
_.., ,.i.'~...<
~~ ':' ..".

PASCAL US~RS GROUP

Pa.scal.N ews I..

NUMlsER ,< Iq

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BVPASCALERS

SE PT EMbER .,1980

~,_v.,
j

: -
;,. ~

EX LIBRIS: David T. C~ai9
736 Edgewater

[M J Wichita, Kansas 67230 (USA)

' ... -'. '-" .--'-. .. -"--"'.".
.,.- ... '.

., '-" ..,.- .-

~
u.--o
D.

POLICY: PASCAL NEWS (15...Sep...80)

* Pascal~ is the official but informal publication of the User's Group.

* Pascal Newa contains all we (the editors) kriowabout Pascal; we use it as
the vetlICIe to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people ~o need to know "about Pascal" join PUG
and read Pascal News - that is why we spend lime to produce, it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquirie8lias at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do." '

* Pascal News is produced 3 or4 times during a year; usually in March, June,
September, and December.

* ALL THE NEWS THAT'S FIT, WE PRINT .Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 em lines!) '. -

* Remember : ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of ,PUG operation, etc.

HERE AND THERE WIlHPASCAL - presents news from people, conference
announcements and reporta, 'new books and ,articles (including reviews),
noUcesor Pascal in the news, history, membership rosters, etc.

APPLICATIONS - preseritsanddocumentssource programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. , Also critiques regarding
program/algorithm certification, performance, standards conformance ,
style, output convenience, and general design.

ARTICLES - contairis formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, ett.).

'

OPENrORUM rOR MEMBERS - contains short, informal correspondence among
members ~ich is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentorsof various
implementationa as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals ,. Pascal
Variants, reature-Implementation Notes, and, Hachine-D~pendent
Implementations.

'--",

- - - - - - - - - - - - - - - ------ - - - -
USA Europe Aust.

[
J 1 year $10. £6. A$ 8.

[Enter me as a new member for:
[] 2 years $18. £10. A$ 15.

[] Renew my subscription for:

[] 3 years $25. £14. A$ 20.

[] Send Back Issue(s)

- - - - AU. -PURffiSE COUPON- - (15-Sep-80)

Pascal User's Group, c/o Rick Shaw
P.O. Box 888524

Atlanta, Georgia 30338 USA

NOTE

Membership fee and All Purpose Coupon is sent to your Regional
Representati ve.
SEE THE POLICY SECTIUN ON TH~ kEVERSE SIDE FOR PRICES AND
ALTERNATi: ADDRESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pascal News.

[J My new address/phone is listed below

[] Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] COlJlT1ents:

$
ENCLOSED PLEASE FIND: A$

£
CHECK no.

NAME

ADDRESS

PHONE

COMPUTER

DATE

-------.---------------- --
-~-

-- -----------------

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.
Please do not send us purchase orders; we cannot endure the paper work!
When you join PUG any time within a year: January 1 to December 31, you
will receive all issues of Pascal News for that year.
We produce Pascal News as a means toward the end of promoting Pascal and
communicating news of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do. ----

--
American Region (North and South America): Send $10.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.
European Re~ion) (Europe, North Africa, Western and Central Asia): Join
through PUG UK. Send £5.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
(28 513 4000); International telephone: 44-703-559122 x700.
Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send
$AIO.OO per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

--

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

Please renew early (before November and please write us a line or two to
tell us what you are doing with Pascal, and tell us what you think of PUG
and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that we eliminate many requests for
backissues ahead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!
Issues 1 .. 8 (January, 1974 - May 1977) are out of print.
(A few copies of issue 8 remain at PUG(UK) available for £2 each.)
Issues 9..12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $15.00 and from PUG(AUS) all for $A15.00
Issues 13 .. 16 are available from PUG(UK) all for £10; from PUG(AUS) all
for $A15.00; and from PUG(USA) all for $15.00.
Extra single copies of new issues (current academic year) are: $5.00 each
- PUG(USA); £3 each - PUG(UK); and $A5.00 each - PUG(AUS).

SENDING MATERIAL fOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form.
All letters will be printed unless they contain a request to the contrary.

Index
F :AL NEWS #19 SEPTEMBER, 1980 INDEX

o POLICY, COUPONS, INDEX, ETC.

1 EDITOR'S CONTRIBUTION

3 HERE AND THERE WITH Pascal
3 Tidbits
7 Pascal in the News
9 Gossip
9 Books and Articles
23 Book review: "Pascal with Style: Programming Proverbs"
24 Review of all back issues of Pascal News (1..16)11
27 Pascal Users Group finances: 1978-1979
28 Computer systems represented by PUG -- a summary

29 APPLICATIONS
29 Corrections to the XREF program (PN#17)
30 Pascal-S Subset Pascal written in Pascal
41 Notes on System Dependent Code in pascal-S & Pascal-I
44 LISP Lisp Interpreter written in Pascal

48 ARTICLES
49 "An Implementation of NEW and DISPOSE Using

Boundary Tags" Branko J. Gerovac

60 "A Simple Extension to Pascal for Quasi
Parellel Processing" -- Terje Noodt

67 OPEN FORUM FOR MEMBERS

71 PASCAL STANDARDS

85 IMPLEMENTATION NOTES
85 Editorial
85 Validation Suite Reports
112 Checklists

125 ONE PURPOSE COUPON, POLICY

--

Contributors to this issue (#19) were:

EDITOR
Here & There
Books & Articles
Applications
Standards
Implementation Notes
Administration

Rick Shaw
John Eisenberg
Rich Stevens
Rich Cichelli, Andy Mickel
Jim Miner, Tony Addyman
Bob Dietrich, Greg Marshall
Moe Ford, Kathy Ford, Jennie Sinclair

- ----...--------- -- ---~'--- ---

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write lias abovell if the same)

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

X Distribution charge: $50.00

X Make checks payable to ANPAjRI in US dollars drawn on a US bank.
Remittance must accompany application.

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape

Mail request to:

() ANSI-Standard

ANPAjRI
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R.J. Cichelli

a) Select character code set:
() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.

() 40 () 20 () 10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

lce use on y
Signed
Date

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak.

PASCAL NEWS #19 SEPTEM8ER, 1980 PAGE 1

Editor's Contribution
SO WHATS NEW

Well lots! We have extended the subscriptions of all members
by 6 months. The effect of this change is that we align the
subscription year to the calendar year instead of an academic
year. So now, it should be easier to know when your
subscription expires. Note that our policy of sending all
back issues for the year has not changed. Therefore the year
marked on the labels is the year through which your
subscription is effective. ~~~~£~~~_~£~__~~£~£~l£ll£~~
expire on December 31.

Also, as you can see -if you have read the new APC, the price
of Pascal News is going up. Sorry. We resisted as long as we
could. But note that we offer a good price break for multiple
year subscriptions. Subscribing for more than one year saves
us a great deal of work. Please, please help us save paper
work! The new prices will go into effect I-January-80. Until
then, we will accept renewals and subscriptions at the old
price. So if you have not yet renewed, do it now, while the
price is low low low! We also have a new address! (note the
new APC again) You may recognize it as the return address for
issues 17 and 18. The address is simple and does not include
a company name. (yes the box number really does have six
digits and three are 8 I s) I hope the new address mollifies

those people who worried about vendor bias. By the way, my
employer prov ides no support for Pascal Users Group, in any
way shape or form. Which leads me to the next subject.

HELP -- I'M BEGGING

Pascal Users Group needs its own computer. It has become a
necessity, to be able to maintain our ever increasing data
base, and do all of our record keeping. If your company can
offer any type of a product for our use either as a gift, for
long term use, or at a substantial discount we would like to
hear from you. We are not very ambitious. Our thoughts are to
secure a micro processor, a terminal, a small line printer, a
hard disk, and a set of floppys. Small potatoes! Right? The
system must be in place by December in order for us to be on
time for the next issue. So, please, won't you call right
away. (Jerry Lewis, eat your heart out) I have exausted all
my favors in Atlanta.

CHANGE OF ADDRESS -- A REAL PROBLEM

I just can not believe how many people change there address
and do not inform Pascal News! The expense is phenominal.
Bulk mail is not forwardable by the post office. It costs

- ----

-- -------

PASCAL NEWS #19 SEPTEMBER, 198CJ PAGE 2

$.15 to send a change of address card to us, and $1.43 just
in return postage if you do not. That does not include the
postage to get it to you at your new address. This is a
tremendous expense to PUG when 142 people "just forgot".
Please help us get Pascal News to you on time. OK? So if you
suspect we may have your back copies, send us a stamped
self-addressed envelope with a note telling us which issues
you have not recieved and we will give you your copies or a
new set, no questions asked. Simple, right?

THE GOOD STUFF -- WHAT'S IN THIS ISSUE

As usual, we have a gigantic "HERE AND
issue. it is chock full of feedback from
put anything on the "comments" section
anything to me or John that was not a
here. So keep up the notes and comments.

THERE" section this
the readers. If you

of the APC or sent
letter, it ends up

I would also like to call your attention to the section on
"BOOKS AND ARTICLES" if you are looking for some side reading
on Pascal there are over 300 citings. Wow! And Rich has
collected together a very complete list of the text books
available on subject of Pascal. If your favorite is not there
please drop us a line on an APC. OK?

Since Andy Mickel has a few spare moments lately, he has
contributed 3 fine tidbits of information. The first is a
thumbnail review of all the back issues of Pascal News
(1..16). Second, he has rolled up the 78-79 finances. And
third, is a summary of all the machines represented by the
PUG membership, derived from the old APCs. Very interesting.

The "APPLICATIONS" section contains Wirth's Pascal-S, the
subset Pascal compiler. It has been around for a while but
many new users have never seen it. We also have included a
LISP interpreter, for those who need the power and
flexibility?! Enjoy.

The "ARTICLES" are really great too. Both show a solid
approach to making a good thing better.

Jim Miner reports on the standards turmoil. The facts are
laid out, and testimony from both sides is presented. You be
the judge. And Let us know what you think.

And finally "IMPLEMENTATION NOTES". Fourty pages of them.
Note IBM's offical entry. 'Nuff said.

Hope you like it.

Here and There With Frank Bush, Tennessee Tech. Univ., Box 5071, Cookeville, TN 38501 has just
started using UCSD B-6700 Pascal. (*80/05/06*)Pascal

TTTTTTT
T
T
T
T
T
T !DBITS

R. Bush, P.O. Box F, North Bend, OR 97459: "yeah 'Applications',
Suite et al. Kudos to AM for service...is nasty K. Bowles really
(*80/01/23*)

Validation
that bad?"

Larry H. Buss,101SouthU St.,Apt,. 1,Lompoc,CA 93436:"I have a system
running under standard CP/M with 48K I would like to examine the latest
Pascal documentation. It seems that there are so ~ny different versions of
Pascal out. Is the standard Pascal from UCSD the best one?" (*80/01/17*)

PeterC. Akwai, IBMKst. 3787,Postfach33 09,6000Frankfurt/MlWest
Germany: "We are willing to assume some of the unassigned Pascal Newsletter
work caused by Andy Hickel'8 retirement. Let us know what~n do to
help. Pasteup, Selectric composer facilities available, Some
graphics/cartooning, etc." (*79/05/05*)

Robert Caldwell, Scientific/HumanisticInterfaces, 2939 Governor Dr., San
Diego,CA 92122:"Superbjob - hang in there!"(*80/01/21*)

Dan Cantley,3423CarpenterRd. Lot 10,Ypsilanti,MI 48J97:"Justfoundthe
Pascal News - it's GREAT. Learned Pascal six months ago...our Accounting
Department wanted an A/R package - our system didn't have the time or space
- so I wrote the A/R package on our own micro - stuck it in Accounting
Department.They lovethe package,and I lovePASCAL." (*80/01/20*)

Chip Chapin,3960 La JollaVillageDr., La Jolla,CA 92037: "Shouldhave
joined long ago have worked with UCSD Pascal project for 3 years."
(*80/01/02*)

HaimAvnitGivatBrenner,Israel60948:"We are a rathernew softwaregroup,
very keen Pascalers and eager to have this line of communication with other
Pascal users." (*80/05/09*)

David P. Babcock, 508 First Street, Alamosa, CO 81101: '~isappointed to note
address is now DEC. Please try to maintain at least a semblance of
independence in any case." (*80/01/20*)

John W. Baxter, 1830 Avenida del Mundo, Apt. 1710, Coronado, CA 92118 is
using Pascal on an Apple at hOt:le,and also uses "an offspring of PASCAL __

called NCR language -- in my work at NCR Corp." (*79/12/28*)

Les Cline,1235 Wildwood Ave. #361, Sunnyvale, CA 94086: "I know not what
others say, but as for me, give me Pascal, or give me Assembler! 1"
(*80/05/06*)

HankBecker,Yourdon- Software ProductsGroup,1133 Ave. of theAmericas,
New York, NY 10036: "We will be distributing a Concurrent Pascal (compiler
is transportable) with P-codes to run on 8080/8085/Z80 and eventually other
[micros] ." (*80/02/23*)

Roger A. Collins, 1653 Olmeda St., Encinitas, CA 92024: "I have found Pascal
~ews very informative and helpful. Brought up an interpreter (* on a
Perkin-Elmer 8/32 *) but found it unworkable in our environment, am now
looking for a cO!!lpiler."(*80/01/23*)

Paul J. Beckmann, 1907 Bohland, St. Paul, MN 55116: "PN outstanding!
Thanks to Andy and the U of M Pascal Think Tank. Good luck to you, Rick, in
Georgia." (*80/02/23*)

Stan Crouch, Technicon Medical Information Systems Corp., 3255-1 Scott
Blvd., Santa Clara, CA 95051: "I am doing a study on the feasibility of
converting sone on-line programs to Pascal. I need to know whether or not

Pascal programs can be made re- entrant and what is required in the
operating system. Also, if you have any information on ADA capabilities I

would appreciate any input in that area." (*80/04/08*)Norman Belssner, 9616 Thunderbird Drive, San Ramon, CA 94583 is interested

in implementations of Pascal on TRS-80. (*80/01/05*)

K.S. Bhaskar, 22828 76th Ave. Iv. Apt. 1133, Edmonds, {vA98020 is using the
NBS Pascal Compiler on a PDP 11/70 to generate code which is executed on a
stand-alone LSI-ll for real-time applications. (*80/01/21*)

Jeff Davis, 1515-J Tivoli Court, Raleigh, NC 27604 belongs to a local Apple
users group that has started a Pascal Special Interest Group ,nth good
response. (*80/02/06*)

K. Brauer, Universitaet Onasbrueck, 45 Onasbrueck, Postfach 4469 uses and

teaches Pascal at University,and is very much iterested in getting further
issues of the newsletter. (*80/01/03*)

Tony DiCenzo, Digital Equipment, MRl-1/M40, Marlboro, MA 01752: "Good luck
Rick - I'm sure this publication will flourish in your capable hands."
(*80/02/03*)

Frank M. 8rewster, 1 North Vista Ave., Bradford, PA 16701: "If you live up
to Andy's standards, you'll deserve the same huge thanks we owe to him.
Goiod luck." (*80/02/06*)

George B. Diamond, Diamond Aerosol Corporation, R.D. #1,
08826: "If we had thiskind of effort in other fields we
rate power." (*80/01/23*)

Glen Gardner, NJ
would not be a 3rd

John Dickinson, Dept. of Elec. Engr., Univ. of Idaho, Moscow, Idaho 83843 is

running Pascal on an I~M 370/145 and an HPI000 model 40. (*80/04/01*) PASCAL compilers for use at our installation. We are running VS2 Release
1.7J on an IBM 370 Model 158J with 1.5 Mbytes of memory Any literature
you may have concerning PASCAL compilers for IBM 370 computers would be
extremely helpful to us at this point." (*80/01/16*)

Michael E. Harris, 407 W. Calhoun 1117,Springfield, IL 62702: "I heartily

agree with the PUG direction. I hope to be installing PASCAL on my Z-80
S100 system later this year. The main thing that I would like to see happen
relative to PASCAL would be the establishment of an IBM/AMDAHL 370/3033(470
vendor supported standardized version of the language. Anybody out there
have a Sperry-Univac/Varian V77-600 PASCAL that an individual could aHo rd?"

M. F. Doore,1015 E. 10thSt.,Long ~each,CA 90813is a Pascal\,atcherin
Electrical Engineering hoping to be the owner of a Western Digitial P
Machine soon. (*80/03/31*)

Donald L. Dunstan, Cogitronics Corporation, 5470 N.W. Innisbrook Place,
Portland,OR 97229: "Cogitronicsdevelopssoftwareformicroprocessor
development systems. Currently we are working with a GenRad/Futuredata 8085
development systm and have generated a Pascal compiler for this system."
(*80/01/23*)

HankFeeser,644BWashingtonAve.,Ft. Lawton,Seattle,WA 98199 ownsan
Apple II with Pascal and would greatly appreciate "any additional
information on the implementation of Pascal on the Apple II". (*80/01/23*)

Sassan Hazeghi, P.O. Box 4526, Stanford, CA 94305:"How about setting up a
Pascal Program Library (a la SHARE}?" (*80/04/01*)

William A. Freberg, Computer Sciences Corporation, 2753 Highland Dr., Las
Vegas, NV 89109: "Implementing Pascal 6000 from Zurich on CDC 6400 owned by
Department of Energy at Las Vegas NV (NOS/BE operating system}."
(*80/05/06*)

Thomas Hickey, 295 Garden Rd., ColuMbus, OH 43214:"Enjoy Pascal News very
much. Have brought up l\rinch-Hansen'sSequential on (*Xerox*) Sigma-9:
limitedimplementation& very slow!"(*80/04/01*)

Edward R. Friedman, CIMS/New York Univ., 251 Mercer Street, New York, NY
10012: "Pascal is currently being used in courses devoted to programming
languages. PROSE is also popular amongresearchers."Versionsin use are
Pascal 6000 Release 3 and Pascal from Sweden. (*80/01/23*)

Jean Philippe Hilsz, 77 rue Vergniaud, 75013 Paris, France would like to
know lIDOsupplies PASCAL compilers for Interdata 8/32, Interdata 8/16,
Perkin Elmer DS 3220 and 3240. (*80/01/23*)

William T. Hole, M.D., 260 Collingwood, San Francisco, CA 94114 has Pascal/M
and is hoping to "unleash the power of Pascal on my massive behavioral
research observation files, which deal with premature babies in an intensive
care nursery." (*80/04/23*)Stuart H. Gage, Department of Entomology, Michigan State Univ_, East

Lansing,MI 48824is "currentlyrunningUCSD Pascalon a Terak8510/aand a
CPDS MF-211, along with CDC Pascal on a Cyber 750/175. Our applications
deal with delivery of agricultural information using microcornputernetWorks
with an emphasis on graphics." (*80/01/23*)

Kenneth R. Jacobs, 10112 Ashwood Dr., Kensington, Maryland 20795 is using
Pascal on a DEC-I0 and Xi tan (Z-80) (*79/02/13*)

Stephen Gerke, 1646 Parkcrest Cir. #301, Reston, VA 22090 says we should
"consider publishing smaller but more regular PNs. Validation reports are
very helpful."(*80/05/05*)

Steve.:!!.,y, Computer Center, University of Arizona, Tucson, AZ 85721: "I am

manager of software for the University's Computer Center. We provide PASCAL
for use by any of our custoMers (* on a CDC Cyber 175 and a DEC-I0 *). So

far, they seem happy with it." (*80/01/21*)

Pete Gifford, Allegheny College, Meadville, PA 16335 is running Pascal on an
IBM 4331. (*79/12/26*)

R.L. Jenkins, Hartman Technica, #612-815-1st St. S W, Calgary, Alberta,
Canada T2P IN3: "We are particularly interested in PASCAL for
microprocessors. As an electronics design consultancy we produce a lot
microprocessor machine code, and would prefer to leave this uninspiring
to a cOMpiler." (*80/02/14*)

of
taskPaul J. Gillian, P.O. Box 2202 C.S., Pullman, \,A99163: "finally got my

computer (a Hestern Digital Pascal micro-Engine) and it's great!"
(*80/01/23*)

ThoMas Giventer, 127 Linden Ave., Ithaca, NY 14850: 'You Might be interested
to know that the latest version of Ithaca Intersystems'...Pascal/Z now runs
under CP/M (instead of K2) and supports real numbers and pointer
variables See Byte, Jan. '80, page 14." (*80/01/23*)

Mort Jonas P.O. Box 390874, Miami Beach, FL 33139: "I've been using Pascal

on the Appie II, and would be most interested in seeing how it would do on
the validation suite, though I'm afraid I don't have time to do it myself."

(*80/01/23*)

R. Steven Glanville, Silicon Valley Software, Inc., 1531 Sandpiper Ct.,
Sunnyvale, CA 94087 is currently implementing an MC68000 Pascal compiler
(*80/03/04*)

Berneta!.!E.E., 2206 NE 197thPlace liD, Seattle,WA, 98155: "I am a programmer
for Boeing writing my first PASCAL program to update a Boeing cost
accounting data entry system." (*80/01/20*)

Les Kitchen, Computer Science Center, University of Maryland, College Park,
MD 20742: "We're using National Bureau of Standards compiler (PDP-l1/Unix),
Naval Undersea Lab compiler and University of Wisconsin compiler (both

Steven K. Harr, Ohio State University, University Hospitals, 410 W. 10th

Avenue, Columbus, OH 43210: "We are currently in the process of evaluating

Univac 1108,1100/40) for computer vision research and for teaching
programming." (*80/04/03*) Fred McClelland, 5319 Northridge Ave., San Diego, CA 92117: "Would it be

possible for you to reprint the first eight issues of Pascal News?? I would
be very interested in purchasing them. (*80/01/21*)Richard H. Kreutzer, 644 Elizabeth St., Salt Lake City, UT 84102: "I would

like to see updates/corrections to the Pascal validation suite published
regularly. I think what you are doing is great." (*80/01/23*) Paul McJones, Xerox Corp., 3333 Coyote Hill Road, Palo Alto, CA 94304: "I

would like to see more on languages derived from Pascal, such as Modula and
Mesa." (*80/04/03*)Peter Kugel, Fulton Hall, Computer Science Department, Boston Colege,

Chestnut Hill, MA 02167: "I like Pascal News. (This validation issue is
fiendish. Compliment, not insult.) I use Pascal for teaching. 1<bydo I
keep hearing so much about Tasmania?" (*80/05/06*)

Tony Meadow, P.O. Box 5421, Oxnard, CA 93031: "The PUG Newsletter is one
(*of*) the most enjoyable & readable journals/books/... in the computer
field - and it's not stuffy at all! Keep it up! Some of the features in it
which I find of especial interest is the software exchange and information
on current implementations of PASCAL." (*80/01/03*)

B. Kumar, 420 Persian Dr., Sunnyvale, CA 94086 would like information on any
Pascal compilers availahle for PRIME systems. (*80/01/23*)

Karl P. Lacher, 1132 W. Skillman Ave., Roseville, MN 55113: "I am an
undergraduate at the Univ. of Minnesota in CSci. I was told about PASCAL
NEWS by Andy Mickel who taught a SNOBOL short course I attended. PASCAL is
definitely superior to FORTRAN." (*80/05/05*)

Bert Mendelson, McConnell Hall, Smith College, Northampton, MA 01063: "We
have switched our introductory course to PASCAL, originally using OMSI
PASCAL and will change to DEC's version on our VAX." (*80/03/31*)

Carroll R. Lindholm, P.O. Box 3007, Santa Monica, CA 90403: "Please do not
attempt to push state-of-the-art in print size reduction. My eyes are out
for days after receiving an issue." (*80/01/21*)

PaulMinkin,3141RhodeIslandAve. S" St. LouisPark,MN 55426: "Leaving
a Concurrent Pascal compiler project & finding myself in an assembly
language world has made the benefits of Pascal very clear. I finally have
the OMSI compiler & will send more as we use Pascal in the CAD/CAM world.
My new company is National Computer Sys. COM Division." (*80/02/14*)

ThomasJ. Loeb,2106E. Park St.,ArlingtonHeights,IL 60004: "We have
formed a small user's group here in ArIngton Heights. The majority of us
are firmly based in BASIC and are finding the transition to Pascal most
iteresting We are unable to find any books that explain how to put the
language to practical application. All the information we have been able to
locateseems to be directed to the classroom or beginning programmers."
(*80/04/06*)

C. W. Misner, Dept of Physics, Univ. of Maryland, College Park, MD 20742:
"Teaching myself programming after 15 years away from it by writing a
gradebookeditor/analyser."(*80/01/04*)

David V. Moffat, Rt. 7 Box 52A, Chapel Hill, NC 27514: "At N.C.S.U., we run
several Pascals: A.A.E.C., Stony Brook, on 370; sequential & concurrent, on
PDP-ll; soon will try Ga. Tech & U. of Hull on a PRIME, and somebody's (?)
on the VAX. There is a movement here to use Pascal in intra courses When a
friendly, informative, cheap compiler is found."(*80/01/04*)

Gary Loitz, 575 S. Rengstorff Ave. 1/157,Mountain View, CA 94040: "Using

OMSI Pascal Vl.2 as the primary implementation language for the
1~atkins-JohnsonMagnetic Bubble Memory test system." (*80/02/06*)

Hugh W. Morgan,7725BerkshireBlvd.,Powell,TN 37849:"I have recently
purchased Pascal from North Star...since this is my first experience with
PASCALand sinceI am a computer novice with no experience with machine or
assemblylanguagethis has been a real experience for me, or perhaps I
shouldsay ordeal... If you have any information, or can refer me to any
published articles Which may help me get the terminaloptionsworkedout I
would be very grateful to you... Now that PASCAL is running I am very mu~h
like the dog which finally caught the school bus. The dog didn't know what
to do with the bus and I don't know what to do with PASCAL. That's Where I
hope the PASCAL NE\~Sand User's Group may help." (*80/01/05*)

Robert S. Lucas. 6941 N. Olin Ave., Portland, OR 97203: "Keep up the good

work!!"(*80/05/05*)

James W. Lynch, Computer Services Marketing, Babcock & Wilcox, P.O. Box
1260, Lynchburg,VA 24505:"New to PUG; havePascalavailableon NOS &
NOS/BE; used by our service bureau customers & limited internal
applications; use here is growing but not widespread; am looking forward to
7600 version." (*80/05/05*)

George A. Martinez, 654 1/2 S. Soto St., Los Angeles, CA 90023: '~eep up the
good work. You guys are just great." (*80/01/05*) Morgan Morrison, Unicorn Systems Company, Suite 402, 3807 Wilshire Blvd.,

Los Angeles,CA 90010:"We are engagedin the implementationof a software
product that is being written in PASCAL. We are interested in CDC Gyber
PASCAL implementations." (*80/02/24*)

David Paul McCarthy, 1532 Simpson 1/1, Madison, WI 53713: '~eep up the fine

work." (*80/04/01*)

John J. McCandliss, 12164 Wensley Road, Florissant, MO 63033:"I am very
happy to know that you are continuing the 'Pascal News' in the same fashion

as before." (*80/01/20*)

Timothy A. Nicholson, 97 Douglass Ave., Atherton, CA 94025: "Will be using
SLAC Pascal on IBM & UCSD Pascal on Apple." (*80/05/05/*)

V1

Bill Norton, M.H.S. Div., Harnischfeger Corp., 4400 W. National, Milwaukee,
WI 53201:"Keepingthe presentPUG structureand missionis the bestway to
go. Best of luck to Rick Shaw and friends. Can't use Pascal much right
now,but want to staycurrent."(*80/01/21*)

90,WestGermany:"Comingsoon:I'll have all PUG softwaretoolsin diskette
(8 inch, single density, one-sided) to distribute and/or exchange for other
tools." (*80/01/07*)

Thomas J. Oliver, Blue Hills, Dewey, AZ 86327 has a micro and plans to
mainly work on alpha numeric, gray scale, pictorial maps and some LANDSAT
satellite algorithms." (*80/03/20*)

Bernie Rosman, 864 Watertown St., W. Newton, MA 02165: "We use Pascal
heavily at Framingham State College and all in-house software at Paramin,
Inc is written in Pascal. Keep up the good work!" (*80/01/21*)

Ross R. W. Parlette, Chemical Systems, United Technologies, P.O. Box
Sunnyvale, CA 94086: "I went to a 1 day seminar to introduce Pascal;
very helpful. We hope to have the Validation Sui te ready on the VAX

Pascal in Feb. '80. (*80/01/23*)

Ira L. Ruben, 2104 Lincoln Dr. East, Ambler, PA 19002: "Have used Pascal to
code a Floyd-Evans production metacompiler, also currently designing and
coding a communications system (Univac 'DCA') in Pascal. The language is
the best I have ever used for implementation except for its lack of data
alignment control and packing control, Which is needed When processing
bit-oriented protocols. PUG is good, but it would be nice if the news came
out at more predictable intervals!" (*80/01/21*)

WilliamJohnSchaller,430928thAve. S" MinneapolisMN55406:"I"orkfor
Sperry Univac. We are developing a graphics system on a color terminal
(Chromatics). We are using UCSD Pascal on a Z80 to accomplish this."
(*80/05/05*)

35B,
it was
for DEC

Jeff ~, 5512 Margaretta St. #3, Pittsburgh, PA 15206: "Glad you exist!"
(*80/02/24*)

James G. Peterson, 1446 6th St., Manhattan Beach, CA 90266:
good work! Some form of advertising might be worthwhile, so
would know about PUG. I am writing a large CAD system with
DSSG." (*80/01/21 *)

"Keep up the
that more people
PASCAL a t TR\~

GregoryN.Pippert,1200ColumbiaAve.,Riverside,CA 92507:"I am using
Electro Science Ind. Pascal to drive an ESI Laser system which is used to
trim thick-film potentiometers." (*80/02/14*)

G. A. Schram, Dr. Neher-Laboratories, P.O. box 421, 2260 AK Leidschendam,
The Netherlands would like to know about the availahlility of a DEC-I0 or
PDP-ll Pascal cross-compiler for the M6800 or Z-80. (*79/11/07*)

Fred Pospeschil, 3108 Jackson St., Bellevue,NC 68005:"I
Pascal implementations on Heath H8 computers" (* That's a
*) (*80/04/03*)

HerbertSchulz,5820OakwoodDr., Lisle,IL 61)532:"I'vebeen very excited
aboutPascaleversincereadingaboutit in BYTE. Havehad UCSD Apple
Pascal since it came out and just got UCSD Pascal for our H-l1/A at the
Community College Where I teach. Will be teaching Pascal to the faculty
next term. I'd appreciateanyhelp for thattask!"(*80/04/01*)

Ted Shapin, 5110 E. Elsinore Ave, Orange, CA 92669 sends word that Dr.
Donald Knuth and Dr. Luis Trabb Pardo at Stanford University are working on
a typesetting system, to be implemented in Pascal.

am looking for
PDP-8 architecture

Hardy J. Pottinger, EE Dept., Univ. of Missouri, Rolla, Me 65401: '~eep up
the good work! I am using Pascal as a microcomputer syst~ development
language." (* 80/01/23*)

Fred W. Powell, P.O. Box 2543, Staunton, VA 24401: "I am now using Pascal on
a TI 990/10. Thanks for such a tremendous job wi th Pascal News."

(*80/01/08*)
Richard Siemborski, Communicatons & Computer Sciences Dept., Exxon Corp.,

Box 153, Florham Park, NJ 07932: "I would like a copy of the listing of ALL
known PASCAL implementations for micro's, mini's, and mainframes."
(*80/02/03*)Charles A. Poynton, 113 Chaplin Cr, Toronto, Canada M5P lA6: "I anxiously

and eagerly await each issue; keep up the excellent work!" (*80/02/14*)

Robert M. Pritchett, Trans-National Leasing, Inc., Box 7245, Dallas, TX

75209 is looking for Pascal for the IBM Series/l running the EDX operating
system, or for source code for a Pascal compiler/interpreteron IBM standard
8-inch single-density diskettes, 128 bytes per sector, single or double
sided.

Seymour Singer, Bldg. 606/M.S. KIlO, Hughes Aircraft Co, P.O. Box 3310,
Fullerton, CA 92634: "We are offering a 12-week class on PASCAL programming
to Hughes personnel using Grogono's text. We have installed both the SLAC
and HITAC compilers on our twin Amdahl 470 V/8 computers. The response to
thisclasshas been overwhelming!Many studentshaveboughttheDCSD system
on theApplemicrocomputer."(*80/01/10*)

K R Smith,1632 HialeahSt.,Orlando,FL 32808: ''Havejust ordered HP/l000
(RTE IVB) Pascal. I'llletyou-allknowas I startusingit." (*80/05/05*)

Paul Rabin, Philadelphia Health Mgmt. Corp., 530 Walnut St., 14th Floor,
Philadelphia, PA 19106: "I am interested in using Concurrent Pascal to
implement a real-time dispatch system for the Phila. fire dept. I am
looking for D.G. implementations or help converting another to D.G."
(*80/04/03*)

Jon L. Spear, 1007 S.E. 13th Ave., Minneapolis, MN 55414: "I am working with
Prof. S. Bruell and G. M. Schneider on a text: "Advanced Programming and
Problem Solving with Pascal"whichmay be availablefromWileyby the fall."
(*80/05/06*)Armando R. Rodriguez, c/o S.P. Wovda, Armanspeergstrasse 15, 8000 Muenchen

f-'
L'")O.
C

a>

with 56K. (*79/12/28*)
E. L. Stechmann, ARH272, Control Data Corp., 4201 N. Lexington Ave., St.

Paul, MN 55112: "I enjoy PUG very much: Pascal News is a high point in a
day Question: How can we get the big mainframe manufacturers to accept &
support Pascal to the same extent as FORTRAN & COBOL?" (*80/05/06*)

Howard White,Jr., 799 Clayton St., San Francisco,CA 94117 would like
information on Pascal 8000 as developed by the Australian Atomic Energy
Commission; he is especially interested in references, bibliographies, and
user feedback. (*80/03/18*)

Andrew Stewart, 11 Woodstock Rd., Mt. Waverley, VIC 3149, Australia:
"Pascal is a marvellous language because it is so simple and Elegant. I
think Pascal News is an excellent means of canmunication (when it comes!)"
(*80/04/14*)

Jerome P. Wood, 6105 Harris, Raytown, MO 64133 is interested in Pascal
compilers for an IBM S/370 at work. (*80/02/03*)

Stephen Woodbridp;e,642 Stearns Ave., Palm Bay, FL 32905: "Please keep up
the great work. 1113 is my 1st issue and I can't get enough of it."

