q,r: integer; {m > 0, n > 0}
begin{Greatest Common Divisor x of m and n,
Extended Euclid's Algorithm}
al := 0; a2 =13 bl :=1; b2 := 0;
c t=m; d := nj;
while d # 0 do
begin{a1*m + bi*n = d, a2*m + b2*n = c,
ged(c,d)
q :=c div d; = H
a2 := a2 - g*al; b2 := b2 - g¥*bl;

i
[ta]
0
o
3
3
At

r := al; al := a2; a2 := r;

r := bl; bl := b2; b2 :=1r
end
X = c; y = a2; z i= b2
{ x = ged(m,n), y*m + z*n = ged(m,n)}

10.1. Standard procedures

Standard procedures are supposed to be predeclared in every imple-
mentation of Pascal. Any implementation may feature additional

predeclared procedures. S5ince they are, as all standard quantities,
assumed as declared in a scope surrounding the program, no conflict
arises from a declaration redefining the same identifier within the

program. The standard procedures are listed and explained below.

10.1.1. File handling procedures

put(f) appends the value of the buffet variable 4 +to the
file f . The effect is defined only if prior to
execution the predicate eof(f) is true. eof(f)

remains true, and ' becomes undefined.

get(f) advances the current file position (read/write head)
to the next component, and assigns the value of this
component to the buffer variable f} . If no next
component exists, then eof(f) becomes true, and the
value of ft is not defined. The effect of get(f)
is defined only if eof(f) = false prior to its

execution. (see 11.1.2)

- 35 -
reset(f) resets the current file position teo its beginning and
assigns to the buffer variable ft the value of the
first element of f . eof(f) becomes false, if f is

not empty; otherwise ft is not defined, and eof(f)

remains true.

rewrite(f) discards the current value of f such that a new file

may be generated. eof(f) becomes true.

10.1.2. Dynamic allocation procedure

new(p) allocates a new variable v and assigns the pointer to
v to the pointer variable p . If the type of v is a

record type with variants, the form

new(p,t1,...,tn) can be used to allocate a variable of the variant
with tag field values t1"'tn . The allocation then
implies initialization of the tag fields. The values of

the tag fields must subsequently remain constant.

10.1.3. Data transfer procedures

Let a be an array variable of type
array[m..n] of T
and let =z be a variable of type

packed array[u..v] of T

where n-m 2 v-u . Then
pack(a,i,z) means
for j :=u to v do z[j] = alj-u+i]
unpack(z,a,i) means
for j = u to v do alj-u+i] = z[j]

where j denotes an auxiliary variable not occuring elsewhere in

the pfogram.

11. Function declaratiaons

Function declarations serve to define parts of the program which
compute a scalar value or a pointer value. Functions are activated
by the evaluation of a function designator (cf. 8.2) which is a
constituent of an expression. A function declaration consists of the
following seven parts, any of which, except the first and the last,

mey be empty (cf. also 10.).

{function declaration> ::=
{function heading><label declaration part>
{constant definition part><type definition partd
<variable declaration partd

{procedure and function declaration part><{statement part>

The function heading specifies the identifier naming the function,

the formal parameters of the function, and the type of the function.

{function heading> ::= function <identifier>:<result type>;]
function <identifier> (<formal parameter sectiond>
{;<formal parameter section>|) : <result type> ;

<result type> ::= <{type identifier>

The type of the function must be a scalar, subrange, or pointer type.
Within the function declaration there must be at least one assignment
statement assigning a value to the function identifier. This assignment
determines the result of the funmction. Occurrence of the function
identifier in a function designator within its declaratian implies

recursive execution of the function.

Examples:

function Sgrt(x: real): real;
var x0,x1: real;
begin x1 := x; {x > 1, Newton's method |
repeat x0 := x1; x1 := (x0 + x/x0) * 0.5
until abs(x1-x0) < eps¥*x1;
Sqrt := x0

- 37 -

function Max(a: vectors n: integer): real;
var x: real; i: integer;
begin x := n[1];
for i = 2 to n do
begin {x = max(a,...a, ,)}
if x < ali] then xi7d ali]
end;
x = max{a,...a)]
Max = x ! "

end

function GCD(m,n: integer): integer;

begin if n = 0 then GCD := m glse GCD := GCD(n,m mod n)
end

function Power(x: realj y: integer): real; {y > 0O}
var w,z: real; i: integer;
begin w = x3 z :=1; 1 := y3
while i # 0 da
begin {z*wl = xy}
if odd(i) then z := z*w;
i = 1 div 23
w = sgr(w)
end;
z = x¥}
Power := z

end

11.1. Standard functions

Standard functions are supposed to be predeclared in eveny implemen-
tation of Pascal. Any implementation may feature additional prede-

clared functions (cf. also 10.1).