(*79/12/28*)
Frank M.Stewart, Mathematics Department, Brown University, Providence, RI

02912: "I have only today learned of your invaluable organization."
(*80/03/31*) R. P. Wolff, Ajax Corp., W154 N8105 Elm La., Menomonee Falls, WI, 53051:

"Are any cOl!lpilers available for a 'Microdata Reality or Royale' system?"
(*80/01/23*)

Jerry S. Sullivan, Philips Laboratories, 345 Scarborough Road, Briarcliff
Manor, NY 10510: We have made extensive use of the UCSD Pascal System,
written a MODULA compiler in Pascal, (* and *) written a number of micro
operatingsystemsin MODULA." (*80/03/31*) George O. Wrip;ht, 700 7th St. SW 635, Washington, DC 20024: "Please be

friendly to UCSD PASCAL and micro users!" (*80/02/23*)
AnthonyJ. Sutton,1135 W. 4th St., Winston-Salem, MC 27101 is looking for a
Pascal implementation under VM/370 CMS (conversationalmonitor).
(*80/01/23*)

EarlM. Yavner, 195 Varick Rd., Newton, MA 02168: "Have just heard that
HewlettPackardwill havePASCALforHPI000systems in a fewmonths. Will
send info as I get it." (*80/04/01*)

K. Stephen Tinius, 1016 Halsey Drive, Monterey, CA 93940: "I am a student at
the Naval Postgraduate School here in Monterey PASCAL is taught in
our...lntroduction to programming course, which follows (usually) intros to
COBOL and FORTRAN. We run UCSD PASCAL on Altos microprocessors For my
thesis, I'm (trying) to implement NPS-Pascal on Intel hardware to run under
CP/M." (*80/01/23*)

Dr. RichardYensen,2403 TalbotRoad, Baltimore, MD 21216: "LOVE screen
interactive features of UCSD Pascal. We need an interchange format for
screen control on different CRT terminals." (*80/05/06*)

Mike Trahan, University Computing Company, 1930 Hi Line Drive, Dallas,TX
75207: "ucc is using PASCAL Release 3.0.0 on a CDC Cyber 175 and CDC 6600
running the NOS/BE v.l.3 - PSR 498 operating system. We use PASCAL for
applications programs, utility programs and general programming."
(*80/01/05*)

PPPPPP
P P
P P
PPPPPP
P
P
PASCAL IN THE NEWS

Transmatic Company, Rt. 2, Box 86, Hamlin, TX 79520 has been moving some
programs from other machines onto Texas Instruments Pascal with great
difficulty because it does not meet the minimuM conformance standards.
However, it takes less than two seconds to do a job which takes over three
and a half minutes on the same machine in BASIC. (*80/04/22*) JOBS:

Frederick John Tydeman, 3901 Northfield Road, Austin, TX 78759: "Finished
my master's in computer science: 'Abstract Machines, Portability, and a

Pascal Compiler'. Defined M-code (mobile code) as an intermediate language
and implemented a portable Pascal compiler using it." (*80/03/31*)

(* Note-these listings are intended primarily
openings for Pascal programmers "out there".
listings, the jobs may well be filled. *)

to show that there are indeed
By the time you see these

Stan Veit, Veit's Diversified Operating Systems Ltd., 19 W. 34th St., Room
1113,New York, NY 10001: "We are easternreps for A.C.I. (* Pascal
microengine *) and a Pascal software house." (*80/02/24*)

Allen-Bradley, 747 Alpha Drive, Highland Heights, OH 44143, wants software
engineers to "apply your software experience - assembly languages, PASCAl,

FORTRAN"on a VAX11/780, DEC 11/34 orTEKTRONIXDevelopmentsystem.
(*80/04/24*)

Ray Vukcevich, 7840 N. 7th St. Ill, Phoenix, AZ 85020 would like to know
where to get Pascalon a singledensityPerSci8" discfor an Imsai8080

Control Data Corporation, 4201 N. Lexington Ave., Arden Hills, MN 55112 is
looking for diagnostic engineers to "utilize both.. .hardware and softare

-,:,;p
G
rn

aptitudes...in maintenance software systems development and PASCAL
applications programming."

FORTRAN and assembly language capability.

Medtronic, Inc. 3055 Old Highway Eight, P.O. Box 1453, Minneapolis, MN 55440
"has a position that recognizes your BSEE, and 6-8 years experience with
PASCAL-based computer simulation..." (*80/03/24*)

Intel Corporation of Santa Clara now has Pascal for its Intellec development
systems, as reported in the Intel Preview of February 1980. It "encompasses
the full standard...as defined in Pascql User Manual and Report by Jensen
and Wirth", and "...offers several more extensions to the UCSD Standard."
The blurb also notes, "The UCSD Pascal implementation has become the
industry standard and was the first such implementation of this relatively
new programming language." (* The person who sent me this noted, in the
margin, "!!!". I agree. *)

MTS Systems Corp. P.O. Box 24012, Minneapolis, MN

software development engineer for products "based
technology. PASCAL and assembly language will be

(*80/03/10*)

55424 is looking for a
upon latest microprocesor
.usedfor implementation. II

Meta Tech, 8672-1 Via Mallorca, La Jolla, CA 92037 advertises Pascal/MT, a
compiler running under CPM in 32K bytes or more. Compiles a subset of
Pascal into ROMable 8080/Z80 code. Object code costs $100, source code
costs you ODls $5000.

The New York State Legislature, 250 Broadway - 25th Floor, New York NY 10007
wants a demographer, cartographer, and junior programmers. All applicants
"shouldhavepracticalcomputerprogrammingexperiencein FORTRAN, COBOL,or
PASCAL." (*80/03/1 0*)

North Star, 1440 Fourth St., Berkeley, CA 94710, advertises Pascal for its
Horizon sys tern.NorthernTelecom,P.O. Box 1222,Minneapolis,MN 55440is lookingfor a

senior programmer/analystwith "high-level programming language (PASCAL,
COBOL, BASIC) and compiler writing." (*80/03/24*) Oregon Software, 2340 S.W. Canyon Road, Portland, Oregon 92701 announced

OMSI Pascal V1.2 with symbolic debugger and profiler, for any RSTS/E, RT-11,
RSX-11, or IAS operating system. (* Computerworld 80/01/28*)Texas Instruments, P.O. Box 401628, Dallas, TX 75240, has openings in Dallas

and Lewisville, Texas, to work "with real-time soflware applications for
mini/micro computer based systemss and on distributed computer architectures
and uni-processor systems. II One of the languages: Pascal.

Rational Data Systems, 245 W. 55th St., New York, NY 10019 has Pascal for
Data General computers, and also puts out a small Pascal Newsletter. (*
And, in my opinion, it looks very nice! *)

(* Andy Mickel passed on to
March 1980 issue of the Pug
Excelsior, MN 55331. It is
comment... *)

me the following Want Ad, which appeared in the
Press, published by Maryanne Johnson of
offered here, verbatim, without further

RenaissanceSystems,Inc.,SuiteM, 11760 SorrentoValleyRd., SanDiego, CA
92121 offersProffand Forml,word processingsupportprogramsfor
formatting and printing text files and aiding in document generation.
Written in UCSD Pascal, the combination costs $500. Documentation costs
$25. (* Computerworld 80/01/14 p. 50 *)WANTED- Small PUG stud to breed with the Classiest Bitch in Town. Stud

must be experienced yet gentle, loving, and discreet. Contact Ron or Marlys
Hampe (612)-890-4141 SofTech Microsystems, 9494 Black Mountain Road, San Diego, CA 92126, offers

UCSD Pascal "with full documentation and support."
MANUFACTURERS' ADVERTISEMENTS:

(* A lot of these advertisements appear in several publications; this list
is gleaned from a "spot check" of several months' worth of magazines and
trade journals. Where a product description is much more detailed than the
information given here, a reference is provided. *)

Valley Software Inc., 390-6400 Roberts Street, Burnaby, B.C. Canada V5G 4G2
is a systems/design, programming and consulting service offering Pascal
compilers for DEC and Data General.

NEWSLETTERS & ARTICLES:

AssociatedComputerIndustries,Inc. 17751 SkyPark East,SuiteG, Irvine,
CA 92714, announced a PascalVideoterminalfor use withUCSD Pascal. It
accomodates several international languages character displays by internal
switch changes, with no optional ROM required. They also sell the ACI-90
Pascal Professional Performance Computer, based on the Western Digital
Microengine. Includes the UCSD Pascal operating system, and business
software: General Ledger, Accounts Payable, Accounts Receivable, Payroll,
and OrderEntryInventory.

Brown University Computer Center has arranged to lease a new PASCAL compiler
developed at the University of Waterloo; it is the PASCAL described in the
British Standards Institute DPS/14/3 Working Draft/3...it offers extended
I/O capabilities to allow convenient acces to CMS files. (* March 1980 *)

The Institue for Information Systems, Mail Code C-D21, University of
California at San Diego, La Jolla, CA 92093 is publishing newsletters
describing the UCSD Pascal System.

Hewlett-Packard Data Systems Divison, Dept. 370, 1100 Wolfe Road, Cupertino,
CA 95014 offers Pascal for the HP/1000 computer: it has added double-word
integer, double-precision data types, random access I/O, and external

Mr. Jim McCord sends a ''UCSD Pascal Hobby Newsletter Ill." (* Sorry, I have
no address on this: could someone out there please provide it? *)

and politics. *)

The University of Michigan Computing Center presented a short course on
Pascal this April. In the blurb, the newsletter states that Pascal
offers significant advantages over other languages for general purpose
programming." (*SO/03/19*)

The Canadian Infomation Processing Society held their "Session 'SO" in
Victoria, British Columbia in early May. A good time was had by all. While
working the booth for Apple, I noticed that most of the people from
universities had an interest in Pascal or were using it in their classes.
The business community was aware of Pascal, more so than they may have been
in the past, but didn't seem to be as familiar with its capabilities and
wide usage. (* Unabashed plug: Victoria is a very beautiful city, and all
the people I met were very friendly. It was great. *)

(* Ab-hal Here's the article that answers just about all of the "can I get a
version of Pascal for my [fill- in-the-blank] microcanputer?" questions. *)

Mini-MicroSystemsApril1980Issuehas a lengthyarticle(pp. S9-110)
entitled "High-level languages for microcanputers", by Mokurai Cherlin.
Along with the article is a table of microcomputer high-level language
suppliers; there are over 40 suppliers of Pascal for fifteen different
chips.

The Northwestern University newsletter announced the arrival of the Pascal
Release 3 compiler for the Cyber, with compiler options for selecting
run-time tests and post-mortem dumps; and defining file buffer and central
memorysizes. (*April 19S0*)

Rick Shaw, Editor

The University of Southern California is forming a Users Group for PASCAL
and ALGOL users. (*Feburary 19S0*)

pascal News

Digital Equipment corporation

Atlanta, Georgia

6 August, 1980

III'. Shaw:
GGGGG
G G
G
G GGG
G G
G G
GGGGG OSSIP

Enclosed is a copy of "A Pascal Bibliography (June 1980)".

Although it excludes references to articles on Pascal appearing

BYTE and Datamation, it may be of somein magazines such as

Commodore displayed a version of Pascal for their PET personal computer at
NCC. The compiler was developed in Great Britain.

interest to your readers. (* See Page 12 -ed. *)

While at NCC, I heard a rumor that someone is developing a version of Pascal
for the Atari SOO personal computer. If anyone wishes to inform me of errors or omitted articles, I

would be g~ateful to hear from him.I have seen an advert [in Japanese, unfortunately, so I can't give details]
for UCSD Pascal for the NEC PC-SOOO personal computer, which has colour
graphics. The pC-SOOO has been on the market in Japan for some months now,
and it appears they may be marketing in the U.S. by year's end.

Respectfull y,

There was a session on Pascal at NCC, according to one of the attendees, it
was fairly interesting. He said Ken Bowles spent some of his speaking time
trying to defend his position re UCSD Pascal and Softech. Those who are
interestedin thissubjectmay wish to takea lookat pastissuesof
INFOWORLD. Adam Osbornerecentlywrotea columnwhichseemsto addressthe
issue quite objectively and unemotionally. (* NO, I am NOT going to say
what I think of the whole thing. Mom always told me not to discuss religion

Department of computer science

North Carolina state University

Raleigh, North Carolina 27650

-

BOOKS ABOUT PASCAL T~egner, P., Programmin'1. wi tll ADA: I'm Intro-iuction by ~1eans of

Gradua1:.<:.~ Examples, Prentice-Hall, 1980,.211 -pages.----
(* This is a complete listing of all known books aQout Pascal *)

Alagic, S. and ~1. S. Arbib, The Design of 1vell-Structured and
Correct Programs, Springer-Verlag, 1978, 292 pages, 512.8~

Welsh, cT. and ,1. BIder, Introd~~!:~~~ to Pascal, Prentice-Hall, in
press.

Wilson, I. R. and A. M. Addyman, I\. practical Introduction to
Pascal, Springer-Verlag, 1978,-144 pages, $7.90.Bowles, K. L., Microcomputer Problem Solving using Pascal:,

Springer-Verlag, 1977, 563 pages, $9.8"1.

Bowles, K. L., ~egi..nner's Guide for the U~SD PaSC::iLSystem,
Books, 198~~~5~

Wirth, N., Systematic Programming:
Hall, 1973, 169 pages, $19.50.

Prent ice-
8yte

An Introduction,

Brinch-Hansen, P.,
Prentice-Hall,

wirth, N., Algorithms + Data Structures
Hall, 1976, 366 pages, 520.95.

programs, Prent ic~-
Architecture
$22.00.---

The
1977,

of Concurrent Programs,

Coleman, D., A Structured Programming Approach to Data, MacMillan
Press, London, 1978, 222 pages~

Conway, R. W., Gries, D. and E. C..Zimmerman, A Primer on Pascal,
Winthrop Publishers, 1976, 433 pages.

Conway, R., Archer, J. and R. Conway, Programming for Poets: A
Gentle Introduction Using Pascal, Winthrop-PuhTIShe~979~
352 pages, $11.<\5. --

Findlay, B. and D. Watt, Pascal: An
programming, Computer Science
International), 1978.

Introduction to ~1ethod ical
Press TUK Edition by pitman

Grogono, P., programming in Pascal, Addison-~esleYI
pages, $11. 50.

1<)'78, 3'09

Hartmann, A. C., A Concurrent Pascal Compiler for ~1inicomputers,
Springer-Verlag Lecture Notes in Computer-Science, No. 50,
1977, $8.40.

,Jensen, K. and N. T,'/irth, Pascal User Manual and Report,
Springer-Verlag Lecture Notes in Computer Science, No. 18,
2nd Edition, 1975, 167 pages, 56.80.

Kieburtz, R. B., Structured programming and Problem-Solving with
Pascal, Prentice-Hall, 1978, 365 pages, 512.95.

Ledgard, H. F. and ,.J. F. Hueras, Pascal Ivith Style:
Proverbs, Heyden, 1980, 224 pages, $6.95.-

programming

Liffick, 8. w. (Ed), The BYTE Book of Pascal, Byte
342 pages, $25.0~

Books, 1980,

Rohl, ,J. S. and H. ,J. Barrett, Programming via Pascal,
University Press, in press.

Cambridge

Schneider, G. M., Weingart, S. 1,/.and D. M. Perlman, An
Introduction to Programming and Problem Solving with Pascal,
Wiley and Son~ 1978, 394 pages.

Webster, C. A. G., Introduction to Pascal, Heyden,
pages, 511.0"1.

1976, 152

I-
<"'o.
c

A~TICLES ABOUT PASCAL Mattsson, Sven Erik, "Implementation
LSI-l1", Software Practice
205-217, 1980.

on
10,

of
an~

Pascal
Vol.

Concurrent
Experien~e,--

(* These articles 11ave appeared since the preparation of # 1 7. *)

Addyman, A. M., "A Draft Proposal for Pascal",

Vol. 15, No.4, April 1980.

Runciman, Colin, "Scarcely Variabled programmina fx Pascalll,
PLAN Notices, Vol. 14, No. 11, Nov. 1979.

SIG-SIGPLAN Notices,

Addyman, A. M., "Pascal Standarnization", SIGPLAN Notices, Vol.
15, No.4, April 1990.

Sale, Arthur, IIMiniscules and Majuscules", Software
and Experience, vol. 9, 915-919, 1979.

Practice

Baker, Henry G., "A Source of Redundant Identifiers
programs", SIGPLAN Notices, Vol. 15, No.2, Feh.

Shimasaki, M., Fukaya, S., Ikeda, K. and T. Kiyono, "An Analysis
of Pascal Programs in Compiler Writing", Software - Practice
and Experience, Vol. 10, 149-157, 1990.

in Pascal
199"1.

Bond, Reford, "Another Note on Pascal Indention",
tices, vol. 14, No. 12, Dec. 197<j.

SIGPLAN No-
Shrivastava, S. K., IIConcurrent Pascal with Backwar1.

Recovery: Language F'S!atures ann Exa'11ples", Software
tice an~ Experience, Vol. 9, 1001-102"1, 1979.

Error
Prac-

Bron, C. ann E. ,J. Dijkstra, "A Discipline for the Programming of

Interactive I/O in Pascal", '::IGPLAN Notices, Vol. 14, No.
12, Dec. 1979. Shrivastava, s. K., "Concurrent Pascal with Backwarn Error

Recovery: Implementation", Software - Practice and Experi-
ence", Vol. 9, 1021-1033, 1979.Byrnes, John L., "NPS-Pascal: A Pascal Implementation for

Microprocessor-Based Computer Systems", Naval Postgraduate
School, June 1979, 293 pages, NTIS Report AD-A071 972/4WC. Simpson, D., "Structured Programming and the Teaching of Comput-

ing: Experience With Pascal", Sheffield City Polytechnic
Dept. of Computer Studies, Sheffield, Englann, 1979.cichelli, Richard J., "Pascal-l Interactive, Conversational

Pasca1-S", SIGPLA1\JNotices, Vol. 15, No.1, Jan. 1980.
Sites, Richar~ L. an~ Daniel R. Perkins,

ition, Version (0.3)", Univ. of
Dept. of Electrical Engineering,

UCSD/CS-79/037, NTIS PB-298 577/9WC.

"Universal P-Corle Defin-
California at San Diego
.July 1979, 45 pages,

Cichelli, Richar~ J., I'Fixing Pascal's 1/011,
Vol. 15, No.5, May 1980.

SIGPLAN Notices,

Cornelius, B. ,1., Robson, D. J. and M.

of the Pascal-P Compiler for
address Minicomputer", Software

Vol. 10, 241-246, 1980.

I. Thomas, IIModification
a Single-accumulator One-
Practice an~ Experience,

Smith, G. and R. l\Jlderson, "LSI-11 Writahle Control Store
Enhancements to UCSD Pascal", La\vrence Livermore Labs, Oct
1979, 112 pages, UCRL-81808 (Sup) , NTIS UCID-18046.

Kaye, Douglas R., "Interactive Pascal
Vol. 15, ~10. 1, ,Jan. 1980.

Wegner, Peter,
Graduated
1979.

"Programming with ADA: An Introduction by ~1eansof
Examples", SIGPLAN Notices, Vol. 14, No. 12, Dec.

Inputl1, SIGPLAN Notices,

Ljungkvist, Sten, "Pascal and Existing Fortran Files",
Notices, Vol. 15, No.5, 'lay 1981?J.

SIGPLAN
Welsh, ,J. an~ D. W. Bustar''\, "Pascal-Plus - ,"mother Languaqe for

Modular Multiprogramming", Software - Practice an~ Experi-
ence, Vol. 9, 947-957, 1979.Luckham, David C. an~ Norihisa Suzuki, "Verification of Array,

Record and Pointer Operatirms i'1 Pascal", ACM Transactions
on Programmi'1g Languages and Systems, Vol. 1, No.2, Oct.
197'}.

Wirth, !o1icklaus, "The Module: A Syste'" Structuring Facilit.y in
High Level Programming Languages", proceenings of t11e Sympo-
sium on Language Design and Programmi'1g 11et11onology, Sydney,
Australia, Sept. 1979.Luckham, D. C., German, S. M., Henke, F. W. V., Karp, P.. A. an~

P. W. Milne, "Stanford Pascal Verifier User Manual", Stan-
ford Univ. Dept. of Computer Science, Mar. 1979, 121 pages,
NTIS Report AD-1\071 n00/SWC.

1.1achura, Marek, "Implementation of a Special-purpose Language Us-
ing Pascal Implementation Methodo10qy", Software-Practice
and Experience, Vol. Q, 931-945, 1979.

Mateti, P., "Pascal Versus C: A Subjective
ings of the Symposium on Language

Methodology, Sydney, Australia, Sept.

Comparison", proceed-
Desi'Jnand pro'Jra'11minq

1979.

al., eds., 93-99, North Holland (1974)

[11} U. Ammann, "On Code Generation in a Pascal Compiler",
~t1Kit~= f£~ce ~nd ~!£~i~ll~~. I, 391-423 11977)

[12 } U. Ammann, "Error Recovery in
Parsers", ETH Zurich, Berichte
Infonatik, No. 25 (May 1978)

Recursive Descent
des Instituts furA gA~~ ~18LIQQ!!fllI

(June, 1980)

David V. Moffat
North Carolina State University

Faleiqh, North Carolina

[13} K. R. Apt, "Equivalence of Operational and
Denotational Semantics for a Fragment of Pascal",
prQ£§.~!!ills!§ Qf lh£ llll !i.Qrk1!l!l ~!li~~ll!<g Qll ~Rl
Q!U!g;ll.!J.Q!l§ Qf Progt:ammi~ ~ncept2' ~t. An~~2'
~~2!!~' AYgyst, l~lI, 139-63, North-Holland, Amsterdam
(1978)

[
1 II

} K. R. Apt and J. W. De Bakker, "Semantics and Proof
rheory of Pascal Procedures", (preprint), ~~themati£2
~~r, Department of computer Science, Amsterdam
(1977)

[1 } A. M. Addyman, "On the Suitaoility of a
Compiler in an Underqraduate Environment",
!£wsl~l!g[, 6, 35-36 (November 1976)

Pascal
Pa2£~l

[2}
[15} J. Q. Arnold, "~Novel ~pproach to Compiler Desiqn",

.f22cal Mews, ", 34-36 (February 1978)A. M. Addyman, et al., "The 8SI/150 Workinq Draft of
Standard Pascal by the aSI DPS/13/4 Working Group".
gascal !~2' 14 (entire issue), (January 1979) [16} L. v. Atkinson, "Know the State You Are In", ~~l

!~~2' 13, 66-69 (December 1978)
[3] A. M. Addyman, et

Pascal", ~oftv~£~
381-424 (1979)

Description

~£.!1r ience,

al., "A
ftacti£~

Draft
~ [17] L. V. Atkinson, "Pascal Scalars as State Indicators",

~oftw~£~== ££actic~ ~ng E~rj&!l~, 2, 427-431 (1979)

[II] [18] L. Atkinson, "A Contribution to Minimal Subranqes",
f~2!<al]~M§, 15, 60-61 (September 1979)

A. 1'1.Addyman, "A Draft Proposal for Pascal", ~.f1.A!!

No!i~2' 1j, 4, 1-66 (1980)

[5} A. PI. Addyman, "Pascal Standardisation", SIGP1.A!
!!.Q.ti~§, 1j, 4, 67-69 (1980)

[19] J. W. Atwood and T. M. Pham, "A Concurrent Pascal
Interpreter for the Texas Instruments 980B",
g£Q~~di!lS!§ of !hg Inter;national.:iYll2§iYJ!!2l!11ini2!!Q
.!1i!<&2 ~Q!t£Y1ers, ~ll1&lll, ~2llad2' !!.Qyg!!!be&, 1277,
41-48, IEEE (1978)

(6] A. M. Addyman, "A Draft Proposal for pascal", ~
!!~2' 18, 2-70 (May 1980)

[7] [20] B. ~ustermuehl and H. -J. Hoffman, "G€'neric Routines
and variable Types in Pascal". .f$2!<~1!!.€~§. 9 & 10,
43-46 (September 1977)

L. Aiello,
~!Wl!i£§ Qf
(August 1974)

M. Aiello
Pasca!. in

an d R. W. Weyhrauch. lli
1&!, Stanfo~d university

[8] S. Alagic and M. A. Arbib, ~ Design 2i
~1£Y!<tu£gQ ~g ~!<! .f&~!t2. Springe~-Verlag,
Yo~k (1978)

(21] H. G. Bake~, Jr., "A Source of Redundant Identifiers
in Pascal Programs", g!ifil~ liotice§, 12, 2. 14-16
(1980)

Wi
Hew

[9) [22} T. P. Baker and~. C. Fleck, "Ooes Scope=Block in
Pascal?", ~cal lin§, 17, 60-61 (March 1980)

A. L. Ambler and C. G. Hoch, "A Study of Protection
in Programming Languages", ll~l!!. l!2!.is<~, 1~, 3,
25-40 (1977)

[23 } T. P. Baker and A. C. Fleck. "A Note on
scopes",eascalligM§. 17, p.62 (March 1980)

Pascal
(10) programming

compile~1I ,
Gunthe~, et

U. ~mmann. "The Method of St~uctured
~pplied to the Development of a
lnttl.!l~tional Comptl,ti!lg~§llm. 1211, [24] M. S. Ball, pascy 112Q: !Il Imp.lell\~n~iQ1l Q1 the

g~cal I.~!Jduaqe fo£ Un!!!!!:, 11QQ ~~l!E2 £;omlJu~£§,
Naval Ocean Systems Center, San Diego (July 1978)

J. M. Bishop, "subranges and Conditional Loops",
i~2£~1 ~~2' 12, 37-38 (June 1978)

[39]

(25] D. Bar, "A Methodology for Simultaneously Developing
and Verifying Pascal Programs", kQ!l21£!!ct!!l!l ~lllY
~ofl~£~, ~Qysib!rsk,]~~E, ~~y, 1277, ~12=~~, North-
Holland, Amsterdam, Netherlands (1978)

J. /'I. Bishop, "On publication Pascal", Sot~£~:.
g£~ct!£~ ~nd ~~£i~£~, 2, 111-117 (1979)

[40]

[41] J. M. Bishop, "Implementing Strings in Pascal",
Sofl~~rE:':' gr~£iic~ ~!lg~~~~!l~, 2, 779-188 (1919)

R. Bond, "Another Note on Pascal Indention", SI2f!.A!i
~Qi!£~2' 1~, 12, 41-49 (1979)

(26] W. Bar'abesh, C. R. Hill, and R. B. Kieburtz, "A
proposal for Increased security in the Use of Variant
Records", g~2£al 1!ewsletl~£, 8, 15-15 (/'lay 1911)

(42]

[27] D. Barron, "On Programming style, and Pascal",
~Q!!!E!!l~r Q!!lleti!l, 1, 21, (September 1979)

[43] T. M. 130nham, "'Minor' problems in Pascal", Pa2~1

1!~~lelter, 2, 20-22 (September 1976)

(28] D. W. Barran and J. M. Mullins, "What to do After a
While", g~2£~1l!~!!§, 11, 48-50 (February1918)

U. J. Boom and E. DeJong, "A critical comparison of
Several programming Languages", ~ofi!!~l~== ~cti£E
and EXE~£~!l£~, 1Q, 435-473 (1980)

[44]

(29] D. W. Barron and J. M. Mullins,
the pursuit of Un formatted Input",
7, 8-9 (February 1917)

"Life, Liberty and
g~2£al l!~!!slette£, [45]

[31J D. Bates, Letter to the Editor (on formatting Pascal
programs), ~1QPLA1!~Qli£~, 11, 3, 12-15 (1918)

M. Boot, "Comparable computer Languages for
Linguistic and Literary Data processing, II: SIMULA
and Pascal", AS§Qciali2!l12£ .U!&l~U ~!lg !..!!lg]!!§ti£
£Q!!!EutiD~ ~lleti!l, 1, 2, 137-46 (1979)

K. L. Bowles, MicrQ£Q!!!I!..Y~£ pro!!lE!!! ~olvillil .!!2illj!
g~~l, springer verlag, New york (1971)

[47] K. L. Bowles, "Update on UCSD Pascal Activities",
g~§£~l l!~slette£, 8, 16-18 (May 1971)

[30] D. W. Barron and J. Mullins (eds.), "Pascal, The
Lan'juage and Its Implementation", gI2£~~ginqs of ill
~2!!lhampiQ!l ~Y!!!E22!!!!!!' University of southampton,
24-25 March 1971 (1917)

[46]

[32J D. Bates and R. Cailliau, "Experience with Pascal
Compilers on Mini-Computers", ~1QgLAN l!Qi~2' 1£, 11,
10-22 (1911)

K. L. Bowles, "An Introduction to the UCSD Pascal
system", lli1.haYioralRE§g£ch !!~i.!!2g§ ~!lg 1!lli1£yJ!!.§.nts,

1Q, 4, 531-4 (1978)

(49) K. L. Bowles, "Status of UCSD Project", gascal ~§,
11, 36-40 (February 1978)

l 48]

(33) D. Bates and P. Cailliau, ~~:.fg§calUS~£~2 Gui~~,
CERN Note pS/CCI 17/3 (1971)

(34] D. M. Berry, "Pascal or Algol-68?", ~t£h
!!iI~£ii2!l§ i!l Softll£~ ~£hnolQ.gY, (I'. Wegner, ed.),
641-46, MIT Press, cambridge Massachusetts (1979)

(50) K. L. Bowles, D~!li!l!l~~2 ~~ide 121 i.!!g QCS~ gg§£~l
~stg!!!, BYTE/KcGraw-Hill (1979)

(51] p. Brinch Hansen, "Universal Types in

Pascal", l!lfor!!!~ij.QJl f!:Q£~22i!lg~tteI2'
(1975)

Concurrent

1, 165-166(35] R. E. Berry, "Experience with the Pascal p-compiler",
soft~~== fract!£~~nd ~xperience,~, 617-621 (1978)

[36] A. Biedl, "An Extension of programming Languages for
Numerical Computation in Science and Engineering with
special Reference to Pascal", ~lQg1Al! Noi!£~, 1~, 4,
31-33 (1977)

P. Brinch Hansen, "Concurrent Pascal, A programming
Language for operating systems Design", ~hni~l
Repori 1Q, Information Science, California Institute
of Technology (April 1974)

[52]

(37] C. Bishop, "Some Comments on Pascal I/O",
l!~wsleti~£,8, 18-18 (May 1977)

[53] P. Brinch Hansen, "The Purpose of Concurrent Pascal",
~2g~AM Noi!£~2' 1Q, 6, 305-309 (1975)

(38] c. Bishop, "Pascal: Standards and Fxtensions", Pascal
l!~.!!§, 11, 54-56 (February 1978)

"The Programming
lEE~ 1£~!l§gct!Q1l2 Q!l

Language

~oft~il~

(54] p. Brinch Hansen,
Concurrent Pascal",

(

]Q[iL~~inq, 1, No.2, 199-207 (1975)

(55] P. B~inci, Hansen, "Expe~ience with /lodula~ Concu~~ent
P~ogranin'1", lJ;;1;~ I!:~~.iQa§. Q!!' soft!!~
~Mi.a~~rinq, 1, 2, 156-159 (1977)

(56] P. Brinch Hansen, IQ~ Ar~ecty~ Q1
£~gI~!§', P~entice Hall, Englewood Cliffs,
(1977)

~Q!!.£Y£!:enl
New Je~sey

(57] P. B~inch Hansen, "Concu~~ent Pascal /lachine".
Info~mation Science, California Institute of
Techn;I;gy-(1975)----

[58] P. B~incb Hansen, "The SOLO Ope~ating
Concu~~ent pascal P~og~am", i/.oft!!~~::
~~Iie!!£~, 2, 141-149 (1976)

system: A
P~actice !!ond

(59J P. B~inch Hansen and A. C. Hartman, "Sequential
Pascal Repo~t", I~ch!l.i£!!.l ~EQ£l, Info~mation Science,
Califo~nia Institute of Technology (1975)

(60] P. Brinch Hansen, "Microcompute~ compa~ison".
i/.Qi~~:: f~acti.£§ !!.a£ J;;KE~ri~!!£~, ~, 211-217 (1979)

(61] C. B~on and w. de V~ies, "A Pascal
PDP-11 Minicomputers", Softwar~::::
;:;li!e~ie!l£f., 2, 1, 109-116 (1976)

Compile~
£U~!i

(62] C. B~on and E. J. Dijkstra. "A Discipline fo~ the
prog~amming of Inte~active I/O in Pascal", i/.IGPLAN
!iQli.£~. H, 12, 59- 61 (1979)

[63] D. M. Bulman, "Stack Compute~s", £Q!!!.Yl~£, (Kay 1977)

(64] W. F. Burger, f~£§.~!: g~~.2tiQa 12£ JI..i£rQ::Compygr§.,
11::11,Depa~tment of compute~ Sciences, unive~sity of
Texas at Austin (/la~cb 1978)

(65] W. F. Bu~g€~ and D. Lyncb, £!!.§.£!!.l ~~!!y!!.l, Compute~
Center of the State University of New Yo~k at Buffalo,
Buffalo (1973)

[b6 J D. W. Busta~d, Pascal-Plus Q~r~ ~!!.!!Y~l,
Unive~sity of Belfast-(1978)

Queen's

(67] J. 1. By~nes, lif~:.g!!.§~l: A f!!!ical 1!lli2.1~!!!~!!t.!!.1iQ!!' lQ!:

~ic~Q!!.IQ£f.2§Qr Ba§~~ ~!!!QY1~r ~§.t.~!!!§., Naval
Posty~aduate school. I!onte~ey, Califo~nia (1979)

[68] &. H. Campbell and R. B. Kolstad,
in Pascal", frQ~Jill.i!lg§ 21 1he
conte£§!!.£~ 21 i/.Qftw!!.£~ ;:;agin~~ing,
IEEE, New York (1979)

"Path Exp~essions
4th International
-n~!!.i£h;--Ge~mani;

(69] A. Celentano, P. Della Vigna, c. Ghezzi, and
D.Mand~ioli, "/lodula~ization of Block-St~uctu~ed
Languages: The Case of Pascal", g£Q£s:~£j,!!!l2 of tAe
RQI!shoE Q!! ~Q~ ~Qftw!!.r§, ~Q!!!!, Q~!g!!Y, 167-79,
Ca~l Hasse~ ve~lag. Kunich (1979)

(70] A. Celentano, P. Della Vigna, c. Ghezzi, and
D.Mand~ioli. "sepa~ate compilation and Pa~tial
Specification in Pascal", 1£;1;];; Ir!!.a§!!.ction§. 2!!
i/.Qfi~£~ 1;ngla~Iing, SE-6, 4, 320-328 (1980)

(71] A. Celentano, P. Della Vigna, C. Ghezzi, and
D.lland~ioli, "SIriPLE: A P~og~am Development system",
~2~~i~I ~~~gy~§., 2, 2, 103-114 (1980)

[72] G. W. Che~~y, g~!!.l g!:Qg!:amm i!L,9 strY£iY£§!i: Aa
IntIQ~Y£lio~ to iI.Y§.~!!!!!.ti£ f£Qg!:.2!!!!.i!!Y, Reston
PUblishing, Reston, Vi~ginia (1980)

[73] I\.Cichelli, "Pascal-I-- Inte~active, Conv€~sational
Pascal-SIt,£!!.§.~l li~J!§', 15, 63-67 (Septembe~ 1979)

[74] &.cichelli, "Pascal-I-- Inte~active. Conve~sational
Pascal-SIt, ~J&nAN .!iQ1.i£~2.' 12, 1, 34-44 (1980)

(75] "pascal Potpou~~i",
(NoVembe~ 1976)

&. J. Cichelli,

~~~sl~ite!:, 6, 36-41

(76] R. J. Cichelli, "Fixing Pascal's
~Qti£~§, 12, 5, p.19 (1980)

I/O", SIGtlAli

[77] R. J. Cicl1elli,"Fixing Pascal's I/O", f!!.§.£!!.lli~~2,
17, 1'.65 (Ma~ch 1980)

( 78 ] R. G. Clark, "In te~acti ve Input In Pascal", ~I@!.M!.
~Qlicf.§.1~, 2. 9-13 (1979)

(79] R. G. C.la~k. "Input in Pascal". iI.lQf.bAIi !i2ti£~§., 1~,
11, 7-8 (1979)

(80] D. Coleman, A St.L\!ctured g!:oq~a!!!!!!j,!i.Y Approach 12
Q!!.12,MacMillan P~ess (1978)

[ 81 ] D. Coleman, R. M. Gallimo~e, J. W. Hughes, and
h. S. Powell. "An Assessment of Concu~~ent Pascal",
Soii~!!.£~:.::g~a~1£~ !!.ag~!£€~iea£~. ~, 827-837 (1979)

[82 ] and II. S. Powell,
/lethodology fo~

£2!!!c~i!!.ij,Qn ggRQ£1

C. Coleman, J. w. Hughes
"Developing a p~oy~amming
Mul tip~o:J~ams", Q~.2~t~!!.i Q1
.!iQ.-1!§, UlllST (1978)

[83] C. Come~, "MAP: A Pascal lIac~o P~eprocesso~ fo~ La~ge
PL'og~alU Develop:nent". i/.Q1i~!!.!:~=:. g!:!!.£lj,£~ !U!~



f!peei~D~2, 2, 203-209 (1979) [99] H. Eekio, J. Sajanienu, and A. Salava, "In
Implementation of Pascal on the Bueeoughs B6100",
~2£Q£1 A=1171~1, Depaetment of computee Science,
univeesity of Helsinki, Finland (1977)

[100] R. N. Faiman and A. A. Korteso ja, "An Optimizing
Pascal Compiler", f~din!l§ of ~!!.f!:iA~ (IEEE Thied
Inteenational Computee Software and Applications
Confeeence), IEEE, 624-28 (1979)

[84] ~. N. Condict, "The Pascal Dynamic Aeeay Controversy
and a ~ethod for Enfoecing Global Assections", g!ili!!!
!iotic~§, 1~, 11, 23-21 (1971)

[85] G. Concadi, "Further Critical Comments on Pascal,
Paeticularly as a systems peogramming Language",
SI2fb!!! !!Qti~§, 11, 11, 8-25 (1916)

[86] R. conway, J. Accher, and R. Conway, f[Q.9.illliDJ:! for
gQgt§: A Q~tle ln1[Qduction ]§i~ fg§cal, Wintheop,
Emglewood Cliffs, New Jersey (1980)

[81 ]

[ 88 ]

[89 ]

[ 90]

[ 91 ]

L 92]

[101] L. Feiereisen, "Implementation of Pascal on the
PDP-ll/4S", DE~~ ~!l!~!:~!l~, l.y£ic!!, pp. 259 (1974)

R. Conway, D. Geies and E. C. Zimmeeman, A Pri.!!!~ ill!
g~~gl, wintheop, cambeidge, ftassachusetts (1976)

( 102 ] E. E. Ferguson and G. T. Liylec, "The TI Pascal
::>ystem: Run-Time Support", f[Q.~2~QinJ:!§ of th~
Elevellll! Hawgii Int2£llatio!lal ~!~[§!l£§ Q.D. ~L2tem
~£i~~~§, fg[l III, 69-84, Westeen peeiodicals Co.,
Noeth Hollywood, Calitoenia (1978)H. J. Cornelius, D. J. Robson, and M.

"Modification of the Pascal-P Compiler for
liccum111atoe One-liddcess lIinicomputec",
g[!!cti~~ gnd ~~~[ie!l£~, lQ, 241-46 (1980)

I. Thomas,
a single-

So f tv !![2:::: ( 103 ] W. Findlay, "The ?eeformance of Pascal Peogcams on
the MUL'IUII", Re£Q£l l!.Q.. 2, Computing Depactment,
University of Glasgow, Scotland (July 1974)

(;. Cox and J. TObias, ~£!!l J!QQQ. g~12[~!l~ ~l
(IBM 36QLlIQ Vecsio!l), Austcalian Atomic Enecgy
Commission, Austcalia (Febcuaey 1978)

L104] w. Findlay and D. P. Watt, f!!§cal: AD Inl£QQuction 1Q.

tl~ll!Qgi£al PeQg£ammi!!g, Pittman, London (1918)

J. E. Ccider, "stcuctuced Focmatting of Pascal
Progcams", ~IQtl!.!! Nolic~, .1], 11, 15-22 (1918)

( 105] C. N. Fischec and R. J. Leblanc, Q~::g~~al Refecence
!!.!!!lY~1, Madison Academic Computing Centec, ~adis;~;
wisconsin (Cctobec 1911)

J. Ccidec, "Why Use Structuced Foematting", Pa2£!!l
!is~2' 15, 68-70 (Septembec 1979)

J. Deminet dnd J. Wisniewska, "SIMPASCAL",
liU!§, 17, 66-68 (March 1980)

C. N. Fischec and H. J. LeBlanc, "Efficient
Implementation and Optimisation of Run-time Checking
in Pascal", SIGP1!l!. liQti~~, 1£, 3, 19-24 (1977)

[1lJ7) C. N. Fischee and R. J. Lealanc, "A Diagnostic
compilexcfor the Pcogeammin9 Language Pascal", US~

Igll £Q.D.fe£gn~ l~hni~j!!. f!!Eecs, Lake Buena Vista,
Flocida ~ctober 1976)

[ 106 ]

[ 94]

[93J P. Desjardins, "A Pascal Compilec foc the Xecox Sigma
6", S IQf!.A.!! liQ.1lli§, 1!, 6, 34-36 (1973)

P. Desjacdins, "Dynamic Data Structuce ftapping",
~Qftwa:H::::: glltl!~~ g!)'Q Expe[.!~1l~2, .!i, 155-162 (1974) C. N. Fischee dnd R. J. LeBlanc, "The Implementation

010Run-Time Diagnostics in Pascal", 1£;1;;1:; Tej!!l§g£liQ.D.2
Q.n Soft~g[~ EngiQ2~!ll.9, ~~=£, 4, 313-319 (1980)[ 95)

[ 9t> ]

[ 1()8 ]

P. Desjardins, "Type Compatibility Checking in Pascal
Compilecs". Pasc!!!.!i2~§, 11, 33-3'1 (Febcuacy 1978)

Ii. S.
Pascal
Ii~£Q.H
( 1973)

Devecill and A. C. Haetmann, "Intecpcetive
foc the IB1131()",Infor!JL!!1iQ.!l ~£i~.!l~g I~hnical
.!!Q..2, Califocnia Institute of Technology

[ 109) to Pascal",E. A. Fealey, "Suggested Extensions
f!!2£gl .!i~l!§,11, 41-43 (Febcuaey 1978)

[ 110 ] R. A_ Fcaley, "::>YSPAL: A Pascal-Based Language foc
Operating system Implementations", f[Q.~edill.9§ Qi

~£!:i!l~£Q.m££2!lIJ!, Sa!).I~!lcis£Q., 32-35, IE~E (1978)
[97] f. Edwards, "Is Pascal a Logical Subset of Algol 68

ac No t?", ~iQRil.!! [oti£~2' 1~, 6, 184-191 (1977)

(98] J. Eisenberg, "In Defense of Focmatted Input", fascal
li~21~!12£, 5, 14-15 (septembec 1976)

[ 111] G. Feiesland, et aI.,
"A Pascal Com piler Bootstcapped

on a DEC-SystE'm 10", Mii!&ilJillg !![..2, Institut fuc
Infoematik dee Univecsitat Hambucg, 13 (Macch 1914)

;0:
c,..,

>-'vI



[112 ] ~£~£ifi~~tiog of g~l-ti~~ fasc~l, Florida University
(July 1976)

A. J. GerbE'r, "Pascal at sydney University", ~~1
Ne~2' 9 & 10, 39-40 (September 1977)

[113] (127] G. J. Hansen, G. A. Shoults, and J. D. Cointment,
"Construction of a Transportable, /lulti-Pass Compiler
for Extended Pascal", ~tl!!i !i2tiS;~2' l!i, 8, 117-26
(1979)

J. C. Gracida and R. R. Stilwell, NPS-Pascal. A
g~£1i~1 lIDQl~g1~1i2~ of ~2£sl l~ll~~-for ~
~iS;!2££Q£~~2~g Computer aY2~~m, AD-!Q£lQ~QL~
Naval postqraduate School (June 1978)

(11
'I

] N. Graef, H. Kretschmar, K. P. Loehr, and
B. /lorawetz, "How to Design and Implement Small Time-
sharinq systems Usinq Concurrent Pascal", Softwli~::

filctic~ and g.!£~£ience, 2, 17-2'1 (1979)

[128] S. Hanson, E. Jullig, P. Jackson, P. Levy, and
T. Pittman, "Summary of the Characteristics of Several

"/lodern"Programming Languaqes", aI!iflAN l!.Q.~ices, 1!i,
5, 28-45 (1979)

(115] N. Graham, Introd~1!2~ 12 gs2£~l, West, St. Paul,
/linnesota (1980)

[129] ~. C. Hartman, "A Concurrent Pascal Compiler for
Minicomputers", Lect!!£~ !iot~ i~ ~m£!!1§i.£ as;~nS;!i., 2Q,
springE'r-Verlaq, New York (1977)

[116] U. Gries and N. Gehani, "Some Ideas on Data Types in
High Level Lanyuages", QQ11Q, 6, 414-420 (1977) [130] D. Heimbigner, "Writinq Device Driven; in Concurrent

Pascal", li!ioP~, 11 (1978)
(117] G. R. Grinton, "Converting an Application Program

from 0/151Pascal 1.1F to AAEC Pascal 8000/1.2",~2~1
New§, 17, p.59 (/larch 1980)

[131] E. Heistad, "pascal-- Cyber Version", ~.!£gi2! l!.Q.tai
5-302 r2rsv~I~12 For2kning2~stitY~i, Norweqian
Defense Research Establishment, Kjeller, Norway (June
1973)[118] P. Groqono, "On Layout, Identifiers and Semicolons in

Pascal Proqrams", ~l!ill!!i !ioti~, l!i 4, 35-40 (1976)
[132] F. w. v.Henke and D. C. Luckham, Au~ati£ ~IOqram

verif!~~1i2.~ Ill: A /le~hodolQ.gy IQ.I Y!i.£ifying

g!Q~!!!2' Stanford Un iversity (December 1974)

[119] P. Grogono, f£Q.~~~i~ in gascsl, Addison-wesley,
Readinq, /lass. (1978, CE,vised 1980)

[ 120] c. o. Grosse-Lindemann, P. W. Lorenz, H. H. Naqel,
and P. J. Stirl, "A Pascal Compiler Bootstrapped on a
DEc-System 10", !.ecty£§ !iQ1~2 ig ~Q.J!!£!!1~Scie~ 1,
Springer-Verlaq (197'1)

T. Hikita and K. IShihata,
/lanual", Iechnis;al !i§£Q!1
Information Science, Faculty
Tokyo (/larch 1976)

"Pascal 8000 Reference
76::Q~, Department of

of Science, University of

[133]

[121] c. o. Grosse-Lindemann and H. H. Nagel, "Postlude to
a Pascal-Compiler Bootstrapped on a DEC-System 10",
~itw~!:!i.:::: g!.~£1i~ ~gg ~K£S!riens;~, 2, 29-42 (1976)

[134] T. Hikita and K. IShihata, "An Extended Pascal and
Its Implementation Using a Trunk", !!~ort of th~
~Q~£!!1S!!: Cen!!s:, 2, 23-51, University of Tokyo, (1976)

[135] C. A. H. Hoare and N. wirth, "An Axiomatic Definition
of the programming Language Pascal", A~I! Informati~~,
1, 335-355 (1973)

(122] T. R. Grove, ~aterloQ. E2§£al Q~~2 Guide ~
~snguage DescriptiQg, university of iaterloo, Ontario
(January 1980)

[123] G. G. Gustafson, "Some Practical Experiences
Formattinq Pascal Programs", a.!Qiill .!iQ.1ices, 1!, 9,
42-49 (1979)

(136] R. C. Holt and J. N. P. Hume, frQ.g£smmiggaiandarg
f~2£s1, Reston Publishing Co., Reston, Vir9inia (1980)

[ 137] J. Hueras and H. Ledgard, "An Automatic Formatting
Proqum for Pascal", SIGpLAN .!i2i~2' 1~, 7, 82-84
(1977)

[12'1] A. N. tlabermann,
Programmin~ Lanquaqe

47-57 (1973)

"Critical
Pascal",

Comment s on
ACTA 19fo!.matic~,

the
1,

i 125] M. P. Hagerty, "The Case for Extending Pascal's I/O",
g~£al .!i~wslett~, 6, 42-45 (November 1976)

[138] /I. Iglewski, J. Madey and s. /latwin, "A Contribution
to an Improvement of Pascal", SIGPLAN !i21i£Si2, 11, 1,
48-58 (1978)

[126] G. J. Hansen preliminary Longer" ,"what to do After a While...C. E. Lindahl, [139] T. Irish,and

~- _..~-----



f~al Ne~§, 13, 65-65 (December 1978)

(1~0] K. Ishihata and T. Hikita. h22tstrapping Pascal Q§ing

~ ~!, Department of Information Science, Faculty of
science, University of Tokyo (1976)

Pascal", ,1IGPLlili Noti£g§, 11. 10, 32-35 (1976)

(154] E. N. Kittlitz, "Another proposal for Variable Size
Arrays in Pascal", ,1IGPil!!.Notice§., 1£, 1, 82-86
(1977)

[141] Ch. Jacobi, "Dynamic Array Parameters",
!~slettet. 5, 23-25 (September 1976)

[155] B. Knobe and G. Yuval. "Some Steps Toward a Better
Pascal", J!2gnal 21 J&!!IU!.~[ LallgJ!.~gg§. 1, 277-286
(1976)

[142] K. Jensen, and N. Wirth, "pascal--
Repoet", 1~~ Notes:ill ~OIlPUt~
Speinger-Veelag, New York (1974)

Usee /lanual and

Science. .1!!. pascal !~wslettee, 6,[156] S. Knudsen, "Indexed Files".
33-33 (November 1976)

(143] K. Jensen, and N. Wieth, pascal-- Usee /lanual and
~~2tt, Springer-Veelag, New Yoek-yf974j--

(157] G. A. Koen, "peogeamming Continuous-System Simulation
in Pascal", /lathematics~nd ~!!!illJl1~ All Simulation,
~1, 276-81 (Novembee 1979)

(144] O. G. Johnson, "A Geneealized Insteumentation
peocedure for Concuerent Pascal Systems", geoceedinq§
21 ~~~ 121~ International ~~ee~~ ~ paeallel
Pe2~§ing, 205-7, I~EE (1979)

[158] B. B. Keistensen, O. L. /ladsen and B. B. Jensen, "A
Pascal Environment /lachine (P-Code) ", DaA.!!!A ~,
university of Aarhus, Denmark (April 1974)

(145] D. A. Joslin, "A Case for Acquieing Pascal",
~oftwat~~ ft~ic~ ~!lg ~eience, ~, 691-2 (1979)

(1~6] W. N. Joy, S. L. Geaham, and C. B. Haley, Berkeley
Pasc~l ~§§£~§. ~anual VeesiQll 1.1, computer Science
Division. university of California at Beekeley (April
1979)

(159] C. Lakos and A. H. J. sale, "Is disciplined
Programming Teansferable, and Is It Insightful?",
AYstralA~!l COm2ut~[ 42.Y!:!lal,lQ, 3, 87-97 (1978)

(160] W. R. Lalonde, "The Zero Oversight", ~12f!.AN !2tic~,
1~. 7, 3-4 (1979)

(147] W. H. Kaubisch, R. H. Peerott, and C. A. R. Hoare,
"Quasipaeallel peogeamming", Softw9[~= ~actic~ and
Ex~!~~, 2, 341-356 (1976)

(161] A. R. Lawrence and o. Schofield,
supporting Pascal Files. Design
NP1 ~~2&i NAC ftft. National
(Febeuary 1978)

"SFS-- A File System
and Implementation",
Physics Laboeatory

(1~8] D. R. Kaye, "Interactive Pascal Input".
!!.otices,12, 1. 66-68 (1980)

(162] R. J. LeBlanc, "Extensionsto Pascal for Sepaeate
Compilation". liQf.!.Al! l!ili£~, 11, 9, 30-33 (1978)

(163] H. J. LeBlanc and J. J. coda, ! 2J!.Ag~ 12 Pascal
Textbooks, School of Information and computer Science,
G;o~gI;-Institute of TecMlology. Atlanta, Geoegia

(1~9] W. Kempton, "Su'LJestions foe Pascal Implementations",
Pas£al New§. 11, 40-41 (Februaey 1978)

(150] n. Kieburtz, ~~£1ured proq[~!!!!i!lg and~.!!!
~lvi!lg wit~ fasc~l, Peentice-Hall, Englewood Cliffs,
New Jersey (1977)

[164] o. Lecarme, "Steuctured programming, Peogeamming
Teaching and tileLanguage Pascal", ;iUif!.!l! !ill£~§, ~.
7, 15-21 (1974)

( 151 ] R. B. KieDuetz, W. Barabash and C. R. Hill, "A Type-
checking peogeam Linkage system foe Pascal",
f[Q£~H!lg§ 21 th~ I!!li..I1 IIl~nati2nal ~2nf~!l~ 211
~21tw~r~ Enqi~[!ng, Atlanta, Geoegia, /lay 10-12
(1978)

[165 ] O. Lecarme, "Development ot a Pascal Compilee foe the
Cll IRIS 50. A Partial History", f9§.cal .!i~il~[, 8,
8-11 (/lay 1977)

[ 166] o. Lecarme, "Is Algol 68 a Logical Subset of Pascal
oe Not?", ;iIGPLAl! l!otic~§., 1~. 6, 33-35 (1977)( 152 ] P. B. Kieburtz, W. Barabesh and C. R. Hill, g~y

~tQok g92cal/160 ysee!2 Guide, Depaetment of Computer
Science, SUNY, stony Beook (Februaey 1979) "/loee

A~TA
Comments on the

l!l12[.!!!ati£~. i,

(153] E. N. Kittlitz, "Block Statements and synonyms foe

O. Lecarme and P. Desjardins,
programming Language Pascal",
231-244 (1975)

[ 167]

>-<.:-
o
c



(168] O. Lecarme and P. Desjardins, "Reply to a Paper by
A. N. Habermann on the Pr09rammin9 Language Pascal",
~lGP1A! Noti~, ~, 21-27 (1974)

North-Holland (1974)

(182] S. E. Mattsson, "Implementation of Concurrent Pascal
on LSI-11", ~ofliare:::: fr~ti£~ MQ EXl!erigJl£§., lQ.,
205-217 (1980)

( 109] O. Lecarme and II-C. Peyrolle-Thomas, "Self-Compiling

Compilers: An Appraisal of their Implementation and

portability", ~.B.~li:::: fractice g!!j} j;;~l!~rie~, !!,

149-170 (1978)

[170] L. A. Liddiard, "Yet Another Look at Code Generation
for Pascal on CDC 6000 and eyber lIachines", Pa2£g!
H~~21~tl~r, 7, 17-23 (February 1977)

(183] S. ~atwin and M. Missala, "A Simple, Machine
Independent Tool for Obtaining ROU9h Measures of
Pascal Proyrams", §.lQfilJi Ji~tices, 11. 8, 42-45 (1976)

(184] B. A. E. Meekings, "A Further Defence of Formatted
Input",.f~!!l Jig~21~tt~r, 8, p.11 (llay 1977)

( 171]

[172]

[173]

( 174]

(175]

B. W. Liffick (ed.), I~ ~YTE
BYTE/McGraw- Hill (1979)

( 185]

S. Ljun9kvist, "Pascal and Existin9 FORTRAN Files",
SIG~!!i !iQ!1£~, 12, 5, 54-55 (1980)

K. P. Loehr,"BeyondConcun:entPascal", f~~di~2
21 th~ Sixth A~~ ~mpos~ Qn Ql!~r51i~ ~~m
fr~Jl£1£le2' 173-180 (1977)

D. C. Luckham, S. II. German, F. W. V. Henke,
R. A. Karp, and P. W. lIilne, Stanford g~2£al Verifier
~~I ~gJlygl, STAN-CS-79-731, Department of Computer
Science, Stanford University, California (1979)

( 186]

( 187]

D. C. Luckham and N. Suzuki, "Verification of Array,
Record, and Pointer Operations in Pascal", !91 TOPL!~,

1, 2, 226-2114 (1979)

[ 188]

(176] W. I. MacGregor. "An Alternate Approach to Type
Equivalence",Pascal News, 17, 63-65 (IIarch 1980)

A_ Mickel, f~al Newsle~r, University of Minnesota
Computer Center, Minneapolis: No. 5 (September 1976),
No. 6 (November 1976), No. 7 (February 1977), No. 8
(/lay 1977). Pascal Jig~2 (change of name): No. 9 and
10 (September 1977), No. 11 (February 1978), No. 12
(June 1978), No. 13 (December 1978), No. 11; (January
1979), No. 15 (SEPTEIIBER 1979), No. 16 (OCTOBER 1979)
(See also G. Richmond and R. Shaw)

D. D. /liller, "Adaptin9 Pascal for the PDP 11/45",
g~gl !i~~2' 11, 51-53 (February 1978)

F. Minor, "Overlays: A proposal", gg§£al ~21~~I,
5, 16-19 (September1976)

D. V. Moffat, "A Categorized Pascal Biblioyraphy
(June, 1980)", I~£hJl~£al ~QI.l TR80::Q§, Department of
Computer Science, North Carolina State University,
Raleigh (1980)

(189] P. R. lIohilner, "prettyprinting Pascal Pr09rams",

~1~1A!i Not~~2' 11, 7, 34-40 (1978)(177] II. lIachura, "Implementation of a Special-purpose
Language Usiny Pascal Implementation lIethodology",
~of~~:::: gr~~£~ gnd ~~l!~~~, 2, 931-945 (1979)

[178]

[ 179]

(180]

B. J. MacLennan, "A Note on Dynamic Arrays in
Pascal",ll~!.!iNoti£~2' 1Q, 9,39-40 (1975)

(190] P. R. Mohilner, "Using Pascal in a FORTRAN
Environment", ~oftwali:::: fr~~ 5Jlg hl!~rll!l£~, I,
357-3b2 (1977)

I 191 ]

C. D. lIarlin, ''It lIodel for Data Control in the
Programming Language Pascal", proceeding§, of !.!!~

A~2!Igl~~n ~olleqes of Advanced j;;gY£5tiQll Computing
~QnfeliJl£~, AYgY§! 1911, (A. K. Duncan, Ed.), 293-306
(1977)

( 192]

C. D. lIarlin, "A Heap-based
Proyramming Language Pascal",

t~l!~I~~Jl£~, ~, 101-119 (1979)

Impl~mentation of the
Softw~~== Practice AJlg

( 193]

[181] E. lIarmier,
lnf 0C!!l~tion

"A Program
~£~ing 1~,

Verifier for Pascal",
(IFIP Congress 197Q), [ 194]

T. lIolster and V. Sundvor,
the Univac 1108 Computer",
Institutt for DatabeQandling,
Norway (February 197Q)

"Unit Pascal System for
~lmisk JiQiu 1L7Q,

Univeritetet I Tronheim,

H. H. Nagel, "Pascal
Experiences and Further
Institut fur Informatik,
1975)

for the DEC-System 10,
Plans", !!.itW.!YJl!l .!!£. 11,
Universitat Hamburg (November

J. Nagle, "A Few proposed Deletions", fascal ![!U!2'
12, 39-39 (June 1978)

K. T. Narayana, V. R. Prasad, M.Joseph, "S omeand

.-"l..':"'
O'C



[ 195 ]

[ 196]

Aspects or Concurrent Programming in
~oftwar~== f£~ct~~~ snd Experien~~, 2,
(1979)

CCNPASCAL",
9, 749-10

[201 ]

[ 208]
D. Neal and V. Wallentine, "Experiences with the

Portability of Concurrent Pascal", Softwgre-- Ugctic~
~~g ~~rie~~, ~, 341-353 (1918)

[ 209 ]
P. A. Nelson, "A Comparison of Pascal Intermediate

Languages", .11~!!! Notic~§, 1!!, 8, 208-13 (1979)

(197] T. Noodt, "Pascal Environment Interface",
!~~§, 12, 35-31 (June 1918)

J. L. Peterson, "On the Formatting of Pascal
Programs", ~i!iEl.AN!otice§, .11, 12, 83-86 (1911)

S. pokrovsky, "Formal Types and their Application to
Dynamic Arrays in Pascal", SIGPLAl! !!oti~~§, 11, 10,
36-42 (1916)

B. w. Pollack and R. A. Fraley, fS§£~lLMBC ~~§
~uig~, Technical Manual TM-2, Department of Computer
Science, University of British Columbia (1977)

"A Simple Extension to
Processing", il§gll!!.

[210] M. S. Powell, "Experience of Transporting and Using
the SOLO Operating System", soflgr~== fracti~~ ~g
~~~~Q~~, 2, 1, 561-569 (1919)

[198] T. Noodt and D. Belsnes,
Pascal for Quasi-parallel
!oti~§, 12, 5, 56-65 (1980)

(199]

[200]

[201]

(202]

[203]

P04]

(205]

[206]

[211] T_ W. Pratt, "Control computations and the Design of
Loop Control Structures", lil~ Tr~nSa~tio.!l.2 Q!!
.1Qflwa!:~ .IDlgineerinq, g=!!, 2 (1918)

K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
Ch. Jacobi, 1he g~£al ~ Compiu!:: ~~tatio!!
!21~§ (Bevi§~ Edition), Berichte Nr. 10, Institut fur
Informatik, Eidgenossische Techniscne Hochschule,
Zurich, switzerland, 1916

[212]

[21 3]

K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
Ch. Jacobi, £2rrect~~§!Q lhe ~f~£gJ Compiler:
~£lem~!!l~!Q!! !ote~, Berichte Nr. 10, Institut fur
Informatik, Eidgenossische Technische Hochschule,
zurich, Switzerland, 1916

(214]

[215]
G. J. Nutt, "A Comparison of Pascal and FORTRAN as

In troductory Programm ing Languages", alJipL!!!..!!.2ti~,
11, 2, 57-62 (1918) [21&]

J. S. Parry, "The
Info!:.ms..!i~ ~cie~
Tasmania (1978)

Pascal Str ing

gud~i !i~tl,
Library Notes",

university of
[211]

A. L. Parsons, "A Microcomputer Pascal Cross
Compiler", proceedi!J..g§~f Spring ~££Q!! 18, ~
Iranci§£Q, Februar~March, 12l§, IEEE, 146-50 (1918)

S. Pemberton, "Comments on an Error-recovery Scheme
by Hartmann", Sofl!@!:~ ~ctlli ~!H! ~£~ie!!~, 1Q,
231-240 (1980)

[218]

(219]
D. F. Perkins and R. L. Sites, "Machine-Independent

Pascal Code Optimization", ~fA.AN !Q1i£~, 1!, 8,
201-1 (1919)

G. Persch and G. Winterstein, "symbolic
In terpretationand Tracingof Pascal Programs", 3rg
l!!ier!!~lional ~Qnfe~~ Q~ Sof~re !tnqine~,
lllant~, Qft.Qrgia, !1gy, ill~, IEEE, 312-19 (1978)

[220]

W. C. Price, "what is a Textfile?", f~~al News, 9 &
10, 42- 42 (September 1971)

J. pugh and D. Simpson, "Pascal
Evidence", Compul~!: fiQlletin, 1,
1919)

Errors-- Empirical
19, 26-28 (March

P. F. Fansom, "Pascal Survey", pasc~l !ig~§, 17, 51-58
(March 1980)

B. W. Ravenel, "Toward a Pascal Standard",
~omputeI, ll, 4, 68-82 (1919)

IEEE

B. W. Ravenel, "will Pascal be the Next Standard
Language?",!;.Q!1f!;;Q1! 12 12ig:~§i of ~gr§, IEEE, 144-146
(1979)

W. Femmele, "Design and Implementation of a
programming System to support the Development of
feliable Pascal Programs", proceed~.9;?' Qf lhe]!Qrksho£
Qn E~li2Qle Sofl~arg, ~~, ~r!s!!~, 73-81, Carl
Hanser Verlag, Munich (1919)

G. H. Richmond, "Proposals for
!i~~§lgll~r, 8, 12-14 (May 1977)

Pascal",

G. Richmond (ed.), f~~l New;?leltgr, university of
Colorado computing center, Boulder: No. 1 (January
1974), alGPLAH Noti~§, 2, 3, 21-28 (1974); No.2 (May
1974), ~IJiti!! !otiQg§, 2, 11, 11-11 (1974); No. 3
(February 1915), aIQf.!'A! !Qti~§, 11, 2, 33-48 (1976);
No.4 (July 1916) (See also A. Mickel and R. Shaw)

1'1.Roberts and Ii. Macdonald, "A Resolution of the
Boolean-Evaluation Question --or-- if QQ! Partial

I--~
<.f'
C'C

[22 1]

[222]

{223]

Evaluation then conditional Expressions". ~cal 1[~!!§.
13. 63-65 {December 1978)

P. Ro Y. "Linear Flowchart Gen erator for a Structured

Language". ~LAN Notic~. .11. 11. 58-64 (1976)
[237]

H. Rubenstein. "Pascal Printer Plotter".
~sl~~~. 7. 9-16 (February 1977) [238]

A. Rudmik. "Compiler Design for Efficient Code
Generation and Program Optim ization". a1!illll Notices.
l!!. 8. 127-38 (1979)

[239]

[225]

[224] C. Runciman. "Scarcely Variabled Programming
Pascal". SIGP~ll Noti~, 1!!. 11. 97-106 (1979)

A. H. J. Sale, "Stylistics in Languages with Compound
statements", !ustralill ~IIPut!ll: ~Q.Yrnal, 1Q, 2 (1978) [241]

[226]

[227]

(228]

(229]

Architecture for Pascal",
f~Q£~~ding§, !~, 637-48 (1979)

J. B. Saxe and A. Hisgen, "Lazy Evaluation of the
File Buffer ior Interactive I/O", ~§£al 1[~!!§.1[Q. 1J,
(December 1979)

S. Schach, "Tracing the Heap". Rascal !i~:!§. 15, 67-68
(September 1979)

S. R. Scaach, "A Portable Trace for the Pascal Heap",

~ftva~~== f~ice gng ~xperi~~. lQ, 421-426 (1980)

and [240] H. Schauer, "Micropascal-- A Portable
processor for Microprogramming Education",
.;[. (!i~!!!~£lands). 2. 2, 89-92 (1979)

Language

E;Y.!.2ll~

A. H. J. Sale, "strings and the Sequence Abstraction
in Pascal", softwa~~== ~ractice ~g E;~~W!!£~. 2.
671-683 (1979) p42]

A. H. J. Sale, "Implementing Strings in
pascal--Again", soft:!are-- Practice and ~rien~, 2.
839-841 (1979) [243]

,. H. J. Sale,
"A Note on scope.

and Pascal", !ystrali~
~QJ!lmuni£gtions1, 1. 80-82 (1979)

One-Pass Compilers,

~ml?uter Scien~.§
[244]

A. H. J. Sale, "Conformant Arrays in Pascal". Pascal
l!~:!§, 17, 54-56 (March 1980)

Ii. Schild, "Implementation of
Language Pascal", ~g 1[otes
!!.g!hema!ical 2ysteJ!l§, 75. (1972)

the programming
in E;£onomic§ gng

J. W. Schmidt. "Some High Level Language Constructs
for Data of Type Relation", AQ1 ~gnsaction.§ Q!!
Database 2vsteJ!l.§.~. 3. 247-261 (1977)

F. B. Schneider and A. J. Bernstein, "Scheduling in
Concurrent Pascal". Qperat~ ~J!l§ ~Yi~:!. 1~, 2.
15-20 (1978)

G. 11. Schneider, "The Need for Heirarchy and
Structure in Language Management". ~£gl ~.2.1tl!&~.
6. 34-34 ~ovember 1976)

[245] G. M. Schneider. "Pascal:
~m£Y!~£. 11, 4, 61-65 (1979)

UEE
[230] A. Sale. "A Note on Scope. One-pass Compilers, and

Pascal", Pascal ~.§. 15, 62-63 (September 1979)

[231] A. Sale, "The Pascal Validation Suite-- Aims and
Methods", Pascal l!~, 16, 5-9 (October 1979)

An Overv iew".