The standard functions are listed and explained below:

11.1.1. Arithmetic functions

abs () computes the absolute value of x . The type of «x

must be either real or integer, and the type of the

result is the type of x

sqr(x) computes x2 . The type of x must be either real or

integer, and the type of the result is the type of x .

sin(x) A

cos(x)

exp(x) the type of x must be either real or integer, and
In(x) the type of the result is real.

sqrt(x)

arctan(x)_J

11.1.2. Predicates

odd(x) the type of x must be integer, and the result is
x mod 2 # 0

eaf(f) indicates, whether the file f is in the end-of-file
status.

11.1.3. Transfer functions

trunc(x) the real value x 1is truncated to its integral part.

round(x) the real argument x is rounded.

ord(x) x must be of type char, and the result (of type integer)
is the ordinal number of the character x in the defined
character set. -

chr(x) x must be of type integer, and the result (of type char)

is the character whose ordinal number is x

11.1.4. Further standard functions

succ(x) x 1s of any scalar or subrange type, and the result is

the successor value of x (if it exists).

pred(x) x 1s of any scalar or subrange type, and the result is

the predecessor value of x (if it exists).

all(T) is the set of all values of type T

- 39 -

12. Programs

A Pascal program has the form of a procedure declaration except for

its heading.

{program> ::= <program heading><label declaration partd
(constant definition part><type definition partd
{variable declaration part>
{procedure and function declaration part><{statement part>.
{program heading> ::= <empty>! program <identifier>;| i
program <identifier> (<program parameters>); i

The form of the program parameters is specified by individual
implementations and depends on the available operating system. It
is the purpose of these parameters to specify all variables which |

are not local to the program and upon which the program operates.

The two textfiles input and output are understood to be predefined

as parameters and must not be listed explicitly. If they are the only
program parameters, the program heading may therefore be amitted. The
methods of specifying formal program parameters and corresponding
actual parameters upon activation of the program are defined by

individual implementations of PASCAL.

13. Input and Output

The basis of legible input and output is established in PASCAL by the
two standard text file variables (program parameters) input and
output and the standard file procedures get and put (cf. 10.1.1).

In order to facilitate the analysis of input text and the formation

of output text, the two standard procedures read and write are

introduced. They can be used with a variable number of parameters,
and with a non-standard syntax for procedure calls. The following

rules hold for the procedure zead:

1. read(c1, c2 ... cn) means

begin read(cl); read(c2); ... read(cn) end

- 40 -

its parameters may be of type char, integer, or real. In the
first case, only the one next character is read; i.e. read(c)

stands for
c := inputt; get(input)

In the latter two cases, a sequence of characters is read which
represents an integer or a real number according to the PASCAL
syntax (seeexample on p. 33). (Consecutive numbers must be

separated by blanks or end-of-lines.)

Examples:

Read a text, execute P for every character, Q upon end of line:

while —eof(input) do
begin read(ch);
while ch # eol do
begin P(ch); read(ch)
end;
Q

end

Read a sequence of integers; the last is followed by a period:

repeat read(i,ch); P(i)
until ch = '.'

The following rules hold for the procedure write:

1.

write(pl, p2 ... pn) means

begin write(p1); write(p2); ... write(pn) end

every parameter e may be of type char, integer, real, Boolean,

or of any array of characters.

if & parameter is of type char, then write(c) stands for

outputt := c; put(output)

if an argument e is -of type integer, then the parameter must

be of the form

e or e:el

where e and el are expressions. The value e is converted

- 41 -~

into a seguence of el characters representing the integer e
in decimal form. el is called the "field width"; if it is

omitted, the default value 10 is assumed.

if an argument e is of type real, then the parameter must be
of the form

e or
e:el or
e:el:e?

where e, el, e2 are expressions. The value e is converted
into a sequence of el characters representing the real number
g 1in decimal form. If e1 is omitted, the default value 20

is assumed. If e2 is omitted, then e 1is represented in

floating-point form with a decimal scale factor; otherwise a
fixed-point form is produced with g2 digits after the decimal

point.

if an argument e is a character array (string), then write(e)

stands for

for i :=m to n do write(e[i])

where m and n are the lower and upper index bounds of e

if an argument e is of type Boolean, then the parameter must

be of the form

g or
e:el
If el > 5, the Boolean value true 1is represented by the four

characters TRUE preceded by e1-4 blanks, and false by the
five characters FALSE preceded by e1-5 characters. If el < 5 ,
then +true and false are represented by the single letter T or

F, preceded by e1-1 blanks.