[246] G. M. Schneider, S. W. Weingart and D. M. Perlman, A!!
l!ltrodyction to proqramm!ng ~~ R!.:2.!!1~ 201vinq with
Pascal, Wiley, New York (1978)

{232] A. Sale, "scope and Pascal", SIGPLll !!.Qt.i£~. 1.!!. 9.
61-63 (1979)

[247]

[233] A. Sale, "General Thoughts on Pascal Arising out of
correspondence Between Southampton and Tas.ania".
l'.2.§£al1[~sl!U:!er. 6, 45-47 (November 1976)

[248]

[234] A. Sale, "Pascal Stylistics and Reserved Words".
softwar~==fractice5n£ ~rienc~. 2, 821-825 (1979) { 249]

[235] A. Sale. "Some Observations on Pascal and Personal
Style". R~al Ne~. 17. 68-71 (March 1980)

M. J. R. Shave, "The Programming of
Relationships in Dynamic Environments",
f~~ti£~ and E;~~~£~, ~. 199-211 (1978)

Structural

Softllare--

R. Shaw (ed.). ~ascal News. Digital Equipment Corp..
Atlanta, Georgia: No. 17 (March 1980), No. 18 (llay
1980) (See also A. lIickel and G. Richmond)

K. A. Shillington and G. M. Ackland (ed.s). ~Q
~al l~rsi2n 1.2, Institute for Information systems.
university of California. San Diego (1978)

Virtual
[250] II. Shimasaki,S. Fukaya.K. Ikeda. and T. Kiyono. "An

Analysis of Pascal programs in Compiler Writing"."A Hardware-Independent[236] V. Santhanam.

-~-----

N
a

~oft~~ practice and Experience, 1Q, 149-157 (1980) [263] J. Steensgaard-Madsen, "More on Dynamic Arrays in
Pascal", SIGPLAN liQti~§., 11, 5, 63-64 (1976)

[251] S. K. Shrivastava, "Sequential Pascal With Recovery
Blocks", Softwdre-- f!:~cti~ ~g ~~~. !!.
171-185 (1978)

[264] J. steensgaard-Madsen. "Pascdl-- Clarifications and
Recommended EJl:tensions".ACTA Infor!!!ati£~, Il. 73-94
(1979)

[252] S. K. Shrivastava, "Concurrent Pascal with Backward
Error Recovery: Language Features and Examples",
~of~~ pr~i~ ~g ~~ien£~. ~. 1001-1020
(1979)

[265] N. Suzuki and K. Ishihata, "Implementation of an
Array Bound Checker", ~ternal ~1!Q!:! of ~
~~rt!!!~nt Qf ~~!: Scienc~. Carnegie-Mellon
University (1976)

[253] S. K. Shri vastava. "Concurren t Pascal with Backward
Error F.ecovery: Implementation

". sottware-- practice
~nd ~1!~rien£g. ~, 1021-1033 (1979)

[266] 'I. Takeichi. fascal £2mpile!: fa!: i!!~ FA£Q!1 1111
OS2/V~, University of Tokyo (1975)

[254] A. silberschatz, "On the safety of the I/O Primitive
in Concurrent Pascal", ~mputer ~~1. 22. 142-45
(May 1979)

[268]

[267] A. S. Tanenbaum, ~§.£gl=Q ~anyal, Vrije university,
Amsterdam (1977)

A. S. Tanenbaum, "A Comparison of pascal and Algol

68". The £Q!!!!llite!:!!ill!llU!!,n. 4. 316-323 (1978)[255] A. Silberschatz, R. B. Kieburtz and
"Extending Concurrent Pascal to Allow
Management", 1n11 tt4nsa~tions
Enqi~!:~. ~~J. No. 3 (May 1977)

[269]

A. J. Bernstein.
Dynamic Resource
Qn SQftwate

[256] A. Singer, J. Hueras and H. Ledgard. "A Basis for
Executing pascal programmers", ~AN l!Qtices. il. 7.
101 -1 05 (1 977)

[270]

[257] R. L. Sites. "Programming Tools: Statement Counts and
Procedure Timings". SIGPLA!i Notices. 1], 12, 98-101
(1978) [271]

[258] P. L. Sites, "Moving a Large Pascal Program from an
L51-11 to a Cray-1". f~cal Ne~§.. 13. 59-60 (December
1978) [272]

[259] R. L. Sites and D. R. Perkins. ~~ersal f=£od~
Q!ELfinitiQ.!l. !~rsion (Q.l). calHornia University, San
Diego (January 1979)

H. D. Tennent. "Another Look at Type compatibility in
Pascal", ~oftware-:. fllctic~ ~g ~2er ie~. !!.
q29-437 (1978)

1<. D. Tennent. "A Denotationaldefinition of the
Programming Language Pascal". ~hni£al ~~ 77-1J.1.
Computing and Information Science, Queen's university.
Canada (1971)

R. D. 'rennent, "Language Design Methods
Semantic Principles", !£U Informa!isa. !!.
(1971)

Based on
2, 97-112

P. D. Tennent. "A Note on Files in Pascal", !!il, 11.
3, 362-366 (1977)

[273] D. Thibault and P. Mancel. "Implementation of a
Pascal Compiler for the CII Iris 80 Computer", ~~lll!
!iQ!ic~§.,!!,6, 89-90 (1973)

[260] N. solntseff, "McMaster Modif ications to the Pascal
6000 3.4 System". compu1~!: Scien~ I~chni~ Note
74:.~l, McMaster University, Ontario, Canada
(November 1974)

[275]

[274] R. D.Vavra, "What Are Pascal's Design Goals?", Passal
!itl§. 12, 3"- 35 (June 1978)

T. Venema and J. des Rivieres. "Euclid and Pascal".
SIGPLA~ ~Qii£~§. lJ, 3. 57-69 (1978)[261] N. Solntseffand D. Wood. "Pyramids: A Data Type for

MatriK Representationin Pascal",!!il. 11, 3, 344-350
(1977) [276]

[262] A. Springer, "A comparison of Language C and Pascal".

l!U1 l~g!!~£gl ~~ l!Q. G320-2128. IBM Cambridge
Scientific Center, Cambridge. Massachusetts (August
1979) [277]

W. de Vries, "An
Pascal for the PDP
Pascal Compiler".
Enschede (March 1975)

Implementation of the Languaqe
11 Series. Based on a Portable
!~Qisc~~ HQ3~sc~QQl I~n1~,

S. P. Wagstaff, "Disposing of Dispose". {'ascal l!~!!§.,
9 & 10, 40-41 (September 1977)

N
0--

[278] B. Wallace, "/lore on Interactive Input in Pascal",
~IGgLA! Notice§, ~, 9, p.76 (1979)

of the Art Report 7 (1972)

[279] A. 1. Wasserman, "Testing and Verification Aspects of
Pascal-like Languages", ~1.!U: l.anqu~g~§, !i, 155-169
(1979)

[29~] N. Wirth, fascal~~: ! Subs~i ~nd 112 implementation,
Berichte Nr. 12, Institut tur Informatik,
Eidgenosslsche Technische Hochschule, Zurich,
switzerland, 1975

[280] D. A. watt, ".~n Extended Attribute Grammar for
Pascal", SIGPLAN Noti~. 1.!!, 2. 60-7~ (1979)

[295] N. wirth, "The programming Language Pascal", ACTA
IntQ£mg!!~, I, 35-63 (1971)

[281] C. A. G. webster, l.!!..il:odu~ti!lli 12.~£al,
London (1976)

[296] N. Wirth, "The Programming Language Pascal (Revised
Report) ", Berichi~ i!~!: ~£!!.9!:Ylli!!:i £Q.!!!.2~
.!I.is2g!l2£hafi~!l, .2, Zurich, ~9 (NOVember 1972)

Heyden,

[282] J. Welsh, "Economic Range Checks in Pascal",
Soti~!:~ g!:gcti£g ~!li! Experience, ~, 85-97 (1978) [297] N. Wirth, "Comment on a Note on Dynamic Arrays in

Pascal", SIGPLAN Not1~2' ll, 1, 37-38 (1976)
[283] J. welsh and D. W. Bustard, "pascal-Plus-- Another

Language for Modular /Iul tiprogramming", Software--
g!:gctic!:i and ~g£~~, ~, 947-957 (1979)

[298] N. wirth, £E "P~l~, £2i!~ ~~~!:~iioE, gnd the CDC
~QQQ ~Q~.2Yig£, STAN-CS-72-257, computer Science
Department, Stanford university, Stanford. 28 (1972)

[284] J. Welsh and J. Elder, Introi!Y£1io!l 12. pascal.
Prentice-Hall International,London (1979) [299] N. wirth, "An Assessment of the Programming Language

Pascal", ~ll!!i !otices, lQ, 23-30 (1975)

[300] N. wirth, AlgQUihms :i:QJti~ StruC;;tJ!~2.
-=

gU!qram§,
Prentice Hall (1976)

[285] J. Welsh and R. II. McKeag, ~lruciy!:ed ~i~
Proq!:~m~!!l.9, Prentice-Hall, Englewood Cliffs. New
Jersey (1980)

[286] J. Welsh and c. Quinn, "A Pascal Compiler for the ICL
1900 Series computers", SoftJ!S.~== practicg ~i!
~~~igll£!:i, ~, 73-77 (1972)

[301] N. wirth, ~stematic g!:2g&~,!llil: !!l lEiroducti2!l,
Prentice Hall, E9g1ewood Cliffs, New Jersey (1973)

[287] J. Welsh, W. J. sneeringer and C. A. R. Hoare,
"Ambiguities and Insecurities in Pascal", Software--
E£~~£~ ~nd ~~£g!:1~£!:i. 1, 685-696 (1977)

[302] u. Wupper, "Some Remarks on

Pascal'''. ~2ft~~~ Practice
247-48 (1980)

'A Case tor Acquiring
gnd l!~!:irie~, lQ,

[288] B. A. Wichmann and A. H. J. Sale, "A Pascal Processor
Validation Suite", ~£al !~, 16, 12-24 (October
1979)

[303] !'I. Yasumura, "Evolution of Loop statements", ~I!!..f!.!!
Noti£!:i2' 1~, 9, 124-129 (1977)

[289] K. Wickman. "Pascal is a Natural".
(/'larch 1979)

[290] R. wilsker, "On the Article' what to do After a
While"', pascal New§, 13. 61-62 (December1978)

[ 29 1 ] I. R. wilson
l!liU!!!uctiQ!l
(1979 )

and A. /'I.Addyman, !
to g~gl, springer-Verlag,

practic!l
New York

[292] N. Wirth, "The Design of a Pascal compiler",
Softwa!:~ ~!~ gnd j;~ie~. I, 309-333 (1971)

[293] N. wirth, "The Programming Language Pascal and its
Design criteria", ~ ~~ Lanquag~§, Infotech State

N
N



(/0
cr,
L

~0-
cr,
::;c-

o-
cr
0
C'

REVIEW: PASCAL With Stsle: PrD.ra~~in. Proverbs

'PASCAL With Stsle: Pro~rammir)s Pr(Jverbs" (Ha~den Book COffiPat1~'
Roc elle Park, New ~JerseY, USA, 1979) is ar) addit:ion to '[BASIC, COB()L,
FOR RAN] With ~;t!Jle:Prosrammir,s I~roverbs" b~ Hel1fY l_edSard (with
var GUS others). 'PASCALM is co-'aIJ.~horedb~ Paul Na~in, and John Hel.Jras.
All three 31Jthors are at the University of Massach~lsetts~ This volume,
like its predecessors, is 'ir)tended for ++t pro~rammers who wal1t to
write carefulls constructed, readable ppomrams". I feel compelled to
point out that 'PASCALI is used thrc)uShol.Jtthis book in place of the
tl'i3ditional, and correct, 'Pas;cal', and that 'this error is symptomatic
of n,ymain criticism of .PASCAL With StsleU (PWS for shor.t)~

What LedSard~ et alr have done is to sli~htly rework the previolJs
books (I believe -BASIC...I was first>. 'TileProverbs are piths~
sOffietinleswitty~ Irules. fOT' proS,'ammers. .The present book shares the
Proverbs with the others i~ the series. .This is all to the ~ood. BIJt
Pasca] has beer! treated f,ere as thou~t~ is were like [BASIC, F()RTj~AN,
COBOL.]. And this is where Leds~jrd, et al~ have 110t done so well. 'rhey
have failed to address the ch~~racteristics of Pascal which make it
different from other lSl1glJases. Thus, they treat PascalJs name as th()u~il
it were art acronsm. because uf:'ORTRAN1 and .BASIC. al.~d.COBOl,. are
acrI1r)Sm~;.This apP~'oach is also T'eflected in some suprisinS assertions.
()n pa~e 35 the~! state that one should make !~ure all cor~stant data i.~ems

aT'p declarated as su(~h~ Fil'.e.Iil the next sentence, thou~h, they say
that no e}~ecIJtab]e statement sholJld .modif~P (redefine?) t~1e vallJe of i~
constant. Irl Pascal, of (~ourse, constants si,qply c~~n n(Jt be "modified.,
On pa~R 82, arid elsewhere, identifiers such as "GAME_MOVE. are used.
Pe~h3Ps this wOl,lldbe legal j.f)PL/I, bllt ~ot in Pascal.

Fxpe~iEnced Pascal PI'oSI'amruersreadil1g I~WS would spo.t most
(~llir~.5~make a mental noter ~Iv)dITlove alon~, .[he v)ovice, t~I()lJ~il'
conce:ivabl~ be ~islead, ~~11dthat wOIJld be Ihos'tanll0~iI1S.

o'f thes(.:~
couici

PWS is a letdowrt'not so ml.Jch be(~ausp of ttle (trivial) errors of
commissior" but because of the gaps left unfilled. Recursion, for
e~ai~ple, is disIT.is3sdwit~l10 1shor.tpara~raphs. There is a re.Pey'ellCeto
u2 ~nod deal of the literatlJre" beinS devoted to recursion (p.13R). hI_It.
no specific refererices are given. But at least reclJPsior, is meJ1tiol1ed:
pointe,' tspes (anrl their proper use) are totally isnore(~. Structured
types treated include onl~, arT'aYs. PerJ13Ps I misinterpret the aIJ.~hors'
j

ntE,:ntiof"ls)1 Ol.lt.. it doe~; ~;;(.:~elTlthat :i.n F'a~;cal, (-?sP(?c::i.all'3Y dBta
representatj.on is an imp(Jrti~r)tpart ()f fuakin~ pro~raffi5 compre~lensible to
the h~JmHn mind, Arid making proS rams cOffiprehen!;ible (and correc.t> is wJ,a't
pro~rammjrt~ 5t~le is all abOlJt. Sets~ subranses, i~nd record types are
siffiplsnot treated~

Thppp ~i r.e a
"(. is Drrlrrlitt ci

I"i,€~rlt i Drt i. t on '.:~

,'. [lpc\.>.:riter-, ITIP

few ni~glinS s~nt
n 8 procedure dec
ecause parts of t
yirl~ the text was

}~ erl'()I'S.On page 118~ for example~ a
aration~ This s CtJrious~ and I
e book appear 0 have been pril1ted b~
rnachine.-readab Sf Wh~~ not all of it?

That wa~' the~ could have done some editinS
the eX8NIPles - a sood way to eliminate error
PlauSer used this techni8~Je if) ~Sof.tware Too
RATFOR was presented.)

nd had a cont
(In fact.,

s" (McGrsliJ H

r look at
i~h3n anti
~ wh(:?1'e:i n

Despjte the above, PWS is not B J.Jseless book. I fO~Jnd ttle secti()I.l

t"e3t.j,nS top-.down techrliaues to be useful. PWS descl'ibes other
BPpy'oaches to probieul defil1itic)n/sollJtion and e>:pli3ins wh~ thes fail sa
often. The authors la~ (JlJt in detail the process of successive
refineffie~t+ This is clear and to the point. Tt,e bibliograph~ contains
the standard references to Wirth~ Di,jkstra, etc.~ as well as !;everal
l~ss well known SOI.trees. The Pro~raml~ing I~roverbs are worth reading and
k.nowinS. The~ are presented witt} expla11atiorls of why thes d,'e in[Porti~nt
and e}~amples are Sivert. l_edgardJs pretty---printinS proSram is preserlted
in an 3Pperldix. This is written in fine st~le, as it should be. Sadl~J'
no irtform~ttion is ~ive~ on the possj.bi:Li..tyof aC(~IJirin~ 2
machine-readable verSiC)flof the program. A list IJf stsle rl.Jlesi!3
develc)ped h~, the autt1ors. Man~' people writinS !~ascal CDI,Jldbev)efit from

l'eadin~ and followinS them. Clthers In:ij~1tIna!zeuse af theln 3!; a s.tar.tins
point iv) developirlS their own style rl.J_Les..

Final],~, there iJre a lot of peop:le wh() d(3 no.l everl thil-Ik about
~;t~le1 or who tt1ir.lk. it is not :i,ffipor.tan.l, or wors.t of all~ who ti.jillkthey
emp],oH it blltdOflJt.PWS is concise, e3sy.-t()-read,3f)rl treat!s ?l\~:leill

T'PSBT'd to al~orjthmi(.~ issIJes w:ith reas(Jl1sble success. FOT. tile prCI~r;~lnlner
Wt10 h~s learned the s~nt3x of Pascal, bllt who has n(}'tleal'ned to expres
31gorithms clearl~!, or how tC) 3ppy'(]ach problems jn al1 ar~anizedv
nlett)odj.calfashion PWS c()llidbe a reveli3tion~ So ever) if \~OI_1 1,lse goc)rj
stye (are YOU S',Jre !,()u do? how do Y(]:J kn()w?), ~a1J mish.t Wi~nt to ;p~r')d

~~6f 5 f()p PWS to ler.,dto SC)llY'cQlle~~~ues .- a'fter ~ll, SOll ~tisl.jt I.Ji:lve .to
rea their code somedaY~

Christopher Amles
80/0~?/()9

University of Minr!esota
Agr.i.cl~ltu1'31 E~.;t.(.::'nsion bf\I". "J.CI~'.\

41. ~.'i CDof' -('(>'3 I-k11
St.I:)~!l!l, Mir)np!;o.ta 55:1.()8 USA

. ..



Date Issue pages (numbered) Estimated printed copies

Jan 1974 Pascal Newsletter 1/1 8 (8) 200+SIGPLAN Notices 1974 Mar

Kay 1974 Pascal Newsletter 112 18 (18) 250+SIGPLAN Notices 1974 Nov

tFeb
1975 Pascal Newsletter 1/3 19 (19) 400+SIGPLAN Notices 1976 Feb

*"8
1976 Pascal Newsletter 1/4 103 (103) 500+230 sent by PUG

Sep 1976 Pascal Newsletter 1/5 124 (65) 1150+350 UK

Nov 1976 Pascal Newsletter 1/6 180 (91) 1150+350 UK

Feb 1977 Pascal Newsletter 117 90 (45) 1150+350 UK

May 1977 Pascal Newsletter 118 128 (65) 1150+450 UK

Sep 1977 Pascal News 119/l0(combined) 220 (113) 3500+600 UK+150 AUS

Feb 1978 Pascal News 1/11 202 (105) 3500+600 UK+150 AUS

Jun 1978 Pascal News 1/12 135 (69) 3500+600 UK+150 AUS

Dee 1978 Pascal News 1/13 239 (123) 4000+750 UK+250 AUS

Jan 1979 Pascal News 1114 61 (61) 4100+750 UK+250 AUS

Sep 1979 Pascal News 1115 247 (125) 4000+750 UK+250 AUS

Oct 1979 Pascal News 1116 305 (155) 4000+750 UK+250 AUS

At PUG(USA) there are approximately 700 copies of 9-12 and 1100 copies of 13-16 left.

~ckissues of Pascal News(letter) from Time Zero Andy Mickel 80/07/11. in Industry Literature. Pascal User's Group / Pascal News status: why we are behind.

Pascal Newsletter was started by George Richmond at the University of Colorado Computing
Illiill8;r in early 1974 primarily to spread information about the distribution of the CDC
~cal compiler and the Pascal-P compiler and to answer questions about other issues.

He edited issues 1 through 4. In 1976 Pascal User's Group assumed control of Pascal
Newsletter. I changed the name to Pascal News with issue 9. Below are some facts about
issues 1 through 16.

Here and There; News from Pascalers; a very large Pascal in the News; another Pascal
T-shirt; Pascal in Teaching; Books and Articles; Conference reports: French AFCET
Pascal Group, Australian Computer Science Conference, SIGPLAN ACM meeting, UCSD Pascal
Workshop. A Review of Pascal News 9/10, 11, and 12. Roster Increment 78/04/22

- 10/31.

'":to>
C/O
r:
:to>,

Applications: A review of Software Tools by Rich Cichelli; Algorithm A-I comments, A-3

Determine Real Number Environment. Software Tool S-3 Prettyprint; S-4 Format.

Articles:
"Moving a Large Pascal Program from an LSI-ll to a Cray-l"
- Richard L. Sites
[A 2400-line Pascal program was moved between 2 machines whose CPU speed ratio is
150 to 1. The task proved easy and 6 portability problems are outlined. Lack of
adherence to standards and incompatibilities in the run-time environment were the
major areas of difficulty.]

"On the Article 'What to do After a While'"
-Roy A. Wilsker

[An examination of allt~ble~earch algorithm is made with respect
"psychological set, provlng programs correct," lithespirit of
"efficiency." Conditional evaluation of Boolean expressions as
original paper is not necessarily the solution.]

"A Resolution of the Boolean Expression-Evaluation Question or If Not Partial
Evaluation Then Conditional Expressions"

- Morris W. Roberts and Robert N. Macdonald
[The language features of case expression, value block and the conditional expression
are recommended as additions to Pascal taken from the precedents of ALGOL-60 and
ALGOL-W. An analysis of several control structure constructs is given.]

"What to do After a While .. Longer"
- T.M.N. Irish

fA thorough reply to Mullins and Barron's article "What to do After a While"
arguing against conditional Boolean expression evaluation. He says we should not
L) write programs that rely on ill-defined factors, side-effects of functions, or
undefined values, 2) depend on implementors to let us get away with them, 3) tell
implementors to let uS get away with them, or 4) complain if implementors use any
means they can devise to prevent us getting away with them.]

to considerations of
Pascal," and
advocated in the

#9/10, page 11 describes the contents of Pascal Newsletters 1-8.
#11, pages 16-19 completely describe Pascal Newsletters 5-8.
1113,pages 16-18 completely describe Pascal News 9-12.

If ygriwant indexedinformationaboutPascalcompilers,the storybehindthePascal
Startdardsactivity, the complete set of listings of software tool~ and a complete
roster of the PUG membership 1976-1979, there is no substitute for obtaining all the
available backissues: 9-16. "Know the State You Are In"

- Laurence V. Atkinson
[A number of recent articles have highlighted problems with multiple exit loops
in Pascal. Many of these problems disappear when a loop is controlled by a user-
defined scalar. The state transition technique is applicable to a number of
programming situations and to multi-exit loops in particular.]

Review of Pascal News 13, 14, 15, and 16. - Andy Mickel 80/07/11.

I would like to urge all new PUG members to consider obtaining backissues 13-16 so
that you will be better oriented to events in our recent past.

To describethehighlights:#13 and 1115are themeatyissues. #13 containsthemost
recent, complete summary of all Pascal compilers to present. The articles in 1113are
mostly centered on a lively discussion of control structures. 1115describes a lot of
standards activity and the resolution of the future of Pascal News and PUG.

1114is completely devoted to Working Draft 3 of the Pascal Standard, and #16 is
completely devoted to a Validation Suite of more than 300 Pascal programs.

PascalNews 1113,December,1978,PascalUser'sGroup,Universityof MinnesotaComputer
Center, 239 pages (123 numbered pages), edited by Andy Mickel.

Editor's Contribution: Thanks to those people at the University of Minnesota who have
given Pascal News the shadow of their smile, FORTRAN - The End at La~t? Recent

events: Employment opportunity, Concurrent Pascal, NASA and the Ga11leo Project,
Conventionalized Extensions, Standards, Pascal Machines, Pascal Usage, Explosion

Open Forum:

78/05/25 Sam Calvin to Andy Mickel: [Department of Defense Dependents schools use
of Pascal in Math programs to teach K-12 students with personal instruction]

78/06/08 Dave Rasmussen to Andy Mickel: [BuildingAutomation Systems process control
language using Pascal, at Johnson Controls in Milwaukee]

78/04/24C. EdwardReid to AndyMickel:[correctionsto letterof 78/03/16in PN 1112p47]
78/12/01 Andy Mickel to PUG members: [The future of PUG and Pascal News; turning the

editorship over to someone else. A proposed constitution]
78/07/17 Charles L. Hethcoat III to Andy Mickel: [The reference to "Implications of

Structured Programming for Machine Architecture" by Andrew Tanenbaum in CACM
describing EM-I a compact instruction machine.]

78/07/28 C. Edward Reid to Andy Mickel: [Pointing attention to Dijkstra's article
"DOD-l: The Summing Up"in SIGPLAN Notices and highlighting shortcomings]

78/07/29 Ralph D. Jeffords to Andy Mickel: [Annoucing the construction of 2 software
tools in Pascal: LEXGEN and LALRI for Syntax Parsing and Generating.]



78/08/23 Jim Merritt to Andy Mickel: [The impact and future of Pascal implementations
on personal computer systems. Very optimistic.]

78/08/29 Chuck Beauregard to Andy Mickel: [Pascal jobs on the West Coast]
78/09/08 Eiiti Wada to Arthur Sale: [Experience with teaching Pascal at the University

of Tokyo]
78/09/23 Rod Montgomery to Andy Mickel: [News in New Jersey about recent microcomputer

Pascal events and the blossoming interest in UCSD Pascal]
78/07/10 Kenneth Wadland to Andy Mickel: [News about teaching Pascal at Fitchburg State

College and support for Charles Fischer's method of standardization]
78/10/18 William C. Moore to Andy Mickel: [Need for a Pascal book with complete compiler

specifics.]

78/10/10 D. J. Maine to Andy Mickel: [Pascal developments at Computer Automation--
compilers and jobs]

78/09/25 H.H.Nagel to Andy Mickel: [General reactions to PUG's work; the DECSystem 10
implementation and incorporation of otherwise]

78/? Karl Fryxell to Andy Mickel: [Reaction to Judy Bishop's discussion of subranges
and conditional loops]

78/08/16 Richard Hendrickson to Andy Mickel: [Problems with performance of CRAY Pascal
compared to CRAY Fortran and problems with Pascal in general.]

78/09/04 Laurence Atkinson to Andy Mickel: [Comments on programming logic--use of
Booleans instead of two-state scalars; negative logic]

78/09/27 Judy Bishop to T.M.N.lrish: [Clarification of points of agreement and disagreement
about "What to do after a While."]

Pascal Standards:
Report by Andy Mickel on: corrections to EBNF by 'NiklausWirth; Distribution plans
for the Validation Suite; Working Draft/3 will appear as Pascal News #14; News from
the Internation Working Group on Pascal Extensions.

78/01/30 Niklaus Wirth to Andy Mickel: [Suggesting the formation of a small group of
implementars to implement agreed-upon extensions]

78/07 Arthur Sale: Consensus Position on Case defaults--adding an otherwise clause.
78/06/12 Brian Wichmann to Andy Mickel: [Announcementof a Pascal Test Suite which

is under development.]
78/09/15 Tony Addyman:'Progress Report on the Standard Number 1. Plans for producing

a draft for public comment by the BSI and submission to ISO.
78/09/12 Rick Shaw to Andy Mickel: [Will act as USA Standards liason to Tony Addyman;

will draw up program interchange guidelines and gather test programs.]
78/09/27 Andy Mickel to William Hanrahan: [Urge that Pascal standardization be left

to the BSI and not undertaken separately by ANSI.]
78/10/23 News Release by CBEMA on behalf of ANSI of the formation of ANSI committee

X3J9 for Pascal standardization.
78/11/10 News Release by CBEMA on behalf of ANSI regarding first X3J9 meeting.

Implementation Notes:
4W General Information, Implementors Group Report, Checklist, Portable Pascals:

Pascal-P, Pascal P4--Bug Reports, Pascal Trunk, Pascal J; Pascal Variants:
Pascal-S, Concurrent Pascal; Modula; Feature Implementation Notes: INPUT and
OUTPUT, Improved Checking of Comments, Lazy I/O; Machine-Dependent Implementations:
Altos ACS-8000, Amda~ 470, BESM-6, BTI 8000, Burroughs 5700, 6700, 7700,
CDC 6000, Cyber 70,l~. 7600, Cyber 76, Cyber 203, Data General Nova, Eclipse,
DEC PDP-8, PDP-ll, VA1 11/780, DECsystem 10,20, Heathkit H-ll, Hewlett Packard
2lMX, 2100, Honeywell H316, IBM 360/370, Series 1, ICL 1900, 2900, Intel 8080,
Interdata 7/32, 8/32, Marinchip M9900, MOSTEK 6502, Motorola 68000, North Star
Horizon, Northwest Micro 85/P, Prime P-300, Processor Technology SOL, Radio
Shack TRS-BO, SEL 8600, Siemens 4004,7000, Telefunken TR-440, TI-ASC, 980,990,9900,
Univac 90/70, 1100, Western Digital Microengine, 2ilog 2-80,2-8000; Index.

Pascal News # 14, January, 1979, Pascal User's Group, Unive:sity of Minnesota Computer
Center, 61 pages (61 numbered pages), edited by Andy M1ckel.

Editor's Contribution: A special issue devoted to the Draft P~scal Standard. N?tes s
that Pascal the language and its development have been un1que. The appropr1atenes
of letting Europeans standardize a;language with European origins.

BSI / ISO Working Draft of Standard Pascal by the BSI DPS/13/4 Working G:oup.
Letter Covering Note and Commentary by Tony Addyman; The Draft (6 sect10ns + 1
index)~ Related Documents: A history, members of DPS/13/4 and the ISO proposa .

The

Pascal News #15, September, 1979, Pascal User's Group, University of Minnesota Computer
Center, 247 pages (125 numbered pages), edited by Andy Mickel.

Editor's Contribution: Why Pascal News #15 is so late and thanks for.not giving,u~ ~~pe.
The future of PUG and Pascal News. Voting on the proposed const1~ution. R1C aw
as new editor. Jottings on the standard, Validation Suite, Distr1bution problems,
and Pascal on Micros.

and There: Tidbits (news from Pascalers), a very large Pascal in the Ne~s,
Ada Books and Articles including a Textbook survey, Conferences and Sem1narsp 80
(4 industry Seminars to be given on Pascal), Announcements for ACM 7~ and IF~7

78'
2 reports on the DECUS Pascal SIG ; Pascal session at ACM 78. PUG F1nances -

,

Roster Increment to 79/05/14.

Here

Applications: News: Business Packages available, Data Base Management Systems, Interpreters en
Inter-language translators, Bits and Pieces. Software Tools: changes.to ~-l cr,

Com are S-2 Augment and Analyze on the Dec 10, S-3 Prettyprint clarif1cat10ns, :;
S-4PFo~at confessions, S-5 ID2ID documentation +

program, S-6 Prose do?ume~tation +
~

program. Programs: P-l PRINTME. Algorithms: A-3 Perfect Hashing Funct10n.

Articles:

""A Contribution to Minimal Subranges

- Laurence V. Atkinson f f P 1
[Enumerated and subrange types are two of the most im~o:tant .eatures 0 asca.
Their contribution to transparency, security and eff~clency 15 often not fully
appreciated. Their under-utilization is one of the (many!),features I r:peatedly
criticize when reviewing Pascal books. Minimal subranging 1S des~rable 1n.P~sc~1.
One benefit of a state transition approach to dynamic processes, 18 that mlnlma
subranging can be achieveQ.]

"A Note on Scope, One-Pass Compilers, and Pascal"
- Arthur Sale , h d ft P 1
[The scope rules set out in section 2 and now incorpo:ated lUtO ~

e ra asca

Standard are sufficientto permitevenone-passcomplIersto rejectincorrec~programs.
The suggested algorithm adds an overhead at every defining occ~rre~ce, bu~ Slnce

uses exceed definitions in general it may not be too expensive 1n t1me to 1mplement.
In any case, what price can be put on correctness?]

"Pascal-I - Interactive, Conversational Pascal-S"

- Richard Cichelli
'h h

[Pascal-I is a version of the Wirth Pascal-S system designed to inter~ct W1t t e
terminal user. The system contains a compiler, interpreter, text ed1t?r, format:er,
and a run-time debugging system. A description of commands and a term1nal sesst10n
are given.]

"Tracing the Heap"

- Steve Schach
[The package HEAPTRACE outlined in this paper aids the user to debug his programs
by providing information as to the contents of the records on t~e.heap. Ea~h ,,]
field is named, and its value is given in what might be termed h1gh-level ormat .

tV
V1



ItWhy Use Structured Formattingll

- John Crider
["Structured Formatting" is a technique for prettyprinting Pascal programs.
based on a single indented display pattern which is used to display almost
the structured statements in a Pascal program. ]

It is
all of

79/06/29 Jack Dodds to Tony Addyman; [The need for conformant arrays in
the use of libraries and a better definition of EXTERNAL]

79/09/20 Andy Mickel to Ken Bowles: [Pascal-P is public-domain software
is based on Pascal-P, yet Improper modification history and credit

Pascal Standards.

Progress Report by Jim Miner, with help from Tony Addyman, Andy Mickel, Bill Price and
Arthur Sale. Progress of the BSI/ISO standard. Standards activity in the United
States. Other National Standards Efforts. ANSI charter documents for 2 committees.

Pascal for

and UCSD Pascal
is made.]

Open Forum:

79/01/30 David Barron to Andy Mickel: [Thoughts on the future of PUG prompted by Open
Letter in #13. PUG has succeeded beyond all reasonable expectation because it
has been informal and unconventional.]

79/03/12 Paul Brainerd to Andy Mickel: [Understands the time to produce Pascal News
and we should pick a new editor carefully and perhaps be realistic about price.]

79/03/19 John Earl Crider to Andy Mickel: [Pascal News has become an impressive journal
that ...,I am sure serves most other PUG members as their major link to Pascal
developments.]

79/03/19 John Eisenberg to Andy Mickel: [The Bald Organization--An Anti-Constitution
For Pascal User's Group]

79/0S/0l Jim Miner to Friends of PUG: [Save the PUG! What is PUG? On the Proposed
Constitution. Where Now, PUG?]

79/0S/l2 Rich Stevens to Jim Miner: [I agree with Save the PUG. Would rather see a
smaller, more frequent publication.]

79/0S/l8 Arthur Sale to Jim Miner: [I agree with Save the PUG. Constitution would
effectively eliminate international cooperation by ignoring it.]

79/0S/20 David Barron to PUG membership: [I agree with Save the PUG. The only real
function of PUG is to publish Pascal News.]

79/0S/ll Gregg Marshall to Andy Mickel: [I oppose any movements which advocate
dissolution, or radical change from the current editorial policies.]

79/0S/30 Bill Heidebrecht to Andy Mickel: [PUG must be kept alive, independent, and
international--it has not outlived its usefulness.]

78/09/30 Tom King to Andy Mickel: [Use of Pascal on an AM-lOO system in Winnemucca,
Nevada with varied applications]

78/11/02 John Eisenberg to Andy Mickel: [Arguments over the use of Pascal and Pascal
Standards and extensions.]

78/10/16 Robert Cailliau to Andy Mickel: [Comments on Pascal News #12 standards and
extensions.]

78/10/22 C. Roads to Andy Mickel: [Pascal in Music applications in the Computer Music
journal.]

78/11/07 Laurent O~ Gelinier to Andy Mickel: [Applications on a large file processor
and intelligent terminals network]

78/11/08 Eugene Miya to Andy Mickel: [Jet Propulsion Labs and Pascal on their 300
computers: the Deep Space Network and need for validation programs.]

78/11/27 Paul Lebreton to Andy Mickel: [News on the Motorola 68000 and Pascal and
Bus standards and other hardware conventions.]

78/11/21 Sergei Pokrovsky to Andy Mickel: [Use of a double-variant node in Pascal
used to create a syntax for graph structures.]

79/03/26 Bill Marshall to Andy Mickel: [Deviations in 4 compilers for TRUNC and ROUND]
79/02/09 Curt Hill to Andy Mickel: [Pascal at the University of Nebraska: good

report on the Stanford 360/370 compiler.]
79/03/08 James Cameron to Andy Mickel: [The problems of extensions might be solved by

also providing a superset language "PascalII"]
79/03/13 Roger Gulbranson to Andy Mickel: [Reply to Richard Cichelli's claim that

complex numbers are easy to create in Pascal. Probably need an Operator declaration]
79/04/30 B. J. Smith to Andy Mickel: [The production of various Software Tools in

Pascal by Interactive Technology INC. including a DBMS and business applications.]
79/07/20 Peter Humble to Andy Mickel: [Need for conformant arrays in Pascal for numerical

applications]
79/06/0S George Richmond to Andy Mickel: [Pascal at Storage Technology Corp. Errors

in the Pascal-P compiler.]
79/06/07 Bob Schor to PUG: [Pascal at Rockefeller University and on PDP-ll's]

Report of the ANSI X3J9 meeting in Washington by Richard Cichelli. Lots of politics.

Statement by Niklaus Wirth supporting the ISO Standards activity by Tony Addyman.

79/03/19 News Release by CBEMA on behalf of ANSI regarding the solicitation of public
comments on the ISO draft standard for Pascal.

79/08/31 Experiences at the Boulder, Colorado meeting of IEEE/X3J9 committee by Andy
Mickel. More politics.~

Validation Suite.

Announcement by Arthur Sale of the distribution centers and prices for the forthcoming
Pascal Validation Suite.

Implementation Notes:
Portable Pascals: Pascal-P, Pascal-E. Pascal Variants: Tiny Pascal, Pascal-S,
Pascal-I, Concurrent Pascal, MODULA, Pascal-Plus. Hardware Notes: Pascal
Machines. Feature Implementation Notes: Comment on Lazy I/O; Wish list to
implementors; Note to all implementors; The for statement. Checklist. Machine-
Dependent Implementations: Apple II, BESM-6~urroughs BS700, CDC 6000/Cyber 70,170
Data General Eclipse, DEC PDP-ll, LSI-ll, Digico Micro l6E, Facom 230-4SS, GEC 4082,
Honeywell Leve16, Level 66, IBM Series 1, IBM 360/370, ICL 1900, Intel 8080,808S,
8086, MODCOMP II/IV, Norsk Data NORD-lO, Perkin Elmer 7/16, 3220, RCA 1802,
SWTP 6800, Sperry V77, TRS-80, TI-9900, Zilog A-80. ~'

<:'o
C

Pascal News #16, October, 1979, Pascal User's Group, University of Minnesota Computer
Center, 30S pages (ISS numbered pages), edited by Andy Mickel.

Editor's Contribution: A special issue devoted to the Pascal Validation Suite. Rick
Shaw is new editorof PascalNews;Thanksto everyone. How we put togetheran
issue of Pascal News. Final thoughts on the PUG phenomenon. Greetings from the
new editor and predictions of the next two issues.

The Pascal Validation Suite. Introduction to the special issue by Arthur Sale. Aims
and Methods of the Validation Suite. Version 2.2 of the Validation Suite.
Distribution Information, Distribution tape format and addresses.
"A Pascal Processor Validation Suite" by Brian A. Wichmann and Arthur H. J. Sale.
Listing of the 300+ test programs.
Four Sample Validation Reports: introduction, UC B6700 compiler, Tas B6700
compiler, OMSI PDP-ll compiler, Pascal-P4 compiler.
Stamp out bugs T-Shirt.



PUG FINANCES 1978-1979 (Actually through 79/12/12 just before transfer to Atlanta)

Here are the details for PUG(USA)'s finances for the 78-79 academic year. We have not
included PUG(UK) because they will report separately. PUG(AUS) never has reported.

PUG(USA) Summary of Accounts:

Income:
$ 196.53

334.94
197.20
87.30

5130.00
66.00

132.00
2500.00

10950.00

1977-78 Surplus
1976-77 Surplus (forgot to include on 77-78 accounting!)
Interest on Bank Account
Contributions
Sale of 513 sets of backissues (9..12) @$10
Sale of 33 miscellaneous backissues (5..8) @$2
Sale of 44 miscellaneous backissues (9..14) @$a
625 subscriptions @$4
1825 subscriptions @$6

$19593.97 Total income.

Expenses:
$ 181. 00

104.91
319.45

1541.00
3538.92
4650.95
6050.55

122.86
414.76
307.96
534.65
629.02

34.27
50.48

935.24
784.90

People who still owe us money (bounced checks)
Mailing SIGPLAN meeting notices
Advance printing #14 - 200 copies
Printing #14 - 3000 copies
Printing #13 - 3000 copies
Printing #15 - 4000 copies
Printing #16 - 4000 copies
Postage due from returned issues
Postage #13
Postage #14
Postage #15
Postage #16
Miscellaneous photocopying costs, postage
UPS shipping of the files to Atlanta from Minneapolis
PUG(UK) 1977-78 rebate
Reprinting #12 - 500 copies

$20200.92 Total expenditure. Excess expenditure = $606.95

-----------------------------------------------------------------------------------------
An attempt to assess the financial health of PUG:

Assets: $ 2988.86
1930.43
7000.00
4448.50

$16363.79

Bank Account
Computer Center Account
Cash sent to Atlanta to start up
Face value of 3566 backissues

on hand (=cost to print)

Liabilities:
$ 606.95

6858.00

1808.00

830.00

78-79 deficit
79-80 subscriptions collected

(132 @$4 + 1055 @$6)
80-81 subscriptions collected

( 26 @$4 + 284 @$6)
81-82 subscriptions collected

( 11 @$4 + 131 @$6)

Total assets.

$10102.95 Total liabilities.

I claim we didn't do too bad. Since 79/12/12 we have spent almost all of the remaining
cash here in Minneapolis on reprinting backissues 9..14. These details will be reported
with the 79-80 report by Rick.

Andy Mickel 80/06/24.

Computer Systems Represented by the PUGMembership1976-1979.

Here is a list of the computer systems listed on All-Purpose Coupons by the 4676 different
members of Pascal User's Group from 76/03/03 through 79/11/01 (the last date for which
I processed PUGmemberships). Duplicate listin9s from the same people on different
(renewal, change of address, etc.) coupons were eliminated.

Unfortunately I don't know all these computer systems so I ~ay ~ave many mispl~ced
(alphabetically by manufacturer); check through the whole llSt lf you are looklng for a
system in particular.

As PUG member A. J. Sutton so aptly stated on his 78/10/15 coupon: "cheers, but what does
this [computer system(s)] mean? Owned? Operated? Programmed? Designed? Delivered?
Desired?" I guess I meant using, so take these figures with a grain of salt!

Andy Mickel 80/06/24.

(Note: the notation (+n) indicates additional quantity for micros under a different name.)

1 ACOS-800
1 AIM/65
1 ALGO 2100

18 Alpha Micro AM-100
6 Altos ASC-8000
1 AMCSys tern 29

52 Amdahl 470
1 American Microsystems S6800
1 AMTELCO

1 Andromeda
36 Apple II

1 Astrocom S760
2 Basin-4
1 BESM-6
1 Beta WS-lOOO
1 Bi 11 i ngs 8080
1 BTI -4000
2 BTI-8000

19 Burroughs B1700/1800
5 Burroughs B2700

14 Burroughs B3700/3800-B4700/4800
6 Burroughs B5500/5700

79 Burroughs B6700/6800-B7700/7800
21 CDC 1700/Cyber 18
15 CDC 3000

562 CDC 6000,7000/Cyber 70,170
6 CDC Cyber 200/Star-100
1 CDC MP-32
3 CDC MP-60
3 CDC Omega 480
1 CII Iris 50
3 CII Iris 80/10070
6 Commodore Pet
2 Computer Automation 216
7 Computer Automation LSI-2
6 Computer Automation LSI-4
3 Comten (NCR)
1 COSMACELF
1 CPS-03 (M6800)

17 Cray Research CRAY-1
5 Cromemco Z-80
2 CTL Modular One

16 Data-100 (Northern Telecom) 78
132 Data General 600/Nova + microNova

74 Data General Eclipse
13 Datapoint
32 DEC PDP-8

746 DEC PDP-ll
95 DEC LSI-11 (+114)

2 DEC PDP-15
59 DEC VAX 11/780

189 DECsystem 10
61 DECsystem 20

1 Diehl/CTM
3 Dietz MINCAL 621
9 Digital Group Z-80
1 Digital System SD3
1 Dynabyte DB 8/1
2 ECDMicromind
1 ES-1022
2 Exidy Sorcerer Z-80
2 Ferranti Argus 700
7 Four-Phase Systems
2 Foxboro FOX-1
1 Fujitsu FACOMM190
5 Fujitsu FACOM230
1 Futuredata Z-80
1 Galaxy 5
2 General Automation 18/30
1 General Automation 100
5 General Automation 220

10 General Automation 440
7 GEC 4080
1 Gimi x 6800
2 GOLEMB
1 GRI System 99
7 Harris 4/6
6 Harris S135
8 Harris S200
5 Harris S500
7 Heathkit H-8

15 Heathkit H-ll



16 Hewlett Packard 1000
30 Hewlett Packard 2000/2100
23 Hewlett Packard 21MX
80 Hewlett Packard 3000

1 HEX-29
4 Hitachi 8000
1 Honeywell H316

77 Honeywell Level 6
63 Honeywell 6000/Level 66/68
11 IBM Series 1

5 IBM System 3
7 IBM System 32/34

14 IBM 1130
430 IBM System 360/370

36 IBM 3030
2 IBM 4330

44 ICL 1900
23 ICL 2900

2 ILLIAC IV
1 IMSAI VOP 40
6 IMSAI VOP 80

31 IMSAI 8080/8085
118 Intel 8080 (+73)

16 Intel 8085 (+5)
18 Intel 8086
16 Itel (National) AS 456

2 Ithaca Audio
1 ITT 1652
1 ITT 2020
1 Jacquail J-I00
8 KIM-I
1 LEC-16
2 Lockheed Sue
3 Manchester MU-5
1 Marinchip 9900
1 MOS-800
1 MEMBRAIN

2 Microdata 32/5
1 Microdata 1630
2 MITS Altair 680

17 MITS Altair 8800
1 MITS Altair Z-80
2 Mitsubishi MELCOM7700
4 3M Linolex

15 MOOCOMPII
9 MOOCOMPIV

14 Mostek 6502 (+44)
67 Motorola 6800 (+10)
10 Motorola 6809

8 Motorola 68000
4 Nanodata QM-l
2 National Semiconductor S-400
4 National Semiconductor 2900
4 National Semiconductor PACE

16 NCR Century
10 NCR 8000

1 NEAC-900
1 NEAC-3200

14 Norsk Data NORD-I0
19 North Star Horizon (Z-80l

5 Northwest Micro 85/P

1 Odell System 85
11 Ohio Scientific Challenger

2 Ontel OP-l
1 PDS-4
1 Pertec PCC XL40
8 Pertec PCC 2000

45 Perkin Elmer Interdata 7/16
30 Perkin Elmer Interdata 7/32

1 Perkin Elmer Interdata 8/16
28 Perkin Elmer Interdata 8/32

7 Perkin Elmer 3200
4 Polymorphics 88

11 Prime P-300
34 Prime P.-.400

4 Prime P-500
12 Processor Technology SOL-20

1 Quasar 6800
1 Quotron 801

20 Radio Shack TRS-80
1 RCA 301
5 RCA 1802
1 Rockwell 6502
3 ROLM1600
1 RP-16
2 SBC 80120

20 Systems Engineering SEL 32
3 Systems Engineering SEL 8600
1 SEMS SOLAR
1 SEMS T1600
5 Siemens 4000
8 Siemens 7000
1 Singer GP-4B
1 Singer Librascope
2 Singer System 10
1 SORD M-222
2 SPC-16
1 Sperry SDP-175
5 SWTP 6800
2 Sycor (Northern Telecom) 445
6 Tandem 16
1 TDL Z-80
1 TDS-8 (Z-80)
7 Tektronix 8002
3 Telefunken 80
2 Telefunken TR-440

67 Terak 8510
3 Three Rivers PERQ

10 Texas Instruments 980
53 Texas Instruments 990
19 Texas Instruments 9900

5 Texas Instruments ASC
1 Texas Instruments DX-I0
1 Time Machine TM-600
1 Univac 418

32 Univac 90/9000
156 Univac 1100

36 Univac V70/77
3 Univac UYK-7
3 Vector Graphics MZ

2 Wang WPS-30
2 Wang WPS-40
2 Wang 928
1 Wang 2200

36 Western Digital Microengine
12 Xerox (Honeywell) 560
2 Xerox (Honeywell) Sigma 3
4 Xerox (Honeywell) Sigma 5

11 Xerox (Honeywell) Sigma 6
16 Xerox (Honeywell) Sigma 7

1 Xerox (Honeywell) Sigma 8
10 Xerox (Honeywell) Sigma 9
3 Xitan Z-80

176 Zilog Z-80 (+78)
2 Zilog Z-8000

53 unspecified microprocessors

~'LO
C:"C

N
00



PASCAL NEWS #19 SEPTEMBER, 1~8u PAGE 29

Applications

Corrections for Xref program. Pascal News #17

**************************************************1) XHEF,PASn
~q6q

.

LinesOnpage := linesPerpege; MoveTolndx:= e (* compress t8b1e *>,
465 for TblIndx := 0 to HashTblSize - 1 do

***************2) XREF,PAS,2
46q MoveTolndx := ~ (* compress tab1e *)1

465 for TblIndx := H to HashTblSile - 1 do

**************************************************P XREF,PAS'l
1156 UutputSection := listing; scan; OutputSectfon:= idents;
1157 DumpT~blesl writeln(lty,'. End ~rossRef'); wrfteln(tty,' ');

********-A******
2) XREf,PAS'2

1156 LfnesOnPago := LinesPerPage;
1151 UutputSection := listing; scan; OutputSection:= idents,
1158 LinesOnPage := LinesPerPage;
1159 DumpTeblesl writeln(tty,'. End CrossHef'); writeln(tty,' ')J

2 DIffERENCES FOUND
LP:=DP1:XREf.PAS;1,DP1:XREF.PAS,2