- 42 -

Example:
Let k = 135, n =4, x = 72.83, b = true, c = 'A', then
write(k+k: n, x: 12, x:6:1, 'L, ,A', c, b, eol) appends the

character sequence

L270,,7.2830E+01,072.8uuAAuowwun TRUE eol

to the standard file gutput. Note that the end of each line

must be explicitly indicated by an epl character.

14. A standard for implementation and program interchange

A primary motivation for the development of PASCAL was the need
for a powerful and flexible language that could be reasonably
efficiently implemented on most computers. Its features were to

be defined without reference to any particular machine in order

to facilitate the interchange of programs. The following set of
proposed restrictions is designed as a guideline for implementors
and for programmers who anticipate that their programs be used on
different computers. The purpose of these standards is to increase

the likelihood that different implementations will be compatible,

and that programs are transferable from one installation to another.

1. Identifiers denoting distinct objects must differ over their

first B8 characters.
2. Labels consist of at most 4 digits.

3. Procedures and functions which are used as parameters to other
procedures and functions must have value parameters only.
(Consequently, it is not necessary to test at run time whether

a parameter is called by value or by address.)

4. A component of a packed structure must not appear as an actual
variable parameter. (Consequently, there is no nedd to pass
addresses of partwords, and to test at run time for the internal

representation of the actual variable.)

- 43 -

The implementor may set a limit to the size of a base type over
which a set can be defined. (Consequently, a bit pattern

representation may reasonably be used for all sets.)

Packed records cannot be compared directly. (Consequently, it
is possible to pack records leaving undefined gaps between

components.)

The identifiers OR , AND , and NOT are reserved. (Consequently,

they may be used as word-symbols in implementations with character

sets not including V , A, and - .)

The first character on each line (following eol) in the standard

file putput is interpreted as a printer control character with

the following meanings:

blank : single spacing
oY double spacing
"o print on top of next page

Representations of PASCAL in terms of available character sets

should obey rules 9-12:

9.

10.

1.

12.

Word symbols - such as begin, end etc. - are written as a
sequence of letters (without surrounding escape characters).

They may not be used as identifiers.

Blanks, ends of lines, and comments are considered as separators.
An arbitrary number of separators may occur between any two
consecutive PASCAL symbols with the following exception: no
separators must occur within identifiers, numbers, and word

symbols.

At least one separator must occur between any pair of consecutive

identifiers, numbers, or word symbols.

Implementations based on the ASCII or EBCDIC character sets
should obey the following translation rules for PASCAL symbols

not included in the respective sets:

- 44 -

PASCAL symbols ASCII characters EBCDIC characters
vV A = OR AND NOT | & -
£ <2 <> &= > —= (= D=
I t /e x/ @ /v %/ @
[]] (.)

Table of standard identifiers

Constants:

false, true, eol
Types:

integer, Boolean, real, char, text
Variables:

input, output

Functions:
abs, sgr, odd, succ, pred, ord, chr, trunc, eof,
sin, cos, exp, 1ln, sgrt, arctan, round

Procedures:
get, put, reset, rewrite, new,

read, write, pack, unpack

15. Glossary

actual parameter
adding operator
array type

array variable
assignment statement
base type

case label

case label list

case list element
case statement
component type
component variable
compaound statement
conditional statement
constant

constant definition
constant definition part
constant identifier
control variable
digit

empty statement
entire variable
expressiaon

factor

field designator
field identifier
field list

file buffer

file type

file variable

final value

fixed part

for list

formal parameter sectiaon
for statement
function declaration
function designator
function heading
‘function identifier
goto statement
identifier

if statement

index type

indexed variable
initial value

label

label declaration part
letter

letter or digit
multiplying operator
parameter group

45

. s

NN NNNNMNDND 22NN = —

.
.

NN NMNW eSO

N NN

.
.

N —

.

O
N .
w
w

P
JEFQUEN
~

MNMNMNNMNDNNDNDN
w

WNWWwdDhwPpNoN

OO0V OVNI OV N OO N0 WO U000 YOO \UOOo OO~ OO
e s s . . . « s s s . . e e s s e s & o
.
w

o .