All occurences of ChrCatagory should be changed to ChrCategory.

-----------



PASCA L NEWS #19 SEPTEMBER, 198L

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

program pascaLs(input, output, tty);

Author: N. Wirth, E.T.H. CH-8092 Zurich, 1.3.76 I

Psscal-s: compiler and interpreter for a subset of Pascal

{

· Purpose:
This program compiles and interprets Pascal programs which
are written in a subset of standard Pascal called Pascal-so

Editors:
R. J. Cichelll with corrections and enhancements from D. Baccus.

References:
Nik1aus Wirth, IIPASCAL-S: A subset and it's implementation",

Institut fur Informatik, Eidgenossische
Technische Hochschule, Zuerich (1975).

Method :
Recursive decent compilation into stack code for internal
stack machine interpreter.

In put:
Pascal-s source programs and input data for them.

Output:
Listing and execution resul ts (post mortum dunp on errors.)

· Limitations:
THE lANGUAGE PASCAL-S (by N. Wirth)

The choice of features to be included in the subset now
called PASCAL-S was mainly guided by the contents of
traditional introductory progranming courses. Beyond this
it is subject to personal experience. judgement, and
prejudice. A firm gUideline was provided by the demand that
the system must process a strict subset of PASCAL. i.e. that
every PASCAL-S program must also be acceptable by the
compiler of Standard PASCAL wi thout being subjected to the
slightest change. This rule makes it possible for students
to swl tch over to the regular system in later courses
"without noticing". A language's power and its range of
applications largely depend on its data types and associated
operators. They also determine the amount of effort
required to master a language. PASCAL-S adheres in this
respect largely to the tradition of ALGOL 60. Its primitive
data types are the integers, the real numbers, and the
Boolean truth values. They are augmented in a most
important and crucial way by the type char. representing the
available set of printable characters. Omitted from PASCAL
are the scalar types and subrange types.

PASCAL-S included only two kinds of data structures:
the array and the record (without variants). Qnitted are
the set and the file structure. The exceptions are the two
standard textfiles input and output which are declared
implicitly (but must be listed in the program heading). A
very essential omission is the absence of pointer types and
thereby of all dynamic structures. Of course. also all
packing options (packed records, packed arrays) are omitted.

The choice of data types and structures essentially
determines the complexity of a processing system. Statement
and control structures contribute but little to it. Hence,
PASCAL-S includes most of PASCAL's statement structures
(compound, conditional, selective. and repetetive
statements). The only omissions are the with and the goto
statements. The latter was omitted very deliberately
because of the principal use of PASCAL-S in teaching the
systematic design of well-structured prograns. Procedures
and functions are included in their full generali ty. The
only exception is that procedures and functions cannot be
used as paraneters.

Computer system:
Pasca1-s was origionally installed on the cee 6000 systems at
E.T.H. The progran was modified to compile on DEC PDP 11's
using the SWedish Compiler.
Scalar types were added using Don Baccus' changes.

{$W- no warning messages
($R- no runtime testing

LabeL
-W( abort target I;

canst;;J(i;= 27 (
no. of key words I;

alng : 10 { no. of significant chars in identifiers };
Llng = 120 ( input line length I;
em8X : 38 { max exponent of real nunbers };
emin =- 38 ( min exponent I;
kmax 15 ( Max no. of significant digits I;
tmax 100 { size of table I;
booax 20 { size of block-table I;
amax : 30 { si ze of array-table };

c2max = 20
{ si ze of real constant table I;

C5max : 30 { max no. of cases };

cmax : 500 { s1 ze of code };

lIRax = 7 { maxilt\.ID level };
sllax =300

{
size of string-table I;

ermax = 58 { max error no. };
OIDax = 64 { highest order code I;
Xllax =32767;
nmax =32767;
LineLeng = 132 output line length I;

PAGE ',D

Line Limit 132
stacksi ze 600

maximlln output line size };

run-time stack size };
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

!1£!.
symboL

(intcon, realcon, charcon, string, notsy, plus, minus, times, idiv,
rdiv, imod, andsy, orsy, eql, neq, gtr, geq, lss, leq, lparent,
rparent, lbrack, rbrack, comma, semicolon, period, colon, becomes,
constsy, typesy, varsy, funct ionsy, proceduresy, arraysy, recordsy,
programsy, ident, beginsy, ifsy, casesy, repeatsy, whilesy, forsy
endsy, eLsesy, untiLsy, ofsy, dosy, tosy, downtosy, thensy);

index:: - xmax .. + xmax;
aL fa = packed array [1 .. aLngJ £i char;
obj ect =

(konstant, variable, type1, prozedure, funktion);
types =(notyp, ints, reals, bools, chars, arrays, records, scalars);
symset :: set of symboL;
typset :: set Of types;
item :: record-

typ: types;

ref: index

~
order :: packed record

- ---:r:-=omax
x: lmsx
y: - nmax

!!!.'!;

+ omax;
+ lmax;
+ nmax

var
sy: symboL ( last symbol read by insymbo1 I.

id: aL fa
( identifier from insymbo1 I;

i nLIII: integer { integer from in symbol };

rnln: real { real ntlTlber from insymbol };
sLeng: integer { string length };

ch: char { last character read from source program };
Line: array [1 .. LLngJ £i char;
cc: integer { character counter };
Lc: integer

{ program location counter };

LL: integer
{ length of current line I;

errs: set ~ 0 .. ermax;
errpos: integer;
progname: al fa;
ifLag, ofLag, skipfLag: booLean;
constbegsys, typebegsys, bLockbegsys, facbegsys, statbegsys: symset;
key: array [1 .. nkwJ of aL fa;
ksy: array [1 .. nkwJ 2! sYllboL;
sps: array [char] £i symboL { special symbols I;
t, a, b, sx, c1, c2: integer { indices to tables };
stantyps: typset;
dispLay: array [Q .. LmaxJ of integer;

tab: array
[Q .. tmaxJ £i {-identifier table

packed record
- name: alfa;

link: index;
obj: object;
typ: types;

ref: index;
normal: boolean;
Lev: 0 .. Lmax;
adr: integer

~
atab: array [1 .. amax] of

(
array-table I

packedrecord
inxtyp, eltyp: types;
elref, Low, high, eLsize, size: index

end'
btab: array [1 .. bmaxJ ofT block-table

packed record
Last, Lastpar, psize, vsize: index

~
stab: pac ked array

[Q .. smaxJ £i char string table I;
rconst: array 1:1 .. c2max] of real;
code: array [0 .. cmax] £.:!..order;

procedure abend;

begin
{ gote 99

I haLt

~

procedure errormsg;

var
k: integer;

msg: array [Q ermax] £!. al fa;

begin
msg[QJ .-
msg[2J
msg[4J : =
IIsg[6J .-
msg[8J : =
msg[10] .-
msg[12] .-
msg[14J .-
msg[16J .-
msg[18J :=
msg[20J :=
msg[22J : =msg[24] .-
msg[26J : =
msg[28J : =
msg[30] .-
msg[32J :=
msg[34J .-
msg[36J .-

'-.
'undef id ';
'identifier' ;

') ';
'syntax

'
;

'of ';
I id, array ';
'] I;

'; ';
1- ,.

Iconvar typl;
'prog.param';, ,.. ,
'character' ;

'index type';
'no array ';
'undef type';
'boole type';
'integer ';
'param type';

msg[1 J
msg[3J
msg[5]
msg[7]
msg[9J :=

msg[11 J
msg[13J : =
IIsg[15J
msg[17]
msg[19]
msg [21J
msg[23]
msg[25]
IIsg[27J
IIsg[29J
msg[31J
msg[33]
IIsg[35J
msg [3 7J

,;,
;

';
var' ;

'; , ;
,.,

:= 'func. type';
:: 'boolean ';
:= 'type I;

:= Itoo big I;
:= Ityp (case) I;

.- Iconst id ';
:: 'indexbound';
:= Itype id I;

:= Ino record I;

:= 'arith type';
:: Itypes ';
.:: 'variab id ';

'muL ti def
'program

':, ident,
'(

:= 'I:



msg[39J := 'no.of pars' ;
msg[41J := 'type ';
msg[43J .- 'integer I;
msg[45J .- 'var, proc I;
msg[47J := 'typ (case) I;
msg[49J := 'store ovfl';
msg[51J := ':=

,.,
msg[53J .- 'unti l

'
;

msg[55J .- Ito downto
'
;

msg[57J := 'end
,.

k := 0: writeln;

.- s div 2; d := sqrCd) end:

* t else rnum := rnum I

PASCAL NEWS #lS SEPTEMbEIC lSbU PAGE
221
222
223
224
225
226
227
228
229
2~0

"'59[38] ._ 'string I;

m59[40] ::;;: Itype . ;
m59[42] ::;;: 'rea l type I;
m59[44] := 'var, canst I;
msg[46J .- 'types C::)';
msg[48J := 'type ';
m59[50] := 'constant I;
msg[52J .- 'then

'
;

msg[54J .- 'do ';
m5g[56] := 'begin I;
m59[58] ._ 'factor

I;

writeln(' key words');
wh; Le errs <> [J do
--segin -

--while not (k in errs) do k .- k + 1: writeLn(k,' I, msgCk]);
er;::s:;-errs =-[kJ

end
end Terronnsg };

,~3
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

procedure endskip;

~
{ underline ski pped part of input

while errpos < cc ~ begin write('-'): errpos.- errpos + 1 end:
sk;pfLag := faLse

end { endskip I;

procedure nextch { read next character; process line end };

function uppercase(ch: char): char;

be~~n(Ch
>= 'a') and (ch <= 'z')

then -
-UPpercase := chr(ord(ch) - ord('a') + ord('A'»{ ASCII case conversion routine ... EBCDIC requires

more elaborate test }

else uppercase := ch
end'"""'ruppercase };

begin { nextch
ircc = LL

tnen
-r5eg; n

---rr-eof(;nput) then
begin

--wrTteln; writeln(' program incomplete'); errormsg;
abend;

end:
if--errpos <> 0 then
-begin i!. sk;pfLag then endsk;p; wr;teLn; errpos:= 0

end:
write(lc: 5,' '): ll:= 0: cc:= 0:
while not eoln(input) do
~;nTL .- LL + 1; -read(ch); wr;teCch); L;ne[LLJ:= ch

end;
wrTfeln; LL:= LL + 1; readCUne[LL»

end:
cc~ cc + 1: ch:= uppercase(line(ccJ):

end { nextch }:

.f
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
'19

procedure error(n: integer):

be~;n, errpos = 0 then write(' .*.*'):
if cc > errpos tt1en
-begin -

write(' ': cc - errpos, '''', n: 2): errpos:= cc + 3:
errs := errs + (nJ

end
end terror }:

procedure fatal(n: integer):

var
msg: array (1 7J~aLfa;

begin
writeln: errormsg: msgr1J:= 'identifier':
msg(2J := 'procedures': msg(3J:= 'reals
msg(4J := 'arrays ': msg(SJ:=' levels
msg(6J := 'code I: msg(7J:= 'strings
writeln(' compiler table for I, msg(nJ, ,

is
abend { terminate compilation }

end
{

fatal };

,
;,.,

,.
too' small'):

{
in s ymbol-

procedure insymbol reads next symbol }:

LabeL
-:r;-2, 3:

~ i, j, k, e: integer:
522
323
324
325
326
327
328
329
330

procedure readscale:

var
s, sign: integer:

begin
nextch: sign.- 1; s := 0:

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
1,07
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

if ch= '+' then nextch
else .i:!. ch = ,=-- then begin nextch: sign:= - 1 end:
while ch in ('0' .. '9'] do

begin s:= 10 . 5 + ord(Ch) - ord('O'): nextch end:
e := 5

*
sign + e

end { readscale }:

procedure adjustscale:

var
s: integer:
d, t: real:

begin
if k + e> emax then error(21)
else

:rf k + e < emin then rnurn := 0.0
else

begin
s := absCe); t:= 1.0; d:= 10.0;
repeat

while!:!£!. oddCs) ~ begin s
s := s - 1; t:= d

*
t

until 5 = 0;
~>= 0 then rnum:= rnun

end -
end {-aajustscale};

begin
( in symbol )

1: while ch =
, I do nextch:

if ch in ('A' .:-'I'J
then -

begin { identifier or word symbol
k := 0; id:='

I.
repeat
iTk < aLng then begin k:= + 1; ;d[kJ.- ch end;

nextch

~ not ~ch i.!!. ('A' ..
'I'" '0'

.. '9']):, := 1; ]:= nkw;
{ binary search }

repeat
k := C; +

j) d;v 2; if;d <= key[kJ then j
:= k - 1;

if ;d >=key[j("]" theni:= k + 1
unltl i > j; -
TTT""- 1 > j then sy .- ksy[kJ eLse sy := ;dent

end
else

:rf ch .!!!. ('0' .. '9'J
then

begin ( nLlllber )

k := 0: inLll1:= 0: sy:= intcon:
repeat

;num .- ;num

*
10 + ordCch) - ordC'O'); := k + 1;

nextch
until not (ch in ('0' .. '9']);
Tfli( >kmax) or C;num > nmax)
then begin error(21); inllll:= 0; := a end:
ITch = '.'tnen

begin
nextch;
if ch = "

then ch ._ I:'
else

begin
sy := realcon: rn!.ln:= inllft: e:= 0:
while ch in ('D' .. '9'J do

begin -
e := e - 1:
rn!.ln:= 10.0. rnurn+ (ord(ch) - ord('O'»:
nextch

!!!2.:
if ch = 'E' then readscale:
if e <> 0 then adjustscaLe

end
end -

else
--:rr ch = IE' then-begin

sy := realcon: rnun:= inun; e:= 0: readscale:
if e <> 0 then adjustscaLe

end: -
end

gin sy := colon:

case ch ~
---:':

begin
nextch:
if ch = 1-' then begin sy .- becomes: nextch end
else sy := colon

en~
'<.-:-

begin
nextch:
if ch =

,-, then begin sy := leq; nextch end
else
--:r1 ch

'>'
then ~ sy .- neQ: nextch end

else sy := lss
end: -

I>--=-
begin
--nextch:

ifch='-'
else sy .-

, .;~d:
begin

nextch:
ii ch

~ begin sy .-
gtr

geQ; nextch ~

, ,
then begin sy := coLon; nextch end



PASCAL NEWS #19 SE PTEMBEfC 198U PAGE 32
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
53~
539
540
541
542
543
544
545
546
547
548
549
550

else sy := period
encr;-

1''''-:
be~;n

:= 0; 2: nextch;
if ch = "..
then begin nextch; ; f ch <> 1"1 then ~ 3 end;
iTSx + k = smax then fatale?>; stab[sx + k] := eh;
k:=k+1;

.if. ee = 1 then begin
[

end of line ! k := 0; end

else ~ 2;
3: if k = 1

then begin sy := char con; inum.- ordCstab[sxJ) end
else
-n-k=O

then begin error(38); sy:= charcon; inlln:= 0 end
erse

begin
sy .- string; inU1l.- SXi s leng := k.
$X .- sx + k

end

end

end;
t(~

begin
--;;extchi

if ch <>
'*'

then sy := lparent
else

beg; n ( comment
nextch;
repeat whi Le ch <>

'*'
~ nextch;

until cji""""="l)..
nextch; -~',

end
end;-

I+~I_', '.', I", ')', 1=', ',', 1[1, I]',
begin sy := sps[chJi nextch end;

IS', '00', I}', "',
1111, '(I,

'X', I@', 1\':
begin error(24); nextch; ~ 1 end

end
[~symbol );

1.1., .

nextch

[
enter --- !

procedure enterexo: alfai x1: object; x2: types; x3: integer);

begin

~= t + 1;
[ enter standard identifier

with tab[t] do
-.:;eg in

---r;a;ne := xO; link:= t - 1;
ref := 0; normal.- true;

end
end {enter };

obj := x1; typ:= x2;
lev := 0; adr:= x3

procedure enterarrayCtp: types; l, h: integer);

begin
---rTl > h then error(27);

Tf (abs( L> >Xiiiax) or (abs(h) > xmax)
then begin error(27); l:= 0; h:= 0; end;
Tf"a =a;;;ax then fata l (4)
;rse --.:;egi n

---a:= a + 1;
with atab[a] do begin inxtyp .- tp; low.- l; high.- h end

ena--
end{enterarray };

procedure enterblock;

begin
iT"h = bmax then fataL(2)

;rse
-.:;egin b := b + 1; btab[b] .last := 0; btab[b] .lastpar := 0 end

end tenterblock !;

procedure enterrealCx: real);

begin
if e2 = e2max - 1 then fatal(3)
;rse

begin
reonsHe2 + 1) := x; e1:= 1;
while reonst[e1] <> x do e1 := e1 + 1;
if e1 > e2 then e2 :;;- e1

end -
end tenterreal !;

procedure emitCfct: integer);

gin nextch; if ch <> IIII then ~ 3 end;

, le = emax then fatal(6);

~in

eode[le].f := fet; le := le + 1

procedure emit1 Cfct, b: integer);

begin
--rf"le = emax then fatal(6);

With eode[le] do begin f := fet; y:= b end;
endT emit' !;-

le .- le + 1

procedure emit2Cfct, ai b: integer);

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

begin
if l c = cmax
With eode[le]
1""C:= le + 1

end
{ emit2 !;

then fataL(6);

~ begin f .- fet; := aa a- b end;

procedure printtables;

var
i: integer;

0: order;

begin
wr:r tel n ;
writelnCI identifiers link obj typ ref nrm lev adrl);
for i := btab[1].last + 1 !E. t ~
with tab[i] do

---;ritelnCi,"
"

name, link: 5, ordCobj): 5, ord<typ): 5, ref: 5,
ordCnormal): 5, lev: 5, adr: 5);

writeln; writelnC' blocks last lpar psze vsze');
for i := 1 to b do
with btab[i] do

;ritelnCi, Last: 5, lastpar: 5, psize: 5, vsize: 5);
writeln; writelnC' arrays xtyp etyp eref low high elsz size');
for i := 1 to a do
with atabIT] do

writeln(i, ord(inxtyp): 5, ord(eltyp): 5, elref: 5, low: 5, high

: 5, elsize: 5, size: 5);
writeln; writelnC' code:');
for i := 0 to le - 1 do

begin - -
if i mod 5 = 0 then begin writeln; writeCi: 5) end;

0:= coder;]; writeCoaf: 5);
ifo.f<31
then
--:rr o.f < 4 then writeCo.x: 2, o.y: 5) else write(o.y: 7)
else write(' -I);
writeC',')

end;
writeln

end { print tables };

{ bl ock--

procedure blockCfsys: symset; isfun: boolean; level: integer);

type
conrec = record

rr:-integer;
case tp: types of
--:rnts, chars, bOals, scalars: (i: integer);

reals: Cr: real)
end;

var
dx: integer

{

prt: integer
{

prb: integer [

x: integer;

data allocation index };

t-index of this procedure
b-index of this procedure

procedure skip(fsys: symset; n: integer);

begin
errorCn) ;
whi le not

end! ski p

skipflag := true;
Csy in fsys) do insymbol;

}; - - .if.ski pflag

gin ..!! ~ Csy .i.!!. s1) then skip(s1 + s2, n) end

procedure testCs1, s2: symset; n: integer);

evt

test };

procedure testsemi colon;

begin
if sy = semicolon then insymbol
else

begin error(14); .i..f. sy ~ [comma, colonJ then insymbol end;
test([ident] + bloekbegsys, fsys, 6)

end { testsemicolon };

procedure enterCid: alfa; k: object);

.Y!!.j, l: integer;

begin
if t = tmax then fata l (1)

else
begin

tab[O].name := id; j:= btab[display[level]].last;
while tab[j] .name <> id do j .- tab[j].l ink;
i"f""T<> 0 then error(1)
else -

begin
t := t + 1;
with tab[t] ~

begin
name := id;
ref := 0;

end;
btab[display[levelB.last .-

· end
end-

a-
j;

link := l;
lev := level;

obj := k;
adr := 0

typ a- notyp;



PASCAL NEWS #19 SEPTEMBER, 1980 PAGE 33
661
662
663
664
665
666
667
668
669
90

1
2

073
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

'5
~

.17
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
~~9

o
J1

762
763
764
765
766
767
768
769
770

end enter};

function loc(id: alfa): integer:

var
i, j: integer:

be

pea t
i := level; tab[QJ.name.- id sentinel I;
repeat

j
:= btab[display[i]Llast;

while tab[jJ .name <> id do
j

:= tab[j].l ink;
untTi"{"i < 0) or (j

<> 0);-

if j =0 thenerror(O); loc:= j

end ( loe 1;-

.- - 1;

procedure entervariable:

begin
-"--5Y = ident then begin enterCid, variable):

.-rse error(2)
endt entervariable }:

insymbol end

procedure constant(fsys: symset; :!!!:. c: conree):

Y!.!:.
x, sign: integer:

begin
c.tp := notyp: c.i:= 0: c.r1:= 0:
testCconstbegsys, fsys, 50);
if sy in constbegsys
then -
--,;;;~;n

, sy
':

charcon
then begin c.tp := chars; c.i.- inllfti insymbol end
else

begin
sign := 1;
; f sy in [plus, minus] then
-begin .i.f.

sy = minus then sign := - 1: insymbol end:
if sy = ident
tnen
--';;;g i n

:= loc(id);
if x <> 0
tnen
--:rt tab[xLobj <> konstant then error(25)

.-rse
--';;;g in

--c:tp := tab[xJ.typ; c.rf:= tab[xJ.ref;
if c.tp = reaLs
then c.r .- sign

*
rconst[tab[x] .adr]

eLSe
~gin

--rf""(c.tp <> ints) and (sign = - 1)

then error(SO); -
c:-;-:= s;gn . tab [x] .adr

end
end:-

insymbol
end

else
---:rf sy ::: intcon

tnen
begin c.tp :::: ints; c.i.- sign

*
inum; insymbol

end
else
if sy ::: realcon

then
--';;;g i n

c.tp :::: reals; c.r:::: sign
*

rnum; insymbol
end

else skip(fsys, 50)
end;

teSt<fsys, [J, 6)
end

end -r-constant };

procedure typ(fsys: symset; .y.!!:. tp: types; ~ rf, sz: integer);

var
x: integer;

el tp: types;
elrf: integer;
elsz, offset, to, t1: integer;

procedure arraytyp(~ aref, arsz: integer);

var
---rtscalar: boolean;

el tp: types;
low, high: conrec;
elrf, elsz, i: integer;

be~in
,tscalar :::: false;
if sy = ident then
-begin -

i := loc<id);
itscalar := (tab[iJ .obj

end;
ifMt itscalar
then

begin

type1) and (tab[iJ.typ scalars)

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

constant([colon, rbrack, rparent, ofsyJ + fsys, low);
if low.tp = reals
then begin error(27); low.tp:= ints; low.i:= 0 end;
if sy ::: colon then insymbol else error(13);
constant([rbrack;-COmma, rparent;07syJ + fsys, high);
if (high.tp <> low.tp) or. (high.rf <> low.rf)
tnen begin error(27); high.i := low.i end;

end
else
--with tab[ iJ do

--';;;gin -
insymbol; low.tp:= typ; low.i:= 0;
high.i := tab[refJ.adr

end.
enterar;ay(low.tP, low.i, high.i); aref:= a;
if sy = comma
then
~gin insymbol; eltp:= arrays; arraytyp(elrf, elsz) end
else

begin
if sy = rbrack then insymbol
else begin error(1Z); ii sy rparent then insymbol end;
TT'Sy = ofsy then insymbol !l!!. error(8">'T""
tYp(fsys, eltP,--eLrf, elsz)

end;
wit'hatab[arefJ do

begin -
arsz := (high - low + 1)

*
elsz; size:= arsz;

eltyp := eltp; elref:= elrf; elsize:= elsz
end;

end tarraytyp I;

begin { typ
tp := notyp; rf:= 0; sz:= 0; test (typebegsys, fsys, 10);
if sy in typebegsys
then -

begin
if sy = ident
then
--';;;g i n

x := loc<id);
if x <> 0 then
-with tabrxJdo

-:rf obj <> tYpe1 then error(29)
else

begin
tp := typ; rf:= ref; sz:= adr;
if tp = notyp then error(30)

end; -
insymbOl

end
else
---:rT sy = arraysy

then
begin

insymbol;
if sy = lbrack then insymbol

else
~gin error(11); ii sy = lparent then insymbol

~tp .- arrays; arraytyp(rf, sz)
end

else
---:rf sy ::: lparent { scalar types

then
~gin

sz:= 0; to.- t;
repeat

insymbol;
if sy <> ident then error(Z)
else

begin
enter(id, konstant);
with tab[tJ do

begin -
adr := sz; ref:= rf; typ.- scalars

end;
sz := sz + 1; i nsymbol

end
unt iLSY <> comma;
if sy = rparent then insymbol ~ error(4);
While to < t do -

begin to .-to + 1; tab[QJ.ref:= t end;
rf .- t; sz:= 1; tp:= scalars

end
else

begin { records}

insymbol; enterblock; tp:= records; rf:= b;
if level = lmax then fataLeS); level.= level + 1.
display[levelJ := ~ offset := 0;
while sy <> endsy do

be~t
( field section

, sy = ident
then
--';;;g i n

to:= t; entervariable;
while sy = comma do

begin insymbol;- entervariable end;
if sy = colon then insymbol else error(S);
IT := t; - -
typ(fsys + [semicolon, endsy, comma, identJ,

eltp, elrf, elsz);
while to < t1 do

begin -
to := to + 1;
with tab[tOJ do

begin -
typ := eltp; ref:= elrf;
normal := true; adr:= offset;



PASCAL NEWS #19 SE PTEMBER I 1980 34
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

offset .- offset + elsz
end

end -
end.-

if---SY'<> endsy then
-begin -

; f sy = semi colon then insymbol

else
~gin

--error(14) ;

en¥
sy = comma then insymbol

teSt«(ident, endsy, semicolon], fsys, 6)
end

end:-
btabfrfJ.vs;ze := offset; S2:= offset:
btab[rf] .psi ze .- 0: insymbol: level:= level - 1

end;
test<fsys, [J, 6)

end
end {typ };

procedure parameterl; st { formal parameter list }.

var
tp: types;

rf, 5Z, x, to: integer:
vaLpar: boolean;

begin
insymbol: tp:= notyp: rf:= 0; sz:= 0;
test([ident, varsy], fsys + [rparentJ, 7):
whi le sy in [ident, varsy] do
begin - -

~Sy <> varsy then valpar := true
else begin ;nsymb~ valpar := false end;
to := t: entervariable:
whi le sy = comma ~ begin insymbol; entervariable; end;
if sy = colon
tFien
~gin

---rn5ymbol;
if sy <> ident then error(2)
else
begin

x:= loc(id); insymbol;
if x <> 0 then
-with tab[;(]do

rf obj <> type1 then error(29)
else
--segin

--:rp:= typ; rf:= ref;
if valpar then sz .- adr else sz .-

end';
end;

teSt([semicolon, rparentJ, [comma, identJ + fsys, 14)
end

el se-error(S);
wnTre to < t do

beg~n -
t : = to + 1;
with tab[tOJ do

begin -
typ .- tp;

adr .- dx;
end

end;-
ifsy <> rparent
then

begin
if sy = semicolon then insymbol
else begin error(14);-i.!. sy = comma

6
t
)

hen insymbol end;
test([ident, varsyJ, [rparentJ + fsys,

end
end {while };

ifsy = rparent
then begin insymbol;
erse ;r:r::or(4)

enCfT parameterlist };

ref .-
lev .-

rf; normal:= valpar;
level; dx:= dx + SZ

test([semicolon, colon], fsys, 6) end

procedure constantdec larat ion;

var
c: conrec;

begin
insymbol; test([identJ, blockbegsys, 2);
while sy = ident do

begin
enter(id, konstant); insymbol;
if sy = eql then insymbol
else begin error«6); i!.

sy ': becomes then insymbol end;
constant«(semicolon, comma, identJ + fsys, c);
tab[tJ.typ := c.tp; tab[tJ.ref:= 0;
if c.tP = reals
then begin enterreaL<c.r); tab[tJ.adr.- c1 end
else tab[tJ.adr := c.i;
teStsemicolon

end
end tconstantdeclaration }.

procedure typedeclaration;

var
tp: types;

rf, sz, t1: integer;

PAGE
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

begin
insymbol; test([identJ, blockbegsys, 2);
whi le sy = ident 22.

begin
enter(id, type1); t1:= t; insymbol;
if sy = eql then insymbol
else begin erro;:(f6); i.!. sy ;:: becomes then insymbol end;
typ«(semicolon, comma, identJ + fsys, tp, rf, sz);
with tab[t1J do begin typ .- tp; ref:= rf; adr:= sz end;
teS'tsemicolon- -

end
end ttypedeclaration }.

procedure variabledeclaration;_

var
to, t1, rf, sz: integer;

tp: types;

begin
-,-r)Symbol;

whi le sy = ident do
begin

---uJ:= t; entervariable;
while sy comma 22. begin insymbol; entervariable; end;
if sy = colon then insymbol else error(S); t1 t;
tYP([semicolon, cc;mma, identJ + f5YS, tp, rf, sz);
while to < t1 do

begin -
to:=tO+1;
with tab[tOJ do

begin -
typ := tp; ref:= rf; lev:= level; adr.- dx;
normal true; dx:= dx + sz

end
end;-

testsemi colon
end

end -r-variabledeclaration };

procedure procdeclaration;

var
isfun: boolean;

begin
"i'Sfun := sy

= functionsy; insymbol;
if sy <> ident then begin error(2); id:= I I end;
IT i sfun then enter< id, funktion) ~ enter< id, prozedure);
tab[tJ.normaL:= true; insymbol;
block([semicolonJ + fsys, isfun, level + 1);

if sy = semicolon then insymbol else errod14);
emit(32 + ord<isfun)>r exit} -

end
{ proceduredeclaration };

st a tern en t--

procedure statement(fsys: symset);

var
i: integer;
x: item;

procedure expression(fsys: symset; var x: i tern);
forward;

procedure selector(fsys: symset; ~ v: item);

var
x: item;
a, j: integer;

begin { sy in [lparent. lbrack. period]
repeat
~y

= period
then

begin
insymbol;
{

field selector
}

if sy <> ident then error(2)
else -

begin
if v.typ <> records then error(31)
else

begin { search field identi fier }
j

:= btabCv.refJ .last; tabCQJ.name:= id;
while tab[jJ.name <> id do

j
:= tab[jJ.link;

TTT= 0 then error<o); v.typ := tab[jJ.typ;

\i:'ref := tabf]f.ref; a:= tab[jJ.adr;
if a <> 0 then emit1(9, a)

end; -
insymboL

end
end -

~lse
begin { array selector }

i.!.
sy <> lbrack then error(11);

repeat
:rn5Ymbol; expression(fsys + [comma, rbrackJ, x);

if v.typ <> arrays th~n error(28)
else

begin
a := v.ref;
if atabCaJ.inxtyp <> x.typ then error(26)
else



1101
1102
1103
1104
1105
1106
1107
1108
1109
'110

11
,12

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

55
56

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
'199

00
,l01
1202
1203
1204
1205
1206
1207
1208
1209
1210

PASCAL NEWS #19 SEPTEMhER, 1980
y: item;
op: symbol;

if atab[aJ.elsize = 1 then emitH20, a)
else emitH21, a);

v.tYP:= atab[aJ.eltyp; v.ref:= atab[aJ.elref
end

untiTS'y <> comma;
if sy = rbrack then insymbol
else -
~gin error(12); i!. sy = rparent then insymbol end

end-
untiLn"ot (sy in Clbrack, Lparent, period]);
test<fsys, [J,6)

end ! selector !;

procedure call(fsys: symset; i: integer);

var
x: iteftl;

lastp, cp, k: integer;

begin
eiiiTtH18, i> ! mark stack !;

lastp := btab[tab[iJ.refJ.lastpar; cp:= i;
if sy = lparent
then

begin
repeat

insymbol;
if cp >= lastp !!!.!!2 error(39)
else

begin
cp := cp + 1;
if tab[cpJ.normal
then

begin ! value parlllleter !
expressionCfsys + [comlla, colon, rparent], x);
if x. typ

= tab[cpJ. typ
then

begin
if x.ref <> tab[cpJ.ref then error(36)
else
---rt x. typ = arrays

then emitH22, atab[x.refJ.size)
eLSe
~ x.typ = records

then emitH22, btab[x. refJ .vsi ze)

actual parameter list

end
eLse
---rf (x.typ = ints) and (tab[cpJ.typ = reals)

then emit1 (26, OJ -
erse if x.typ <> notyp then error(36);

end --
else-

begin! variable parlllleter !
if sy <> ident then error(2)
else
~gin

"1<7= loc<id);
ifk<>O
tnen
---sei

~
n, tab[kJ.obj <> variable

then error (37);
x.typ := tab[kJ.typ;
x. ref := tab[kJ. ref;
if tab[kJ .normal
then emit2(0, tab[kJ.lev, tab[kJ.adr)
else emit2(1, tab[kJ.lev, tab[kJ.adr);
Tf"Sy in [lbrack, lparent, period] then
-seLeCtorCfsys + (comma, coLon, rparent],

x) ;
if (x.tYP <> tab[cpJ.typ) £.I: (x.ref <> tab
- [cpJ. ref)
then error(36)

encr--
end-

end-
end;-

test1"[comma, rparent], fsys, 6)
unti l sy <> comma;
iTSY = rparent then insymbol else error(4)

end; -
if-CP < lastp then error(39) ! too few actual parameters !;
emitH19, btab[tabETJ.refJ.psize - 1);
if tab[iJ.lev < level then emit2(3, tab[iJ.lev, level>

end! call !; -

insymbol;

~ resul ttype(a, b: types): types;

bev~n, (a
> reals) or (b > reals)

then begin error<33); resul ttype := notyp end
else
---rf (a = notyp) £.I: (b

= notyp) then resul ttype .- notyp
erse
--:rt a = ints

then
-rf b = ints then resul ttype := ints

else begin resul ttype := real s; emitH26, 1) !!!!!
else
begin

--resulttype := reals; i!. b = ints then emitH26, 0)
end

end! result type !;

procedure expression;

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
127Z
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

PAGE 35

procedure simpLeexpression(fsys: symset; .y.!!:. x: item);

~ y: item;
op: symboL;

procedure term(fsys: symset; ~ x: item);

Y.!!:.
y: item;
op: symbol;
ts: typset;

procedure factor(fsys: symset; .y.!!:. x: item);

~ i, f: integer;

procedure standfct(n: integer);

var
ts: typset;

be~;n
{ standard function no. n

, sy
= Lparent then insymboL eLse error(9);

ITn<17
then

begin
expression(fsys + [rparentJ, x);
case n of
-0; 2:-

begin { abs, sqrt !
ts := [ints, realsJ; tab[iJ.typ:= x.typ;
if x.typ =' reals then n := n + 1

end"=" -
4,"'5:'ts:= [intsJ { odd, chr };
6: ts := tints, bools, chars, scaLars] ord};
7, 8:

begin
ts := [ints, booLs, chars, scalars]{ succ, pred };
tab[iJ.typ := x.typ

end.
9,--:;0: 11, 12, 13, 14, 15, 16:

{ round, trunc ,sin ,COS,... }

begin
tS:= tints, reals];

if x.typ = ints then emitH26, OJ
end -

end; -
ifx.typ in ts then emit1<8, n)
else if x:typ <> notYP then error(48);

enc:r-- - -
els.-! eof,eoln !
~gin { n in [17.18J !

if sy <> ident then error(2)
else --rf id <> 'INPUT then errorCO)

else insymbol;
em"'it'ff8, n);

end;
x.typ := tab[iJ.typ;
if sy = rparent then insymboL ~ error(4)

end! standfct !;-

begin { factor
x.typ := notyp; x.ref:= 0; test(facbegsys, fsys, 58);
while sy in facbegsys do

begin - -
if sy = ident
then

begin
i := loc(id); insymbol;
with tab[iJ do
---case obj of

~nstant:
begin

x.typ := typ; x.ref:= 0;
if x.typ = reals then emitH25, adr)
else emitH24, adr)-

en~
variab Le:

begin
x.typ := typ; x.ref:= ref;
if sy in [Lbrack, lparent, periodJ
then -

begin
if normal then f := 0 else f := 1;
emit2(f, Lev;-ad"r);
selector(fsys, x);
if x.typ in stantyps then emit(34)

end -
eLse

be9~n, x.typ in stantyps
then --rf normal then f :=

else f := 2 -else-
-rf normal then f := 0

erse f := 1;-
e..'1t2Cf, lev, adr)



1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

PASCA L NEWS #19 SE PTEMBER, 1980 36

end
end: -

type', prozedure: error(44);
funktion:

begin
x.typ := typ;

if lev <> 0 then call(fsys, i)
etse standfctCadr)

en~
end (case t wi th

end -
eLse

:rf sy in [charcon, intcon, realcon]
ITen -
~gin

:rr-sy = realcon
ITen

begin
x.typ := reals; enterreaLCrnum);
emit1 (25, c1)

end
else

begin
if sy = charcon then x.typ .- chars
else x.typ := ints;-
emit1 (24, inum)

end:
x.ref := 0: insymbol

end
eLse---rfsy = lparent

ITen
~gin

---:rn5ymboli expressionCfsys + [rparentJ, x):
if sy = rparent then insymbol
else error(4) -en-a--

else
-rf sy = notsy then

-begin -
insymbol; factorCfsys, x):
if x.typ = bools then emit(35)
else if x.typ <> no~ then error(32)en;r:- - -

test (fsyS;-facbegsyS, 6)
end

{ while }

end -rfactor }:

begin { term )

faCtorCfsys + [times, rdiv, idiv, imod, andsyJ, x):
whi le sy in [times, rdiv, idiv, imod, andsy] do
"""begin - -

"""'QP:=SYi insymbol;
factorCfsys + [times, rdiv, idiv, imod, andsyJ, y);
if op = times
ITen
~gjn

---;c:typ := resulttype(x.typ, y.typ);
case x. typ of
--notyp:; -

ints: emit(S?):
reals: emit(60)

end
ena-

else
---rr op = rdiv

ITen
begin

if x.typ = ints
ITen begin emit1<26, 1>; x.typ:= reals end;
if y.typ = ints
then begin emit1<26, 0>; y.typ:= reals end;
1T(x.typ = reals) and (y.typ = reals) -
ITen emit(61) -
erse
---sO"gi n

if (x.typ <> notyp) and (y.typ <> notyp)
tlien error(33);
x.typ := notyp

end
end -

eLse-rf op = andsy
ITen
~gin

:rr-(x.typ = bools) and (y.typ = bools)
ITen emit(56)
eLSe

begin
if (x.typ <> notyp) and (y.typ <> notyp)
ITen error(32);
x. typ := notyp

end
end -

else
begin { op in [idiv ,imod] )

if (x.typ = ints) and (y.typ
= ints)

ITen ----rfop = idiv then emit(58) else emit(59)
eLse

be~~n, (x.typ <> notyp) and (y.typ <> notyp)
ITen error(34);
x. typ := notyp

end
end-

end
end (term );

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

PAGE

begin ( simpleexpression
if sy in [pLus, minus]
ITen -

begin
op := sy; insymboL; term(fsys + [pLus, minus], x);
if x.typ > reals !!!.!!:!. error(33)

else
'"'if op = minus

ITen if x.typ reals then emit(64) else emit(3'
end - -

eLS"e"term(fsys + [plus, minus, orsy], x);
WhITe sy in [pLus, minus, orsy] do

begin - -
op := sy; i nsymboL;
term(fsys + [pLus, minus, orsy], y);
if op = orsy
then

begin
if (x.typ = bools) and (y.typ bools)

ITen emit(51)
eLse

begin
if (x.typ <> notyp) and (y.typ <> notyp)
then error(32);
;;:typ := notyp

end
end -

else
begin

x.typ := resulttype(x.typ, y.typ);
case x.typ of
--riOtyp:; -

ints: if op = plus then emit(52) else emit(53);
reals:,f op = plus t"f1en emit(54) else emit(55)

end -
end

end -
end {simpleexpression };

begin
{ expression }

simpleexpression(fsys + [becomes, eqL, neq, Lss, Leq, gtr, geq],
x);

if sy in [becomes, eqL, neq, lss, Leq, gtr, geq]
tIIen -

begin
if sy = becomes then begin error(6); op:= eql end
else op := sy;
Tn'SYmboL; simpleexpression(fsys, y);

if (x.typ in [notyp, ints, bools, chars, scalars]) and (x.
- typ =y:typ) and (x.ref =y.ref)
then -
---case op of

eql: eiiiTt(45);
neq: emit(46);
lss: emit(47);
leq: emit(48);
gtr: emit(49);
geq: emit (50)

end
el~

begin
if x.typ = ints
ITen begin x.typ := reals; emit1<26, 1) end
else
-rf y.typ = ints

ITen begin y.typ := reals; emit1<26, 0) end;

if (x.typ = reals) and (y.typ
= reals)

ITen
--case op of

eql: emit(39);
neq: emit(40);
lss: emit(41);
leq: emit(42);
gtr: emit(43);
geq: emit(44)

end
elseerror(35)

en~
x.typ := bools

end
end {expression };

procedure assignment(Lv, ad: integer);

!!!:x,
f:(

y: item;
integer;
tab[ i] .obj in [variable ,prozedure]

begin
x.typ := tabEiJ.typ; x.ref:= tabEiJ.ref;
if tabEiJ.normal then f := 0 else f := 1;
emit2(f, Lv, ad); - -
if sy in [lbrack, lparent, period]
then seLector([becomes, eqL] + fsys, x);
iTSy = becomes then insymboL
else begin error(5~ ii sy = eql then insymbol end;
expression(fsys, y);
if x.typ =

y.typ
ITen
---rf x.typ in stantyps then emit(38)

else ----rfx.ref <> y.ref then error(46)
else
-rf x.typ = arrays then emit1<23, atabEx.refJ.size)

else emit1<23, btabEx:;:ef] .vsi ze)

gin



1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

1 $
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

(

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
~9

1042
1643
1644
1645
1646
1647
1648
1649
1650

PASCAL NEWS #19 SEPTEMBER, 1980
x: item;
Lc1: ; nteger;

if (x.typ = reaLs) and (y.typ = ;nts)

then beg;n emHH26;D); emH(38) end
else
--rr (x.typ <> notyp) and (y.typ

<> notyp) then error(46)
end {assigment };

procedure compoundstatement;

be9;n
1"symbol; statement([semicolon, endsy] + fSYS)i
whi le sy in [semicolon] + statbegsys do

beg;n - -
if sy = semicolon then insymbol eLse error(14);
Statement([semicolon-;endsy] + fSYs)-

end;
if"SY = endsy then ;nsymboL eLse error(57)

end
{ compoundsta"teiiienet };

procedure ifstatement;

var
x: item;

Lc1, lc2: integer;

begin
---:rn5ymbol; expression(fsys + Cthensy, dosyJ, x)i

if not (x.typ ;n CbooLs, notyp]) then error(17); Le1.- Le;
em;"tTf1) { jmpcI; -
if sy = thensy then ;nsymboL
else begin error(S2)i if sy dosy then insymboL end;
statement(fsys + CeLsesyD;
if sy = elsesy
then

beg;n
;nsymboL; Le2:= Le; emH(10); eoderLe1J.y:= Le;
statement(15ys); eoderLe2J.y:= Le

end
eLs.;-eoderLe1J.y := Le

endT ifstatement I;

procedure casestatement;

var
x: item;
i, j, k, lc1: integer;
casetab: array [1 .. csmax] of packed record

- - -var; Lc: index
end;

exittab: array [1 csmax] £! integer;

procedure case LabeL:

var
lab: conrec:

k: integer:

begin
--constantCfsys + Ccomma, coLon], Lab):

if (Lab.tp <> x.typ)
.£!:. (Lab.rf <> x.ref) then error(47)

erse
--rr ;

= esmax then fataL(6)
else

begin
i := i + 1; k:= 0: casetabCiJ.vaL:= lab.i:
easetabCn. Le := Le;
repeat k := k + 1 ~ easetabCkJ. vaL = Lab.i;
1f k <; then error(1) { multiple definition I;

end -
end {--cBselabel };

procedure onecase:

begin
lTSY in constbegsys

then --oegin
---case label;

whiLe sy = comma ~ begin insymboL: caselabel ~
H sy = coLon then ;nsymboL eLse error(5);
St"atement<Csem;eoroii", endsyJ + f$YS>; j:= j + 1;
exHtabCjJ := Le; em;t<10>

end
end{onecase };

be9in
{ casestatement I

lnsymbol; i:= 0: j:= 0:
expressionCfsys + [ofsy, comma, colon], x);
if not Cx.typ in [ints, bools, chars, notyp, scalars])
thenerror(23);
lc1:= Le; emit(12)

{ jmpx I;
if sy = ofsy then insymbol else error(S); onecase:
WFiile sy = semicolon ~ ~ insymbol: onecase end:
eoderLe1J.y := Le;
for k := 1 to i do

beg;n emfF1<13;-easetabCkJ .vaL>; emH1 (13, easetabCkJ. Lc)
end.

emH1(10, 0>; for k := 1 to j do eodeCexittabCkJJ.y := Le;
H sy = endsy then ;nsymbOl iiTse orror(57)

end
{ casestateme~l;

procedure repeatstatement:

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

PAGE 37

beg;n
lc1 := lc: i "symbol: statement C[semi colon, unti lsy] + fsys):
while sy in [semicolon] + statbegsys ~

beg;n -
H sy = sem;eoLon then ;nsymboL eLse error(14);
St"atoment<Csem;eoLon;UritHsyJ + 15y""-

end:
H"SY = untHsy
then

beg;n
insymboL: expressionCfsys, x):
H not (x.typ ;n CbooLs, notypJ) then error(17);
emft'IT11, Le1>-

end
e Ls.;-error (53)

enor repeatstatement };

procedure whi lestatement:

var
x: item:

Le1, Le2: ;nteger;

beg;n
insymbol: lc1:= lc; expressionCfsys + [dosy], x);

if not (x.typ in CbooLs, notypJ) then error(17); Le2.- Le;
e.;;"tTf1>; ;{sy

= dosy then ;nsymboL eLse error(54);
statement<15ys); emitH10;tC1); eoderLe2J.y:= Le

end
{ wI1llestatement I;

procedure forstatement:

~
cvt: types;
cvr: integer:
x: item:
i, f, lc1, lc2: integer;

begin
insymboL:
H sy = ;dent
then

be9;n
1 := loc(id): insymbol:
H ;

= 0 then beg;n evt := ints; evr:= 0 end
else
--rr tabCn.obj = var;abLe

then
beg;n

evt := tabCiJ.typ; evr:= tabCn.ref;
if not tabCn .normaL then error(37)
erseemH2(0, tabCn. Lev;t"abCn .adr);
TT"iiot Ccvt in [notyp, ints, bools, chars, scalars])
thenerror(18)

en;r-
eLsebeg;n error(37);

end
e Ls.;-sk; p(Cbeeomes, tosy, downtosy, dosyJ + fsys, 2);
'i'TSy = becomes
then

beg;n
insymbol: expressionC[tosy, downtosy, dosyJ + fsys, x);
if (x.typ <> evt) and (x.ref <> evr) !!!!!2 error(19);

end
eLs.;-ski p(Ctosy, downtosy, dosyJ + fsys, 51);
f := 14;
H sy ;n Ctosy, downtosyJ
then -

beg;n

H sy = downtosy
express;on( CdosyJ
H (x.typ <> evt)

end
eLse-sk;p(CdosyJ + fsys, 55);
"'[C1:= lc: emitCf);
H sy = dosy then ;nsymboL eLse error(54); Le2:= Le;
St"atement(fsys);-emHHf + 1,~; eoderLe1J.y:= Le

end { for statement }:

cvt := ints; cvr := 0 end

then f := 16;
+rsys, x):
and (x.ref <> evr)

insymbol:

then error(19)

procedure standproc Cn: integer);

var
i, f: integer:

x, y: item;

beg;n

case n of
---;-; 2:-

begin ( read
if not HLag then beg;n error(20); HLag.- true end;
1'1!Y"= Lparent-
then

beg;n
repeat

insymbol:
if sy <> ident then error(2)
else

beg;n
i := locCid); insymbol;
H; <> 0
then
--rf tabCn.obj <> variabLe then error(37)

else
beg;n



reals: (r: real) ;
{ s[b+2] static link

bools: (b: boolean) ;
{ s[b+3] dynamic link

chars: (c: char) { s[b+4] table index
end;

PASCAL NEWS #19 SE PTEMBER J 1980 PAGE 38

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

x.typ := tab[iJ.typ;
x.ref := tabCiJ.ref:
if tab[i) .normal then f := 0
else f := 1; -
em1t2(f, tab[iJ.lev, tab[iJ.adr);
if sy in tlbrack, lparent, period]
then seLectorCfsys + [comma, rparentJ, x);
ltX. typ in [ints, reals, chars, notypJ
then emitTI27, ord(x.typ»
erse error(40)

encr-
end:

test([comma, rparentJ, fsys, 6);
unti l sy <> comma;
if sy = rparent then insymbol ~ error(4)

end; -
ifn= 2 then emit(62)

end;
3,""""4:""

begin { write )

ifsy = lparent
then

begin
repeat

insymboL:
if sy = string
then

begin
emit1(24, sleng); em;t1(28, ;num); ;nsymbol

end
else
~gin

---;;Press;onCfsys + [comma, coLon, rparentJ, x);
if not (x.typ in (stantyps - [scalars]»
thenerror(41 >;
iTSy = colon
then
~g;n

--:riiS ymbal;
expressionCfsys + [comma, colon, rparentJ, y

);
if y.typ <> ints then error(43);
if sy = colon
then
~gin

ifx.typ <> reals then error(42);
""-;;-symbol;
expression(fsys + [comma, rparent], y);

if y.typ <> ints then error(43);
emit (37)

end
else-emit1 (30, ord(x.typ»

encr-
else-emit1 (29, ord(x.typ»

encr---
untiLSy <> comma;
if sy = rparent then insymbol ~ error(4)

end;
i fn= 4 then emit (63)

end
end tease }

end{ standproc };

begin { statement }

---,-:r-sy in statbegsys + [ident]
then -
---case sy of

:rdent:-
begin

i := loc<id}; insymbol;
if i <> 0
then
---COse tab[iJ .obj of

-ronstant, type;: error(4S);
var iab le: assignment (tab[iJ .lev, tab[ i] .adr);
prozedure:

if tab[iJ .lev <> 0 then call (fsys, i)
else standproc(tab[iJ:adr");

funktion:
if tab[iJ.ref = display[levelJ
ITen assignment (tab[iJ .lev + 1, 0)
ecse error(4S)

end-
end;-

beg:r;i"sy: compoundstatement;
ifsy: ifstatement;
casesy: casestatement;
whi lesy: whi lestatement;
repeatsy: repeat statement;
forsy: forstatement

end;
teSt<fsys, [J, 14)

end { statement };

begin { block
}

---cJj(:= 5; prt.- t;
test

([ lpa rent, co lon,
display[levelJ := b;
tab[prtJ. ref := prb;
if (sy

= lparent) and (level> 1) then parameterlist;
btab[prbJ.lastpa r ::-t; btab[prbJ.psi ze := dx;
if isfun
then

:rf sy
= co Lon

then
~gin

--:riiSymbol { function type };
.!i sy = ident

if level> lmax then fatal<S);
semicolon], fsys, 14'5'; enterblock;

prb := b; tab[prtJ.typ:= notyp;

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

then
begin

x := loc(id); insymbol;
if x <> 0 then
-if tab[xJ:Obj <> type1 then error(29)

else
rf tab[xL typ in stantyps
then tab[prtJ.typ := tab[xJ.typ
else error(1S)

end
else-skip([semicolon] + fsys, 2)

en~
else-error(S);

i.:! SY-= semicolon then insymbol ~ error(14);

repeat
--:rfSy constsy then constantdeclaration;

if sy typesy t~typedeclaration;
if sy varsy t~variabledeclaration; btab[prbJ.vsize.- dx;
While sy in [proceduresy, functionsy] do procdeclaration;
test([begTri"syJ, blockbegsys + statbegsys, 56)

unti l sy in statbegsys;
tab[prt] .adr := lc; i nsymbol;
statement«(semicolon, endsy] + fsys);

while sy in [semicolon] + statbegsys do

~in - -
:r:r-sy

= semicolon then insymbol else error(14);
Statement«(semicolon;eri"dsy] + fSys)-

end;
ifsy = endsy then insymbol ~ error(S7);
test(fsys + [periodJ, [J, 6)

end
{ block };

inter pr et---

procedure interpret;
t global code I tab I btab

label
~ {

Wirth used a 'trap label' (non-standard) here

to catch run time errors. See notes for alternate solution. };

.Y2!:.
ir: order

{ instruction buffer };

pc: integer { program counter };

ps:
(run, fin, caschk, divchk, inxchk, stkchk, l inchk, lngchk, redchk)

t: integer
{ top stack index };

b: integer
{ base index };

lncnt, ocnt, blkcnt, chrcnt: integer counters};
h1, h2, h3, h4: integer;
fld: array [1 .. 4J of integer

{ default field widths };
display-:-array [1 ..lmax] of integer;
5: array If'""::" stacksi zeJ~ {blockmark:

record
-case types of {s[b+O] fct resul t

--:rnts: (i:integer);
{ s[b+1J return adr

beg~~
{ interpret }

s J.i := 0; s[2J.i:= 0; s[3J.i:= - 1;
s[4J.i := btab[1J.last; b:= 0; display[1J:= 0;
t := btab[2].vsize - 1; pc:= tab[s[4].iJ.adr; ps.- run;
lncnt := 0; ocnt:= 0; chrcnt:= 0; fld[1J.- 10;
fld[2J := 22; fld[3J 10; fld[4J.- 1;
repeat
--:rr:= code[pcJ; pc pc + l'

if ocnt < maxint then ocnt ocnt + 1;
case ir.f of

0: -
begi n { load address

~= t+1;
if t > stacksize then ps := stkchk
else s[t].i := dispTaYfir.xJ + ir.y

encr:--
1:-'

begin { load value
:r-: = t + 1;
if t > stacks; ze then ps := stkchk
else s[tJ s[dispTaYfir.xJ + ir.yJ

~
2:

begin { load indirect
t:=t+1;
if t > stacksi ze then ps := stkchk
else s[tJ := s[s[dispLay[ir.xJ + ir.yJ.iJ

encr;-
3:-

begin { update display

~:= ir.y; h2:= ir.x; h3:= b;
repeat

aTS"Play[h1J .= h3; h1.- h1 - 1; h3.- s[h3 + 2J.i
until h1 = h2

encr:---
8:-'

case ir.y of
0: s[tJ .i.-
1: s[tJ.r .-
2: s[tJ.i
3: s[tJ.r
4: s[tJ.b
5 :

begin

abs(s[tJ. i);
abs(s[tJ. r);
sqr(s[tJ. i);
sqr(s[tJ. r);
odd(s[tJ.i);

s[t].e := ehr(s[t].i);



1981
1982
1983
1984
1985
1986
1987
1988
1989

--"90
1

)2

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033

-;>034
35
36

~037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
'079

J80
"081
2082
2083
2084
2085
2086
2087
2088
2089
2090

PASCAL NEWS #19 SEPTEMBER, 198(;
if (s[tJ.i < 0) or (s[t].i > 127> then ps .- inxchk

end; -
6:{ s[t].i :: ord(s[t].c) };
7: s[t].c .- sucC<s[t].c);
8: s[tJ.c := pred(s[t].c);
9: s[tJ.i := round(s[t).r);
10: s[t].i .- trunC<s[tJ.r);
11: s[t].r .- sin(s[t).r);
12: s[tJ.r .- cos(s[tJ.r);
13: s[tJ.r .- exp(s[tJ.r);
14: s[tJ.r .- In(s[tJ.r);
15: s[tJ.r .- sqrt(s[tJ.r);
16: s[tJ.r := arctan(s[t].r);
17:

begin
~=t+1i

if t > stacksize then ps ..- stkchk
else s[t).b eof(input)

en~
18:

begin

~=
if t
else

en~
end;-

9:SCt].i := s[tJ.i + ir.y {
offset );

10: pc := ir.y { jump };
11:

begin {
conditional jump

if not s[tJ.b then pc .- ir.y;
en"d;- -

12:
begin {

switch }

~:= s[t].i; t:= t - 1;
repeat
-:rTCode[h2]. f <> 13

then begin h3 ,- ps.- caschk end
eLSe-
--rf code[h2].y

then begin h3
.-cse h2 := h2

untilii3 <> 0
ena;-

14:
begin { forlup }

~:= sEt - 1].i;
if h1 <= s[t]. i then s[s[t - 2]. iJ. i := h1
else begin t := t =-3'; pc:= ;r.y end

en~-
15:

begin { for2up )

hz-:= sEt - 2].i;
if h1 <= s[tJ.i
then begin s[h2].i .- h1; pc:= ir.y end
else t := t - 3:

end'";
16:

begin ( for1down )
---,:;r:= sEt - 1].i;

if h1 >= s[tJ.i then s[s[t - 2].iJ.i := h1
else begin pc := ir.y; t:= t - 3 end

en~-
17,

begin ( for2down )

hz-:= sEt - 2].i; h1:= s[h2].i - 1;
if h1 >= s[tJ.i
then begin s[h2J.; .- h1: pc:= ;r.y end
eLSe t := t - 3;

en;r;-
18""-

begin { mark stack }
---,:;r: = btab[tab[ i r .y]. ref] .vsi ze;

if t ... h1 > stacksize then ps .- stkchk
~se ---
~gin

~- t ... 5;
end

end;-
19,

begin { call )

~:= t - ir.y { h1 points to base };
h2 := s[h1 + 4].i { h2 points to tab}; h3:= tab[h2].lev;
display[h3 + 1] := h1; h4:= s[h1 + 3].i + h1;
s[h1 + 1].i := pc; s[h1 + 2].i := display[h3];
s[h1 + 3].i := b; for h3 := t + 1 to h4 do s[h3].i .- 0;
b := h1; t:= h4; pc := tab[h2] .adr

end;
20""-

begin (

~:=
h3 :=
if h3
else
--rf h3 > atab[h1].high then ps .- inxchk

else begin t := t - 1; """"SEtJ.i .- s[t].i + (h3 - h2) end
end;--

21,
begin {
---,:;r: =

h3 :=
if h3
else--rf h3 > atab[h1].high then ps .- inxchk

else
~g;n

~=t-1;
s[tJ.i .- s[t].i + (h3 - h2)

*
atab[h1].elsize

end

t + 1;
> stacks;ze then ps
s[t].b := eoln(input)

st kc hk

.- t - 1

h2 .- ir.y; h3

= h1
:= 1;
+ 2

pc .- code[h2 + 1].y end

h1 := s[h2].i + 1;

sEt - 1].i .- h1 - 1; s[tJ.i .-

index 1 }

ir.y { h1 points to atab }:
s[t]..; ;

< h2 then ps := inxchk

h2 .- atab[h1].low;

ind ex }

ir.y ( hl points to atab ).

sEtJ. i;
< h2 then ps := inxchk

h2 .- atab[h1].low;

end;

0;

i r.y

2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200

PAGE 39
22:

begin {

~:=
if h2
else

wFiil e t <
beg i n t

load block
s[tJ.i; t

> stacksize
t - 1;

~ps
h2 := ir.y + t;

stkchk

h2 do
..- t+ 1; .- s[h1]; h1 h1 + 1 ends[t)

end;
23:

begin ( copy block )

~:= sEt - 1J.i; h2.- s[tJ.i;
while h1 < h3 do
~in s[h1J - s[h2];
t := t - 2

end;
24""-

begin {

t := t
if t >

end;
25:

begin { load real
t := t + 1;
if t > stacksi ze then ps := stkchk

~se s(tJ.r := rconst(ir.yJ
en~

26: begin { float }
h1 := t - ir.y;

27:
begin ( read )

if eof<input) then ps := redchk
else
--case i r.y of

~ read(S[s[t].iJ.i);
2: read(s[s[t].iJ.r);
4: begin s[s[tJ.i].i .- O.

end;-
-t -1

h3 := h1 + ir.y;

h2 : = h2 + end;h1 := h1 + 1;

li teral
+ 1;
stacksize else s[t].i.- stkchk i r.ythen ps

s[h1J. r .- sCh1].i end;

read(s[sEt].iJ.c) end

t
end;

28:
begin { write string }

h1 := s(t].i; h2:= ir.y; t:= t - 1;

chrcnt := chrcnt + h1;
if chrcnt > l ineleng then ps := lngchk;
repeat write(stab[h2]);~1 := h1 - 1;

until h1 = 0
en-a;--

29""-
begin { write1 }

chrcnt .- chrcnt + fld[i r.y]i
if chrcnt > l ineleng then ps
~se ---
---case ir.y of

~ write<S[tJ.i: fld[1]);
2: write(s[tJ.r: fld[2]);
3: write(s[tJ.b: fld[3J);
4: write(chr(s[tJ.i mod 127

end; -
t := t - 1

end;
30:

begin { write2 }

chrcnt .- chrcnt + s[t]. i;
; f chrcnt > l ineleng then ps := lngchk
else ---
--case ;r.y of

~ write<S[t 1J.i: s[t].;);
2: writeCs[t 1J.r: s[t]..;);
3: write(s[t 1J.b: s[t].i);
4: write(chr(s[t - 1J.i mod 127

end; -
t := t - 2

end;
31:ps := fin;
32:

begin { exit procedure }

~= b - 1; pc:= s[b + 1].i;

33
~nd;

begin { exit function }

t := b; pc:= s(b + 1J.i; b.- s[b + 3J.;
end.

34:s(t) := s[s[tJ. iJ;
35: s[tJ.b := not s[tJ.b;
36: sEt). i .- ::-S[tJ. i;
37:

begin
cti'rcnt := chrcnt + set - 1 J.;;
;f chrcnt > l ineleng then ps := lngchk
else write(s[t - 2].r: ~- 1].i: s[tJ.i);

't""'= t - 3
end.

38:--1);gin (

39: begin t
40: begin t .-
41: begin t .-
42: begin t .-
43: begin t .-
44: begin t .-
45: begin t
46: begin t
47: begin t .-
48: begin t .-
49: begin t .-
50: begin t .-
51: begin t .-
52: begin t .-
53: beg,n t .-
54: be.in t
55: begin t
56: begin t

h2 h2 + 1

lngchk

ASCII ))

): s[tJ.i)ASCII

b s[b + 3].i

store
}

t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;
t 1;

s[s[t - 1].i] := sEt]; t:= t - 2 end;
s[tJ.b .- s(t].r ::I set + 1J.r end;-
sEtJ.b := s[t].r <> sEt + 1J.r--end;
s[t].b .- s[t].r < sEt + 1].r end;
s[tJ.b .- s[tJ.r <= sEt + 1J.r--end;
s[t].b s[tJ. r > sEt + 1J. r end;
s[t].b .- sEt). r >= sEt + 1]. r --end;
s[tJ.b .- s[t].i = sEt + 1J.i end;
s[tJ.b s[t]. i <> sEt + 1J. i--end;
s[tJ.b sEtJ.i < sEt + 1J.i end;
s[tJ.b .- s[tJ.i <= sEt + 1J.iend;
s[t].b .- s[tJ.i > sEt + 1J.i end;
s[t].b sEtJ.i

>= sEt + 1].i ~
s[tJ.b .- s[t].b or sEt + 1].b end;
s[tJ.; s[tJ.i +s[t + 1J.i end;
s[tJ.i .- sEtJ.i sEt + 1].i end;
s[tJ.r .- s[t].r + set + 1J.r end;
s[tJ.r .- s[tJ..r - set + 1J.r;--ei1d;
s[tJ.b .- s[t].b and sEt + 1J.b end;



PASCAL NEWS #19 SEPTEMBER, 1~8(J PAGE 40

2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305

57: begin t := t - 1: set].;.- s[t].;
*

set + 1].; end:
58:-

begin
~=t-1;

if set + 1]. i = 0 then ps := divchk
else s[tJ. i .- s[tJ. TdTv set + 13. i

en~
59:

begin
~=t-1;

if sct + 13.i = 0 then ps := divchk
else sCt].; := s(tJ.T"mOd set + 1].;

en~ -
60:--5'"egin t .- t -,. s[tJ.r:= sCtJ.r

* set + 1J.r: end:
61:-

begin
t := t - 1;
if set + 1J.r = 0.0 then ps := divchk
else s[tJ.r := s[tJ.r TSft + 1J.r

en-a;-
62:-Tf eof(input) then ps .- redchk else readLn:
63: -

begin
writeLn; Lncnt:::: Lncnt + 1; chrcnt:= 0;
if lncnt > Linel imit then ps .- l ;nchk

end;
64:sCtJ.r := - s[tJ.r

end
{ case }:

unTIl ps <> run;
98: if ps <> fin

then
~gin

wr:fteln; wr;teln; write(' halt at', pc: 5, I because of I>;
case ps of

run: wrTteln('error (see dayfile) ');
caschk: writeLn('undefined case'):
divchk: writeln('divisionby 0'):
inxchk: writeln('invalid index'):
stkchk: writeln('storage overflow'):
linchk: writeln('too much output');
Lngchk: writeLn('Line too long');
redchk: writeLn('reading past end of fiLe')

end"
"fiT""";=b; blkcnt:= 10;
{ post mortem dump }

repeat
---wrTteLn; bLkcnt:= bLkcnt - 1;

if blkcnt = 0 then h1 := 0; h2:= s[h1 + 4J.i;
iT h1 <> 0 -
then writeLn(' I, tab[h2J.name, I called at', s[h1 + 1J.i: 5);
ii2:= btab[tab[h2J.refJ.last;
while h2 <> 0 do

wTth tab[h2Jdo
~gin

~obj = variable
then
~ typ in stantyps

then -
~gin

wrTte(1 I, name, I
=

I);

if normaL then h3 := h1 + adr
else h3 := slfi1+ adrJ.i;
case typ of

:rr1ts: writeln(s[h3J.i);
reaLs: writeln(s[h3J.r);
bools: writeln(s[h3J.b);
chars:

writeln(chr(s[h3J.i mod 127 ASCII I))

end
end;

h2 :?link
end;

h1 :?S[h1 + 3J.i
untiL h1 <0;

encr;-
wrmLn;
if ocnt = maxint then write(' many') ~ write(ocnt);
wr-iteLn(' steps.I);-

end { interpret };

{ mai n----

begin {
main

writeln(tty, pascals (10.2.76)'); key[1J:= 'AND
key[2J 'ARRAY

,. key[3J 'BEGIN ';
key[4J := 'CASE

,.
keyESJ:= 'CONST

,.

key[6J := 'DIV
,. key[7J:= 'DO ';

key[8J := 'DOWNTO '. key[9J:= 'ELSE ,.

key[10J . - 'END '; key[113. - 'FOR ';
key[12J 'FUNCTION' . key[13J 'IF

'
;

key[14J 'MOD
,. key[15J 'NOT

,.

key[16J .- 'OF '; key[17J.- 'OR ';
key[18J .- 'PROCEDURE

,. key[19J 'PROGRAM ,.

key[20J .- 'RECORD
,. key[21J.- 'REPEAT ';

key[22J .- 'THEN
,. key[23J.- 'TO

,.

key[24J .- 'TYPE
,. key[25J.- 'UNTIL ,.

key[26J .- 'VAR
,. key[27J 'WHILE

,. ksy[1 J
ksy[2J := arraysy; ksy[3J:= beginsy; ksy[4J.- casesy;
ksy[5J := constsy; ksyE6J:= idiv; ksy[7J:= dosy;
ksy[8J := downtosy; ksyE9J:= elsesy; ksy[10J:= endsy;
ksy[11J .- forsy; ksy[12J:= functionsy; ksy[13J:= ifsy;
ksy[14J imod; ksy[15J:= notsy; ksy[16J:= ofsy;
ksy[17J orsy; ksy[18J:= proceduresy; ksy[19J:= programsy;
ksy[20J recordsy; ksy[21J:= repeatsy; ksy[22J:= thensy;

,.

andsy;

2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410

ksy[23J := tosy; ksy[24J:= typesy; ksy[25J:= untilsy;
ksy[26J := varsy; ksy[27]:= whiLesy; SpS[I+I]:= plus;

sps['-'J .- minus; sps['*'J:= times; SpS[I/'J:= rdiv;
SpS[I('] .- lparent; SpS[I)IJ:= rparent; SpS['=IJ:= eql;

sps[','] := comma; sps['[']:= lbrack; Sps[']']:= rbrack;
SpS[I; I] := semicolon;
constbegsys := [pLus, minus, intcon, real con, charcon, identJ;
typebegsys := [Lparent, ident, arraysy, recordsy];
bLockbegsys := [constsy, typesy, varsy, proceduresy, functionsy,

beginsy];
facbegsys := [intcon, reaLcon, charcon, ident, lparent, notsyJ;
statbegsys := [beginsy, i fsy, whilesy, repeatsy, forsy, casesyJ;
stantyps := [notyp, ints, reaLs, booLs, chars, scaLarsJ; Lc:= 0;

II := 0; cc:= 0; ch:=' I; errpos:= 0; errs:= [J;
{ } reset(input, 'MYPROG.PAS' ,,'DPO:

I);

insymboL; t:= - 1; a:= 0;
b := 1; sx:= 0; c2: = 0; di splay[OJ
ofLag := false; skipfLag:= false;
if sy <> programsy then error(3)
else -

begin
insymboL;
if ~ <> ident then error(2)
else

begin
progname .- id;
if sy <> lparent
else
--repeat

--:rr;symbol;
if sy <> ident then error(2)
else

begin
if id
else
---rf id

= 'OUTPUT
else errodO);,

i nsymboL
end

untiLSy <> comma;
if sy = rparent then insymbol ~ error(4);

if not of lag then-errod2Q}
end- -

end;-
ente;:""(I
enter (I FALSE
enter (' TRUE
enter (' REAL
enter( 'CHAR
enter (' BOOLEAN
enter (' INTEGER
enter (I ASS
enter( 'SQR
enter( 'ODD
enter( 'CHR
enter( 'ORO
enter( 'SUCC
enter( 'PREO
enter (' ROUND
enter( 'TRUNC
enter('SIN
enter('COS
enter (' EXP
enter (I LN
enter (' SGRT
enter (' ARCTAN
enter (' EOF
enter<' EOLN
enter (' READ
enter (

'READLN
enter (' WRITE
enter (' WRITELN
enter

( 1

with btab[l3 do
~gin Last:; t; Lastpar:= 1; psize:= 0;
bLock(bLockbegsys + statbegsys, false, 1);
if sy <> period then error(22); emit(31) { halt };

if btab[2J.vsize >-stacksize then error(49);
IT progname = 'TESTO thenprinttabLes;
if errs = [J -
then

begin
if iflag
then

begin
reset(input, 'MYPROG.DAT'" 10PO:I);
if eof(input) then writeLn(' input data missing')
else -
~Qin

writeln(' (eor)') { copy input data };

while not eof(input) do
~in -

write ( . I);
whi Le not eoLn(input) do

begin read(ch); wrTte(ch) end;
writeln; read(ch)

end;
reset(input);

end
end;-

writeln(' (eof)'); writeln;
end

eLse-errormsQ;
99:writeLn
end [ pascals ).

1. i flag fa Lse;

insymboL;
then error(9)

,
INPUT then ifLag := true

gin

true

., variabLe, notyp, 0) {

., konstant, booLs, 0);

"
konstant, boals, 1);

., type1, reaLs, 1);

"
type1, chars, 1);

"
type1, bools, 1);

"
type1, ints, 1);

"
funktion, reaLs, 0);

, funktion, reaLs, 2);

"
funktion, bools, 4);

I, funktion, chars, 5);
I, funktion, ints, 6);

"
funktion, chars, 7);

., funktion, chars, 8);
I, funktion, ints, 9);
I, funktion, ints, 10);

"
funktion, reals, 11);

., funktion, reaLs, 12);
I, funktion, reals, 13);

"
funktion, reaLs, 14);

., funktion, reals, 15);

"
funktion, reaL s, 16);

"
funktion, booLs, 17);

"
funktion, bools, 18);

., prozedure, notyp, 1);

., prozedure, notyp, 2);

., prozedure, notyp, 3);
I, prozedure, notyp, 4);
I, prozedure, notyp, 0);

sentinel };

vsi ze := a end;

interpret



const

Notes on system dependent code in Pascal-S and Pascal-I. lots of these

type

lots of these
by Richard J. Cichelli

Pascal-S had a 'trap label' to recover (just once) from user
errors that cause abor~s: In Pascal-I, John McGrath, Curt
Loughln and I solved slmllar problems with what we think

ar~ cl:aner, simpler and more generally useful techniques.
We d llke to share them with you here.

abortcodes
(timelimit, userabort); (The types of aborts that are processed

abortset = set of abortcodes;

var

lots of these

Pascal-I... Interactive, conversational Pascal-So
These code fragments from Pascal-I show nearly all
of the non-st~ndard and/or system dependent parts

of the 7500 llne program that is Pascal-I.

The cod~ illustrates how functionality, which must

be ~rovlded for the system to work in its given

envlronment and obviously cannot be specified in
a standard way, can be isolated so that reasonable

portability can be obtained.

Of particular note is the method for recovering from timeouts
and u~e~ ~borts. On a user abort, Pascal-I terminates the
user lnltlated action, recovers and accepts the next user

command request. Pascal-I also does interactive I/O.

aborted, timeout: boolean;

abtcnt: integer;
lastabort: real;

procedure rename(var f: textfile; lfn: scopelfn); extern;
( This procedure changes scope file names by modifying

their FETs.

I really think this is the right way to specify the dynamic
(run-time) association of a system file with a Pascal file.
Overloading the reset and rewrite procedures and adding
standards violating parameters to them seems so messy.

The '/+' and '+' declare these
On input, the initial 'get' is
output, buffers can be flushed

If Pascal 6000 had 'Lazy I/O',

would be unnecessary.

files interactive.
supressed and on
explici tly.

then this non-standard

procedure interupt(procedure inproc(reasons: abortset)); extern;
{ This procedure arms the SCOPE system routine 'reprieve' with

a user supplied recovery routine. Time-outs and aborts are
handled by this routine. Upon interrupt, the procedure passed
as a parameter to the interrupt routine is invoked. After
it executes, the program is restarted at the instruction where
it was interrupted. By having the interrupt routine set global
flags, controlled recovery is possible. }

program pascali(textin, textout, input/+, output+);

code

1 a be 1

1, 2, 3, {

about 140 additional procedures here.

all written in quite Standard Pascal.

recovery labels ... targets for low level error

handling routines.
Note: This is where you really need those gotos out

of procedures.

Note: Pascal-I has an interpreter that is similar
to that of Pascal-So In it, and in other procedures
where the user might want to quit the actions of the
program, loop terminators include a test of the

aborted flag. Since Pascal-I has control of when
aborts are acted upon, it does so only at convenient
stopping places. For example, the interpreter only

tests for aborts on user program statement boundaries.

The state of Pascal-I and the interpreting user
program always appear well defined. }

13
}

{ terminate program on multiple aborts.
This is so you can abort Pascal-I itself.
(You ~ig~t"think that we software giants never
code lnf~nlte loops. Well, this is just in case
the complIer generates bad code for

Perfect 10 gl
"
CRight?) .



procedure timeoutsavej
{ This routine is called if a time out occurs. It is called

by the main routine if the timeout flag is set during a

recovery. Upon 'reprieve' invocation, enough additional

time is allocated so that a user can save his/her program
to a file. After exiting Pascal-I, more time can be
requested (with ETL) or another login session started.

The saved file allows the user to procede from where he/she
left off.

var
now: real;

function rtime: real;

extern { real time clock
Returns time in seconds, accurate to milliseconds.

Ij

var
Ifn: scopelfn;

begin { intproc I

timeout := time limit in reasons;
aborted := userabort in reasons;

if aborted
then

begin
abtcnt := abtcnt + 1j now:= rtimej

if now - lastabort < abtmintime
then

begin message('* multiple aborts.'); goto 13 {

end
else lastabort := now;

end;
writeln; ich: = '

';{ clear and restart I/O I
if abtcnt < maxabtwocmd then interupt(intproc)j
{ Set up for the next user abort or time-out I

end { intproc I;

bag it

begin
writeln(' You are out of time. Please enter the name of');
writeln(' the file to which you want your program saved -');
{ putseg(output); flush buffer I

if eos(input) then getseg(input); getchj
{ The eos (end of segment) and getseg (get segment) are

rather unpleasent ways to interface to terminals.
Fortunately, only a very few other places in Pascal-I
have such code. Porting the program usually only requires
defining null procedures for getseg and putseg and making
eos return false. At one place, eos may need to be changed to
eof.

I
getlfn(lfn); rename(textout, Ifn); rewrite(textout);
{ get the file name and associate it with textout I
saveblk(btabmax

-
1, true); reset(textout);

{ write the program to it and rewind it for next time
end { t imeou tsave I;

begin Pascal-I - - - Main Routine

ini tialize the world
procedure intproc(reasons: abortset);

{ No Pascal procedure in Pascal-I calls this routine.
It is invoked by the 'reprieve' service routine which
is invoked by the system montior when a time-out or
user abort occurs.

badcommand; interupt(intproc);
the commmand loop I

then begin timeoutsave; command.-

lastcommand :=
repeat {

if timeout

else
begin

{ prompt
writeln;
getln;
if eos(input) then getseg(input); getch;
{ Another instance of that I/O mess.

Note: The Pascal programs that are interpreted
Pascal-I run interactively (how else) and have
none of this garbage.

enditall; end

Incidentally, Pascal 6000 version 2 didn't have reentrant
system routines. (The fault of using the RJ (return jump)

to implement the calls.) Because this routine doesn't
require any of the system routines to be accessed

reentrantly, we can use a very simple version of the
recovery routines in Pascal-I. Pascal-I is distributed

with fully re-entrant recovery capabilities in its systems

rou tines.

for user command I
writeln(' :'); {putseg(output); flush buffer

getnb;

by

const
abtmintime

I
3: getcommand(command);
1: case command of

bottom: botcom;
change: ccom(false);
compilecom: compcom;

continue: execom(true);

2.0; minimum time limit allowed between
user recoverable aborts ( 2 sees.)

If less, then kill Pascal-I, cause
he wants us dead.

I
maximum user aborts allowed between
commands. If more then kill Pascal-I. there are about thirty more commands

ma xa btwocmd =
4;



entry rename
rename ps

bx6 x1 new file name
sa6 xO+13+1 efet + 1
eq rename exit

entry rtime
ps
rtime rtia
sa1 rtia
mXO -36
bx6 -xO*x1
px6
nx6
sa1 =0.001
fx6 x6*x1
nx6
eq rtime

bss 1
space 4,10
end

question: qmcom;

end;
end;

command loop wrap-up stuff here

aborted := false; abtcnt:= 0;
until command in [bye, enditall];

13: ( terminate program on multiple aborts and fatal errors
if abend <> not fatal then printfatal(abend);
message('- End Pascal-I');

end ( Pascal-I ).

The entire supplemental system routines are presented here.

Bill Cheswick coded these for CDC's NOS operating system.

ident
syscom
title
space

***
*
*

pi-aid
b1
pi-aid
4,10

- Pascal-I helper routines.

rename - change local file name.

rename(ifet, name)

interup
***
*
*

space 4,10
interup

- set user-abort interupt address.

interup(procaddr)

entry
interup ps

sx6
sa6
distc
eq

*

interup

xO get proc address
inta
on,int1,int
interup exit

int1

entry on user abort.

bss
sb1
sa1
sb7
zr
sx6
jp

inta data

20B
1
inta
x1
x7,*+400000B if no address to
b1 reason code = user
b7 exit to processor

get procedure address

jump to
abort

o address of interupt procedure

};

***
*
*
*
*
*

space 4,10
rtime

-
get realtime since deadstart.

x := rtime

returns the time since deadstart as a real number,

to milliseconds.

rtime

rtime status word

millisecs

exit

rtia

Of all the complex functions described, getting the real
time took the most code to implement. Implementlng Pascal-I

on IBM, DEC and other systems proved easy because,of the
simplicity and isolation of the system dependent lnterface.

**************************

"'D
:I"'u:

accurate Q
r

~
<.:'C
C



PASCAL NEWS #lS SE PTEMBER I 1 %lJ PAGE 44

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

~ LISP(input, output);

The essence of a LISP Interpreter.
Written by W. Taylor and L. Cox
First date started 10/29/76
Last date modified : 12/10/7.6

I

LabeL
1;""(

2 { used to recover after an error by the user }

1n case the end. thef!1 e is reached before a fin card Ii

canst
--miXnode : 600;

type
:rr1putsymboL

(atom, period, Lparen, rparen);
reservedwords =

(repLacehsym, replacetsym, headsym, tai lsym, eqsym, quotesym,
atomsym, condsym, labeLsym, Lambdasym, copysym, appendsym, concsym,
conssym) ;

statustype =
(unmarked, Left, right, marked);

symbexpptr = "'symbol icexpression;
aLfa = array (1 .. 10] of chari
symbolicexp;:-ession = record

-status: statustype;
next: symbexpptr;
case anatom: boolean of
~ue: (name: alfai -

case isareservedword: boolean of
~ue: (ressym: reservedwordsIT;

faLse: (head, tail: symbexpptr)
end;

Symbolicexpression is the record structure used
to implement a LISP list. This record has a tag
field 'anatom' which tells which kind of node
a particular node represents (i.e. an atom or
a pair of pointers t head t and t tail' ).
'Anatom' is always checked before accessing
ei ther the nane field or the head and tail
fields of a node. Two pages ahead there are
three diagrams which should clarify the data
structure.

I

The global var abIes

var

Variables which pass information from the scanner to the read
routine }

Lookaheadsym, ( used to save a symbol when we back up
sym: ;nputsymboL { the symbol that was last scanned Ii
id: alfa { name of the atom that was last read };
alreadypeeked: boolean { tells 'nextsymt whether we have peeked };
ch: char { tne last character read from input };
ptr: symbexpptr { the pointer to the expression being evaluated };

the global lists of LISP nodes

freeL; st, ( pointer to the linear list of free nodes
nodel ist,

{ pointer used to make a linear scan of all
the nodes during garbage collection }

al;st: symbexpptr;

{ two nodes which have constant values
n; lnode, tnode: symbol ;cexpression;

{ variables used to identify atoms with pre-defined meanings
resword: reservedwords;
reserved: boolean;
reswords: array [reservedwordsJ of al fa;
freenodes: integer { nt.rnber of currently free nodes known
numberofgcs: integer { nt.rnber of garbage collections made

Ii )
i

the atom' a' is
represented by --->

\
\

\

\---
i i
i
i

the dotted pair
'( a . b

) I is
represented by --->

\
\

\

\-------
i i i
i I i \ i
i / i \ i
--/ \--

/ \
/ \---

i i i i
i i i b i
i i i i

--------

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

the list '( a b )'
is represented
by --->

\
\

\

\------
i i i
i I i \ 1
i / i \ i

--/ \--
/ \

/ \
i i \
i i \------
i i i i i

i / i \ i
i I i \ i
--/ \--

/ \
/ ---\---

1 i i i
b i i nil i

i i i

the garbage collector

procedure garbageman;
(

In general there are two approaches to maintaining lists of
available space in list processing systems... The reference
counter technique and the garbage collector technique.

The reference counter technique requires that for each node
or record we maintain a count of the number of nodes which
reference or point to it, and update this count continuously.
(i.e. with every manipulation.) In general, if circular or ring
structures are permitted to develop this technique will not be
able to reclaim rings which are no longer in use and have been
isolated from the active structure.

The al ternati ve method, garbage collection, does not function
continuously, but is activated only when further storage is
required and none is available. The complete process consists
of two stages. A marking stage which identifies nodes still
reachable (in use) and a collection stage where all nodes in
the system are examined and those not in use are merged into
a list of available space. This is the technique we have chosen
to implement here for reasons of simplicity and to enhance the
interactive nature of our system.

The marking stage is theoretically simple, especially in LISP
progranming systems where all records are essentially the same
size. All that is required is a traversal of the active list
structures. The most obvious marking system consists of a procedure
which makes a number of succ~ssive passes through the data
structure, each time marking nodes 1 level deeper into the tree
on each pass. This is both crude and inefficient.

Another alternative procedure which could be used would use a
recursive walk of the tree structure to mark the nodes in use.
This requires the use of a stack to store back pointers to
branches not taken. This algorithm is efficient, but tends to
be self defeating in the following manner. The requisite stack could
become quite large (requiring significant amounts of storage).
However, the reason we are performing garbage collection in the
first place is due to an insufficiency of storage space. Therefore
an undesirable situation is likely to arise where the garbage
collectort s stack cannot expand to perform the marking pass.
Even though there are significant amounts of free space waiting
to be reclaimed.

A solution to this dilemma came when it was realized that space
in the nodes themselves (Le. the left and right po inters) could
be used in lieu of the explicit stack. In this way the stack
information can be embedded into the list itself as it is traversed.
This algorithm has been discussed in Knuth and in Berztiss: Data
Structures, Theory and Practice (2nd ed.), and is implernented below.

Since Pascal does not allow structures to be addressed both with
pointers and as indexed arrays, an additional field has been added
to sequentially link the nodes. This pointer field is set on initial
creation, and remains invarient throughout the run. Using this field,
we can simulate a linear pass through the nodes for the collection
stage. Of course, a marker field is also required.
I

procedure mark (l ;st: symbexpptr) i

var
father, son, current: symbexpptr;

begin
father := ni l; current:= l ;st; son.- current;
whi le current <> n; l do
---w:rth current" do-

-case status of
unmarked: -

; f ana tom then status := marked
else
---:rf (head" .status <> unmarked) or (head = current)

then -
if (tai lA .status <> unmarked) E.!: (ta; l = current)

then status := marked
else

begin
status .- right; son:= tal l; tai l .- father;



221
222
223
224
225
226
227
228
229
230
23'
23'-
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
27<
27.
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

31"
32
321
322
323
324
325
326
327
328
329
330

:= current; current := son

SEPTEMbER, 198u PAGE 45PASCAL NEWS #19
father

end
else-

begin
status :=
father .-

end;