. s e
[N
w

.
NN
—

N =
.lt
W= =N
w

oW uVU-JYOV\DO O oD
. .

pury

.2

o

and 6.2.2

pointer variable

pointer type

procedure and function
declaration part

procedure declaration

procedure heading

procedure identifier

procedure or function declaration

procedure statement
program

record section
record type

record variable |
record variable list
referenced variable
relational operator
repeat statement
repetitive statement
result type

scale factor

scalar type

set

set type

sign

simple expression
simple statement
simple type

special symbol
statement

statement part
string

structured statement
structured type
subrange type

tag field

term

type

type definition

type definition part
type identifier
variable

variable declaration
variable declaration part
variable identifier
variant

variant part
unlabelled statement
unpacked structured type
unsigned caonstant
unsigned integer
unsigned number
unsigned real

with statement
while statement

oy ~

- 46 -

.

w W

10.

10.
9.1.2
10.

\0

—
nN

NN = WNNRNRN

oD 20OV OD~O~NOND

.

P

s e s s e

o s

(= N IS
NN — — .

.

o e a
NN

W

.

—_

—

SN NN

. .
W W

n

N
w

N NN .

.

N

N oW

NN

N

.
—_

O~ OOy -
O ¥

¢

=]

60_.”2352 m&..%T@L JI2TFTIUSPT IMEEU’

~ adAy _

{ | @ _ _uwaﬁcmvw _
0 H
U/

lnthZmHIm T PT3U _‘lﬁmoo ﬂ®‘|1
R)

1S PIRY

“mab_ @]l‘mhdﬁm‘

_|L
@O O G-
O— @

®

e laaTmiuapt ad£y

adfy
O O
__SE«SE oeﬁ__
ad&y ordurts

|N._Vl

OTEDT0
On

Jaquinu paudisun

JBTJTIUBPT YUE}SUOD L @

bet————| 1oquuInu paufisun

JUEISU0D

Tb.ﬂwﬁ:m pT juels :m_

— =

JuUe}suod paudisun

xo8ajur paufisun H\ 4 S

O G O

Jaquinu paulisun

m { 118 } _

\ ST)

Ja8ajuT paulisun

JI9TFTIUepPL

o

XxTpuaddy

HYNAADOH J=

NOILLDNIN

I

©

JUS——

) _ﬂzﬂcog 25_0@ .Easamﬂ_{ sﬁ @

1S1[J91aweed

uorssaadxa ordurs k~ *

| T
OPOVOOV

uoissaxdxo a[dws (~——

uotssaxdxa

Y QLU (O
Lo

uoisseadxe epdurs

)@ O
I A =

wLIay
()
uorssaadxs
® O
Jo030€j ®1|‘I|‘
- OO
éﬁ@
__ alqelaea __
1UBISUOD PAUTISUN |t
a010€eg

)
(N

Lo z91717UBPT plaTy .T@..|

ISTIUSPT PIoY

A@ uoissaadxa @f

| IOTJTIUSPT BTqEIIEA

a[qerIeA

- HOOTq [~ 1adojur paudtsun OLOD
N || { A
weagoxd

—O Tlts
\QZH } juswWeleis

@ uorssaadxa T@l.— JDTFIIUBPT mﬁﬂnm.w_..eL
JRYBUIPT adfy _A.@(_ 1811 um“mﬁmumﬂ‘n_ J313T13uUspl ZOHHOZDUCI
OLNMOd
1811 hﬁwﬁmhma_.&] pmﬂﬁ:mETl@MDQHOO@.'

:cummmh%ngHZ@ juswalels LVHJHY)=
T [(N _

C, _ o0Iq _ C
uawaje}s @ uotssaxdxa MAHE\SJ

@‘l .Aﬁ_‘wﬂwﬁwamum T@H wcmumcow_ @l— uoissaadxa T@m¢b#
e e [@ @
R £ O 8 s R crny S e

“QZM v H:wﬁmwm«m { NT Umm }

9

— &)

| O

Ja8a1ul paufisun * THEVT
Nl

{18NOD) _n’wgwcwﬁ aanpavoad _

N
) "@ uorssoxdx * @ _Fwﬁd:cg m.:ﬁwoo.aT
N :

J3YJTIUSPT uorOUny

coﬁwmoh&nm _uﬂmﬂff_x a

®

| |

#01q

—

Jo8e3ur paudisun

jusUIa}Ee}S