left: son:= head: head
current: current:= son

.- father;

Left:
if tai L".status <> unmarked
then
~g;n

status .- marked: father.- head: head.- son;
son .- cu'rrent

end
else

begin
status := right; current:= tal l; tai l head:
head := son; son.- current

end;
right:

begin
Status := marked; father.- tal L; tai L .- son;

son .- current
end:

marked: current .- father
end

{ case }

end mark };

procedure collectfreenodes;

var
temp: symbexpptr:

begin
--wr:rteln(1 number of free nodes before collection =

I, freenodes:
, 1.1);

freelist := niL; freenodes:= 0; temp:= nodeList;
wh iLe temp <>nil do

bei~n - -
1 temp" .status <> unmarked then temp" .status .- unmarked
else

be~in
reenodes := freenodes + 1; temp head.- freelist;

freelist := temp
end;

teiiij)":= temp" ..next
end;

wr"'it"eln(1 number of free nodes after collection I, freenodes: 1,
I.. I);

end
{ collectfreenodes }.

begin
( garbageman )

---numberofgcs := numberofgcs + 1;
writeln(1 garbage collection. I);
;f ptr <> nil then mark(ptr);

end{ garbageman J";

writeln;
writeln; mark(alist);

collectfreenodes

procedure pop(.y!.!: sAtr: symbexpptr);

begin
iffreeL;st = nil then

-begin --
writeln(' not enough space to evaluate the expression..');{ goto 2 }

end;
freen-odes .- freenodes 1; sptr:= freelist;
freeL;st := freeL;st".head

end
( pop );

input/output utility routines

procedure error(number: integer);

begin
writeln; write(1 Error I, nllltber: 1, 1,1);
case number of
~ writeln(l atom or lparen expected in the s-expr.. I);

2: writeln(1 atom, lparen, or rparen expected in the s-expr.. I);

3: writelnC' label and lambda are not names of functions.. I);

4: writeln(' rparen expected in the s-expr.. I);
5: writeln(' 1st argument of replaceh is an atom.. I);

6: writelnC' 1st argument of replacet is an atom. I);

7: writeln(' argument of head is an atom.. I);

8: writelnC' argument of tail is an atom.. I);
9: writelnC' 1st argument of append is not a list. I);
10: writelnC' comma or rparen expected in concatenate. I);
11: writeln(' end of file encountered before a "fin" card. I);
12: wr;teLn(' Lambda or LabeL expected. ')

end { case'};
- if n...ber in [11] then gote 2

else gote 1

{
alreadypeeked .-

Procedure backupinput puts-a left
into the stream of input symbols.
procedure readexpr easier than it
would be.

parenthesis
This makes

otherwise

procedure backup; nput;

gingin

Lookaheadsym :=true;
};

sym := Lparensyrn;

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Procedure nextsym reads the next symbol from
the input file. A symbol is defined by the
810bal type 'inputsymbol'. The global variable

'sym' returns the type of the next symbol read.
The global variable 'id' returns the name of an
atom if the symbol is an atom. If the symbol is
a reserved word the global variable I reserved I

is set to true and the global variable 'resword'
tells which reserved word was read.

procedure nextsym;

var
i: integer;

begin
; f a L readypeeked
then begin sym .- lookaheadsym;
eLse

beg;~
wh,le ch =

I I do
begin ..!i eoln"'ITnput) then writeln;
end.

i f-cti' i n [I (', I. I, I) I]
then -

begin
case ch of
~I: s'ym := lparen;

I.. I: sym := period;I) I: sym := rparen
end { case };
i'feoln(input) then writeln;

end
else

begin
sym := atom;
repeat

i := i + 1; if i < 11 then id[iJ := chi
if eolnCinput)- then writeln; readCch);

unITl ch in [I ., I~I..I, I)'];
r:esword :;""""replacehsym;
while (;d <> reswords[reswordJ) and (resword
--re5word := succ(resword); -
reserved := id = reswords[reswordJ

end
end -

end { nextsym

a Lreadypeeked .- faLse end

read(ch); writeCch);

read(ch) ; wr;te(ch)

;d :=
,., i := 0;

wr;te(ch)

<> conssym) ~

};

procedure readexprC~!!. sptr: symbexpptr);
\

This procedure recursively reads in the next symbolic expression
from the input file. When this procedure is called the global
variable 'sym' must be the first symbol in the symbolic expression
to be read. A pointer to the symbolic expression read is returned
via the variable parameter sptr.
Expressions are ]"ead and stored in the appropriate structure
using the follow:ing grammar for symbolic expressions :

<s-expr> ::::: <atom>
or ( <s-expr> . <s-expr> )

or ( <s-expr> <s-expr> ... <s-expr> )

Where ... means an arbitrary nunber of. (i.e. zero or more.)
To parse using the third rule. the identity

(a be... ;0) = (a . (b c ... z))

is utilized. An extra left parenthesis is inserted into
the input stream as if it occured after the imaginary dot.
When it comes time to read the imaginary matching
right parenthesiu it 1s just not read (because it 1s not there).

var
nxt: symbexpptr;

begin
popCsptr);

,
nxt := sptr" .next;

case sym of
-r:paren,period: error(1);

atom:
with spt r- do

beg; n { ('atom>
anatom := true; name:= id; ; sareservedword .- reserved;
if reserved then ressym := resword

~ -
lparen:

w;th sptr- ~.
begin

nextsym;
if sym = period then error(2)
erse
---:rf sym = rparen then sptr" := ni lnode

else
begin

anatom .- false;
if sym = period
then
~~{

nextsym;
if sym <>

e'nd
eLse

~!i!..!!
{ (

<s-expr> <s-expr> ... <s-expr>
)

backup;nput; readexpr(ta; L>
end

end --

()
nil

readexpr(head) ; nextsym;

«s-expr> . <s-expr» }

readexpr(tai l); nextsym;
rparen then error(4)



PASCAL NEWS #19 SEPTEMBER, 19h1J
a LISP expression.

}
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

end
{ with

end {-;;ase };

spFr" .next := met

~
{ readexpr };

)rocedure printname(name: a Lfa);

Procedure printname prints the name of
an atom wi th one tr ail ing bl ank.

var
1: integer;

be~in, := 1;
repeat write(name[iJ); i.-
~(name[iJ =

I ') or (;
write(' I) -

end { printname };

i + 1
11> ;

procedure printexpr(sptr: symbexpptr);
!

The algorithm for this procedure was prov1.ded by
Weissman's LISP 1.5 Primer, p.125. This
procedure prints the symbolic expression pointed
to by the argl.lllent 'sptr' in the lisp list.
notatiQn. (The same notation in which expressions
are read.)

label
1;

be~~n, sptr" .anatom then printname(sptr'" .nanle)
else

begin
write(' (I>;

1: with sptr" do
begin -

prl ntexpr(head);
if tai L".anatom and (ta; L".name 'NIL I)

tnen writeC')') -
eLse

,-r tai LA.anatom
then
~g;n write('.'); printexpr(taiL>; write(')') end
else begin sptr .- tai l; goto 1 endend-- - -

end-
end {printexpr };

end of ilo util ty rout nes

The Expression Evaluater Eval

function eval(e, alist: symbexpptr): symbexpptr;-r---
Function eval evaluates the LISP expressiDn Ie' using the
association list .'alist'. This function uses the following
several local functions to do so. The algorithm is a
Pascal version of the classical LISP problem of writing
the LISP eval routine in pure LISP. The LISP version of
the code is as follows:

(lambda (e alist)
cond

({atom e) (lookup e alist»
({atom (car e)}

(cond ({eq (car e) (quote quote»
(cadr e})

({eq (car e) (quote atom»

(atom (eval (cadr e) alist)
«eq (car e) (quote eq»

(eq (eval (cadr e) alist»)
«eq (car e) (quote car»

(car (eval (cadr e) alist)})
«eq (car e) (quote cdr»

(cdr (eval (cadr e) alist)})
({eq (car e) (quote cons)

(cons (eval (cadr e) alist)
(eval (caddr e) alist)

({eq (car e) (quote cond)

(evcon (cdr e)}
(I. (eval (cons (lookup (car e) alist)

(cdr e» alist»)
({ eq (casr e) (quote label»

(eval (cons (caddar e)
(cdr e)

(cons (cons (cadar e) (car e»
alist) }}

({eq (caar e) (quote lambda»
(eval (caddar e)

(bindargs (cadar e) (cdr e) »}})

The resul ting Pascal code follows:

var
temp, carofe, caarofe: symbexpptr;

The first ten of the following local fW1ctions implement
ten of the primitives whichoperate on -,he LISP data
structure. The last three local f\mctie)ns, 'lookup',
'bindargs I and 'evcon', are used by 'ev aI' to interpret

PAGE 46
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

~ replaceh(sPtr1, sptr2: symbexpptr): symbexpptr;

begin
if sptr1" .anatom then error(5) ~ sptr1" .head .- sptr2;
replaceh := sptr1

~
{

replaceh };

~ replacet (sptr1, sptr2: symbexpptr): symbexpptr;

begin
if sptr1" .anatom then error(6) ~ sptr1" .tai l .- sptr2;

replacet := sptr1
end

{ repl acet );

{ if sptr" .anatom then errore?) else head .- sptr" .headbegi7 if sptr" .anatom then errore?) else head .- sptr" .head

~in

~ tail(sptr: symbexpptr): symbexpptr;

begin if sptr" .anatom then error(S) else tai l .- sptr" .tai l
end { tail };

~ cons(sptr1, sptr2: symbexpptr): symbexpptr;

var
temp: symbexpptr;

begin
pop(temp) ;

temp" .tai l
end

{ cons

temp. .head := sptr1;temp".anatom := false;
:= sptr2; cons:= temp

};

function copy(sptr: symbexpptr): symbexpptr;{-
This function creates a copy of the structure
pointed to by the parameter' sptr'

var
temp, nxt: symbexpptr;

begin
--:rr-sptr" .anatom

then
begin

popCtemp); nxt:= temp" .next; temp".- sptr";
temp" .next := nxt; copy:= temp

end
else-copy := cons(copy(spt r" .head), copy(spt r" ,tai L»

en'Cf'"1"'"" copy };

function append(sptr1, sptr2: symbexpptr): symbexpptr;{-
The recursive algorithm is from Weissman. p.97.

begin
if spt r1" .anatom
then
--:rf sptr1" .name <> 'NIL then error(9)

else append := sptr2
else-

append := cons(copy(sptr1' ,head), append(sptr1' .tail, sptr2»
end { append };

~ conc(sptr1: symbexpptr): symbexpptr;

This function serves as the basic concatenation mechanism
for variable nLll1bers of list expressions in the input stream.
The concatenation is handled recursively. using the identity:

cone( a.b.c..d) = cons( a ,cons( b ,cons( c .cons( d ,nil))))

The routine is called when a cone( command has been
recognized on input, and its single argunent is the first
expression in the chain. It has the side effect of reading
all following input up to the parenthesis closing the
cone command.

The procedure consists of the following steps-
1. call with 1st expression as argument.
2. read the next expression.
3. if the expression just read was not the last. reeurse.
4. otherwise... unwind.

var
sptr2, ni lptr: symbexpptr;

b.egin
;fsym <> rparen
then

begin
nextsym; readexpr(sptr2); nextsym;

.-:onc .- cons(sptr1, conc(sptr2»;
end

else
if sym rparen



.= 'NIL
,.,

.= false

'T '
;

.= false

PASCAL NEWS #19
661
662
663
664
665
666
667
668
669
670

71
.'2

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
'15

6
,17
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

o
,1

762
763
764
765
766
767
768
769
770

SEPTEMBER, 1980
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

then
---ceg i n

newCn; Lptr);
with ni lptr' do

begin anatom:= true: name.- 'NIL end;
cone := consCsptr1, nitptr):

end
else-error(10)

end TConc };

gin

var
temp, nxt: symbexpptr;

begin
pQpCtemp); nxt:= temp'".next;

if sptr'" .anatom and sptrZ" .anatom
tIIen -
---rr sptr'".name = sptrZ" .name then temp" .- tnode

else temp" := ni lnode
else-
--:rf sptr1 = sptr2 then temp' .- tnode

else temp" := ni lnoCie;"
temp".next := nxt; eqq:= temp

end { eqq };

~ atom{sptr: symbexpptr): symbexpptr:

var
remp, nxt: symbexpptr;

begin
popCtemp); nxt:= temp" .next;
i.!. sptrA .anatom then temp" .- tnode ~ temp" .- nilnode;
temp'" .next := nxt; atom:= temp

end { atom };

function lookupCkey, alist: symbexpptr): symbexpptr;

var
temp: symbexpptr;

begin
-remp := eqq(head(head(alist», key);

if temp" .name = IT 'then lookup .- tai LCheadCaList»
.-rse lookup := lookup(key, tail<aITst»

endT lookup };

~ bindargs(names, values: symbexpptr): symbexpptr:

var
temp, temp2: symbexpptr:

begin
---:r:f""names".anatom and (names" .name = 'NIL

I)

tnen bindargs := iITst
erse

begin
temp := consCheadCnames), eval(head(values), alist»:
temp2 := bindargs(tail(names), tail (values»;
bindargs := cons(temp, temp2)

end
end (bindargs };

~ evconCcondpairs: symbexpptr): symbexpptr:

var
temp: symbexpptr:

begin
-remp := eval(head(head(condpai rs», al ist);

if temp" .anatom and (temp" .name = 'NIL
I)

then evcon := evcon(tai l Ccondpai rs»
erse evcon := evaLCheadCtail(headCcondpairs»), al;st)

enn- eveon }:

begin { e val }
--:rr-e" .anatom then eval .- lookup(e, al ;st)

else
begin

carofe .- headCe):
if carofe" .anatom
then
-:rf not carofe".; sa reservedword

tIIen-
--eval := evaLCconsClookup(carofe, alist), taiLCe», al;st)
else

case carofe". ressYIl of
-rabelsym, lambdasym: error(3);

quotesym: eval := head(tail(e»;
atomsym: eval := atom(evaL<head(tail(e», alist»;
eqsym:

eval := eqq(evaL<head(tail (e», alist), eval(head(tail (
tail(e»), alist»;

headsym: eval := head(eval(head(tail(e», alist»;
tailsym: eval := tail(evaLChead(tail(e», alist»;
conssym:

eval := cons(eval(head(tail(e», alist), eval(head(tail(
tail(e»), alist»;

condsym: eval :=evcon(ta;l(e»:
concsym::
appendsym :

eval := append(evaLChead(tail(e», alist), evaLChead(

PAGE 47
tail(tail(e»), alist»;

rep l acehsym:
eval := replaceh(eval(head(tail(e»,

tail(taiLCe»), alist»;
replacetsym:

eval := replacet<eval (head(tail (e»,
tail(tail(e»), alist»

ease }

alist), eval(head(

alist), eval(head(

end
else--

E!i:i..'lcaarofe :=headCcarofe):
;1F caarofe" .anatom and caarofe" .isareservedword
tt1en -
-if not (caarofe' .ressym in [labelsym, lambdasym])

thenerror(12) -
else

case caarofe" .ressym of
-riibelsym: -

begin
temp := cons(cons(head(tail (carofe», head(tail (

tail(carofe»», alist);
eval := eval(cons(head(taiL<tail(carofe»), tail(e

», temp)
end.

lambd;sym:
begin

temp := b;ndargs(head(tail (carofe», tal LCe»:
eval := eval (head(tai L<tai L<carofe»), temp)

end
end

(
case

el.se-
-eval := eval(cons(eval(carofe, al;st), tailCe», al;st)

end
end-

end
(

e va};

procedure initial ize:

~ ;: integer:
temp, nxt: symbexpptr:

begin
alreadypeeked := false: readCch): writeCch):
freenodes := maxnode:
w; th n; lnode do

begin -
anatom .- true: next:= n; l: name
status := unmarked: isareservedword

end:
w;th tnode do
~g;n -

anatom .- true: next:= ni l: name
status := unmarked: i sa reservedword

end:

numberofgcs := 0;

allocate storage and mark it free
freelist := nil:
for i := 1 tomaxnode do
---';egin - -

newCnodelist): nodelist".next:= freelist:
nodel ist" .head := freel ist; nodel ist" .status -= unmarked:
f reel; st .- nodel i st

end:

initialize reserved word table
reswords[replacehsym] := 'REPLACEH ';
reswords[replacetsym] := 'REPLACET ':
reswords[headsymJ := 'CAR ';
reswords[tai lsym] := 'COR ':
reswords[copysym] := 'COpy ';
reswords[appendsym] := 'APPEND ';
reswords[concsym] := 'CONC ':
reswords[conssym] := 'CONS I:
reswords[eqsym] := lEG ,.

reswords[quotesym] := 'QUOTE
reswords[atomsym] := IATOM
reswords[condsym] := 'COND
reswords[labelsym] := 'LABEL
reswords[ lambdasym] := 'LAI'IBDA

,.,,
;,.,,.,
,.,

ini tialize the a-list wi th t and nil
popCa list); a list" .anatom := false; a list" .status .- unmarked;
pop(alist".taiL>: nxt:= alist".tail".next:
alist".taiL" := nilnode: alist".ta;l".next:= nxt:
pop(a list' .head);

bind nil to the atom nil
with alist'.head' do

begin -
anatom := false:
nxt := head" .next;
pop(tail); nxt:=
tai l" .next := nxt

end-
popCt;mp): temp" .anatom := false:
temp" .ta; l := at ist: al ist := temp;

pop(head) ;
head".next :=

:= ni lnode;

status := unmarked;
head" := ni lnode:

tai L".next: tal l .. nxt:

temp".status := unmarked:
pop(alist' .head);

bind t to
with alist'.head' do

begin -
anatom := false;
nxt := head" .next:
pop(tail); nxt:=
tai l" .next := nxt

end-
end F initialize };

the a tom

status := unmarked; pop(head);
head" := tnode: head".next .-

tail".next: tail":= tnode:
nxt:



PASCAL NEWS #19 SEPTEMBER, 198u PAGE 48

881 begin { LISP }
882 writeln(1 * EVAL * I); initialize; nextsym; readexpr(ptr);
883 readLn; writeLn;
884 while not ptrA.anatom or (ptrA.name <> IFIN I) do
885 beg in- -
886 writeln; writeln(1 * value

*
I); printexpr(eval(ptr, alist»;

887 1: writeln; writeln; if eof(input) then error(11);
888 ptr := nil;
889 {cal~he} garbageman; writeln; writeln;
890 writeln(1 * EVAL * I); nextsym; readexpr(ptr); readln;
891 writeln;
892 end;
893 2: writeln; writeln;
894 writeln(1 total number of garbage collections = " numberofgcs: 1,. '.'
895 ) ;
896 writeln;
897 writeln(' free nodes left upon exit = " freenodes: 1, '.');
898 writeln;
899 end { LISP }.

Articles



Peripheral Device
Registers

Resident Monitor

pasca 1 Stack
-------~-------

-------1.-------
Pascal Heap

Pascal Global Variables

Pascal Run-time Library

User's Pascal Program Code

System Communication
and

Interrupt Vectors

An Implementation of New and Dispose

using Boundary Tags

Branko J. Gerovac

actual execution.
Although a specific hardware-software environment is discussed

rationale would be appropriate for other systems. Pascal
implementation of New and Dispose and assembly language sources for
module are provided to promote general use.

here, the design
sout,es for each
the boundary-tag

The run-time memory configuration of
OMSI-Pascal-l [ESI77], under DEC's RT-ll real-time
operating system, is typical for block structured
languages [NAJNJ76, AU77]. The operatingsystem
maintains areas of memory for interrupt vectors,
system communication, the resident monitor and
peripheral device registers [DEC78]. When a Pascal
program is run, the program code is loaded into low

memory, and then a Pascal run-time library routine
initializes the data areas. The heap is located in
low memory just above the program code and global

storage, and the stack is located in high memory.
The heap grows upward and the stack grows downward;

the unused memory between the heap and the stack is

available for expansion of either. No automatic
memory-disk swapping of data occurs.

Two pointers are maintained by New and Dispose
to manage heap memory: (1) $KORE points to the
beginning of the unused area above the heap, and
(2) $FREE points to a list of free blocks in the

heap. The free list is a singly linked list of

blocks that have been disposed (2). Each free block

contains (1) a pointer to the next block in the list
(a nil pointer if it is the last block in the list)

and (2) the block's size. An advantage of the free

list is that the information needed to managp a free
block is contained within the block, thus no
additional memory overhead is required for
free-block management. (Computers with virtual
memory may benefit from a separate table of free
blocks to avoid excessive memory-disk swapping.)

New. To allocate storage on the heap, program code passes the size needed to New
(3). --rAppendix A contains Pascal sources of New and Dispose.) If one word is
requested, it is allocated by extending the top of the heap by one word; one-word
blocks do not fit on the free list because two words are necessary to contain pointer

and size information. For a request of more than one word, the free list is searched

for a block of the exact size (exact-fit) of the block requested. If such a block is

found, it is unlinked from the list and allocated; if no such block is found or the

free list is empty, the heap is extended by the number of words needed to allocate the
block. If collision with the stack results from extending the heap, program execution
is terminated. The newly allocated block is zeroed to provide a clean slate and to
help prevent inadvertant violation of the free list. New returns the address of the
new block, and program code assigns this address to a pointer.

Di;pos~ To release storage to the heap, program code passes the address and the
size 0 t block to Dispose. A block that is larger than one word is linked to the

The standard Pascal procedures New and Dispose are implemented using boundary--tag
memory management. This implementation replaces the original New and Dispose module in
the run-time library of Oregon Minicomputer Software, Inc. Pascal-l which executes on
Digital Equipment Corp. PDP-ll computers. Design details, although aimed at this
confLguration, should be generally useful. Performance of the original and
boundary-tag implementations are analyzed and compared.

2. Description of the Original New and Dispose Module

Key words: Pascal, New and Dispose, memory management, boundary tag.

1. Introduction

Many Pascal systems do not fully implement New and Dispose. One can speculate
that (1) the full generality of New and Dispose was deemed unnecessary or undesirable
or that (2) efficient algorithms for New and Dispose are not readily available. Thi~
paper addresses the latter issue.

The standard Pascal run-time environment has two functionally different data
stc.(sgeareas: the stack and the heap.

The number of accessible data items on the stack is designated by the declarations
of a program, and all operations that allocate and release stack storage and access
stack data are implicit in program syntax. In addition, the block structure of a
program designates the period (lifetime) during which stack storage is set aside.

In contrast, the number and lifetime of items on the heap are largely independent
of program declarations, and heap operations are programmed explicitly. At run time, a
program must (1) maintain access to heap data, by using pointers, and (2) allocate and
release heap storage, by using New and Dispose.

Some Pascal systems implement the heap as a second stack (e.g., P-code Pascal
[NAJNJ76). A second stack requires that a program maintain the information necessary
to release heap storage, and that heap storage is released in the reverse order from
which it was allocated. This restriction may prevent the programmer from implementing
algorithms that use a non-stack-like data sttucture [cf., HS76, HS78, W76].

Here, a boundary-tag scheme for managing free blocks permits an efficient
implementation of New and Dispose. This module has many advantages over the original
New and Dispose module in the run-time library of OMSI-Pascal-l [1). OMSI-Pascal's
original New and Dispose provided some insight into the problems of heap management.
With the original module, examples of wide var:ation in memory efficiency and execution
time are apparent. Since one of OMSI-Pascal's strong features is its applicability to
real-time programming, many design decisions for the boundary-tag module were aimed at
decreasing execution time. Memory efficiency improved also.

Performance analyses of each New and Dispose module are compared. Analyses of
specific heap operations were carried out by calculating run times of each
implementation. Simulation tests were run to obtain comparative performance during

Author's address: Behavioral Sciences Department, Eunice Kennedy Shriver Center for
Mental Retardation, 200 Trapelo Road, Waltham, Massachusetts 02154; Phone:

(617)893-3500.

ill oregon Minicomputer Software, Inc. distributes and maintains
that was implemented by Electro Scientific Industries. An
OMSI-Pascal-l was known as ESI-PascaL This Pascal was one of the

Dispose. OMSI-Pascal runs on Digitai Equipment Corp. PDP-ll
standard operating system facilities.

the Pascal system
earlier version of
first to implement
computers and uses

Diagram of Memory Layout:

000000

-c~
c-[T.

[2] Since New and Dispose may be called in any sequence, the heap can contain a mix of

allocated and free blocks. The free list permits New to reuse free blocks.
[3] The size is always an even number of bytes due to the PDP-ll's restriction that
word based data, e.g., integers, be stored at eVen byte (word) locations.



s;ze-12
next

s;ze=16
next=n;l --

s;ze-12
next

s;ze-O F
size 12 A

s;ze-12 A
s1ze-28 F

prevlous
next

s;ze=28 F
slZe=16 A

s;ze=16 A
slZe-12 F

prev; ous
next

~"'"
~SlZe=
previous

next =s;ze=2 A

beginning of the free list and its size is recorded; a one-word block effectively is

not released. Then, the free list is searched for a block adjacent to the top of the
heap. If a block is found, it is released from the heap by unlinking it from the free
list and decrementing $KORE. This search is repeated until a full scan of the list is
made without a decrease in the upper bound of the heap.

The original implementation of New and
Dispose is uncomplicated, requires little
code, and seema as though it would work
well with typical Pascal programs.
Generally, only a few different data sizes
are specified in a program. The exact-fit
allocation scheme often finds the size
block needed in the free list; the size of

the last disposed block is likely to be the
same as the size of the next requested
block, hence, placement of the disposed
block at the beginning of the free list may
speed allocation. However, problems arise
when worst-case memory-space and
execution-time performance are considered.

For example, since the free list does

not keep track of disposed one-word blocks,
one-word blocks limit the extent to which
the upper bound of the heap can be reduced.
Free blocks that are below a one-word block
will never be adjacent to the top of the
heap and cannot be released. Even so,

Dispose continues to scan these free
blocks. A simple solution would allocate

two words for a one-word request so that

the block would fit on the free list.
Another problem, easily fixed, is the

unnecessary search that Dispose makes when
a block is first linked to the free list.
The free list need be searched only if the
block currently being disposed is adjacent
to the top of the heap.

Even with these changes, certain
configurations of the free list generate
inefficient memory use and a wide range of
execution times.

Consider a program that places 100
blocks of one size in the free list.
Suppose the program then requests a block
of some different size. Since New employs
an exact-fit algorithm, a search of the
free list will not produce a block of the
correct size and the heap will be extended
for the new block. Effectively, 100 blocks
of storage are not usable, the total size
of the heap is larger than necessary, and
the execution time of New has incressed by
the amount of time required to search 100

blocks.

Now consider that the 100 blocks were disposed in the reverse order from which
they were allocated (last allocated, first freed). In other words, the blocks nearer
the top of the heap are farther from the beginning of the free list. When the final
block (keystone) between the top of the heap and the 100 blocks on the free list is
disposed, a chain reaction releases all 100 blocks from the heap. However, the full
depth of the free list must be scanned for each block to be released. This results in

a single call of Dispose that performs 5,050 comparisons, i.e., a complexity of
O[ Sqr(N)/2 ].

3. Selection and Design of a Heap Management Algorithm

In both cases described above, the
large number of free blocks causes
worst-case performance. This number can
be reduced by merging adjacent free
blocks. The resulting larger block
would be available for allocation when
its constituent blocks would have been
too small. By allocating a portion of a
large block and returning the remainder
to the free list, the larger block is
available for a variety of smaller size
allocations. Thus, reusability of
available memory is enhanced.

Since the heap grows toward the
stack, the upper extent of the heap
should be kept as low as possible. To

accomplish this, blocks in the free list
can be ordered by memory location;
blocks which are nearer the bottom of
the heap are placed closer to the
beginning of the list. New, employing a
first-fit search algorithm, allocates
the lowest free block of sufficient
size. If the block exceeds the
requested size, only the lower portion
is allocated, and the remainder is
returned to the free list. Biasing heap
allocations toward lower memory helps
avoid collision with the stack.

Dispose, then, maintains the
ordered free list, and merges adjacent
free blocks. Simply, when a block is
disposed, a comparison with blocks
already in the free list would determine
whether to merge the disposed block with
a free block or to insert the disposed
block into the free list; potentially,
a full scan of the free list would be

needed. However, literature on
memory-allocation strategies [K73, S74,
G76, H76, HS76] indicates that a dispose
operation can be performed without
scanning the free list by employing
Knuth's "Boundary Tag" scheme for
free-block management [K73]. The
implementation presented here differs
from Knuth's presentation in order to
maintain the ordered free list.

The boundary-tag scheme uses two additional words of storage to mark the
boundaries of each block; lower and upper boundary words are identical. Each boundary
word contains the size of the block and a one-bit tag that signifies whether the block
is allocated or free. Since the size is always an even number of bytes, bit zero can
be used to tag the block. Bit zero is clear to indicate that the block is free and is

set to indicate that the block is allocated. Dispose need check only the boundary

D;agram of Heap, original module:

$KORE--+

Pascal
po;nter2--+

$FREE--+

Pascal
po;nter1--+

D;agram of a Heap, boundary-tag module:

$KORE--+

Pascal
po;nter1--+

Pascal
pointer2--+

$FREE--+

>-
L::-'
C"C

v
~
c-
rT



words of the blocks adjacent to the block being disposed to determine whether s merge
can be performed.

Each free block contains two pointers which enable access to the next and previous
free blocks during insert and merge operations. Placement and referencing of the
pointers was chosen to facilitate access using the auto-increment/auto-decrement
addressing modes of the PDP-ll instruction set. Also, placement at the bottom of the
block corresponds to Pascal pointer referencing. (Although, placement of the pointers
at the top of the bl.ck would seem advantageous when the lower portion is allocated,
preliminary coding indicated a marked increase in code size and a very slight decrease
in execution time.)

The heap is initialized with boundary blocks at the bottom and top of the heap.
$FREE points to the lower boundary block, which is tagged as being allocated, and links
the bottom and top of the free list into a circular list; the list can be traversed in
either direction. $KORE points to the upper boundary block, which is tagged as free
and has a size of zero. This is a pseudo block in that it is not linked into the free
list; it serves only to provide a boundary word to check when the block adjacent to
$KORE is being disposed. The boundary blocks eliminate the need for tests which
otherwise would have to check boundary conditions during insertion on and removal from
the free list. Without boundary blocks, Dispose would have required as many as 8
conditional tests to select from 12 separate operations. With the boundary blocks,
only 4 tests and 6 operations are needed.

5. Static Analysis

The additional operations of the boundary-tag module require more than twice the
instruction space of the original. The number of storage words for each procedure is:

New
Dispose

original
38
33

boundary tag
103
78

Execution-time equations for both New and Dispose modules were calculated using
the instruction execution times given by the manufacturer for an LSI-11 with a 350
nanosecond microcycle time [DEC77]. Representative data, based on simulation tests
(N-4, random) presented in the next section, are shown in brackets; all execution
times are in microseconds (us). Subsequent references to the original implementation
of New and Dispose and the boundary-tag implementation of New and Dispose are indicated
respectively by New-org, Dispose-org, New-tag and Dispose-tag.

New-org performs three likely forms of allocation: (1) the free list is empty,
allocate by extending the heap, (2) a free block of the correct size is found, allocate
this block, and (3) the free list contains blocks that are not the correct size,
allocate by extending the upper bound of the heap. The execution-time equations for
New-org are:

4. Description of the Boundary-Tag New and Dispose Module
1. free list empty
2. allocate free block
3. extend heap

89.25 + 28.70*L

76.30 + 30.80*Korg + 28.70*L

117.95 + 30.80*Norg + 28.70*L

[ 433.65us]
[ 497.70us]

[1232.35~s]
The boundary-tag module was written so that no changes to the compiler or the rest

of the run-time librar) would be needed (see Appendix Notes).
New. To allocate storage on the heap, program code passes the size of the block

to New. (Appendix B contains Pascal sources of New and Dispose, and Appendix D,
Macro-l1 sources.) A request for one word is changed to two words. The free list is
searched starting at the bottom. If a large enough block is not found, then the heap
is extended, providing that the heap does not collide with the stack. If a block which
is larger than needed is found, the lower portion is allocated and the upper portion
(remainder) is returned to the free list. However, if the remainder would be too small
to fit in the free list, the entire block is allocated. Then, the tags of the new
block are set, the block is zeroed, and its address returned.

Dispose. To release storage to the heap, program code passes the address and the
size -or--tne block to Dispose; the size parameter is ignored since the actual size of
the block is contained in the boundary word. The block's tag is checked to see that it
is allocated and the block's address is checked to see that it is within the heap
(OMSI-Pascal has been extended to permit pointers to data which are not stored on the
heap). Then its tags are set to free, and the addresses of the lower- and
upper-adjacent words are calculated. If the lower-adjacent block is free, the two
blocks are merged: a merge with a lower-adjacent block is rapid, since the next and
previous links are not changed. If the upper-adjacent word is the top of the heap
($KORE) the block is released from the heap. If the upper-adjacent block is free, the
blocks are merged and the links are adjusted; link adjustment depends on whether a
merge with the lower-adjacent block had occurred. If neither adjacent block is free,
the free list is scanned to compare the address of the block being disposed with the
addresses of blocks in the free list. The disposed block is inserted in proper order,
maintaining the ordered free list.

Problems in the original module have been corrected. One-word requests return a
two-word block that will fit in the free list without special handling. Allocations
are made from the lowest possible free block; the upper free blocks are more likely to
be released from the heap. Free blocks are merged; the larger blocks are available
for a variety of allocation sizes, and the shorter free list is more rapidly scanned.
Boundary tags permit most blocks to be disposed without a scan through the free list.

Norg
Korg
L

[25] the number of blocks
[2.5] the number of blocks
[12] the size in words of
required to zero the block

on the free lis~.
searched to find one of the correct size.
the newly allocated block, represents the time
(the 28.7*L term could be recoded to 11.9*L).

The New-tag algorithm also performs three forms of allocation: (1) allocate an
entire block from the free list, (2) allocate the lower portion of a block from the

free list, and (3) allocate by extending the heap. New-tag:

~
<C.
o
C

1. entire free block

2. portion of free block

3. extend heap

160.65 + 26.60*Ktag + 11.90*L
207.90 + 26.60*Ktag + 11.90*L
176.05 + 26.60*Ntag + 11.90*L

303.45us]
350.70us]
531. 65~s]

Ntag
Ktag
L

[ 8] the number of blocks on the free list.
[ 3] the number of blocks searched to find one of the correct size.

[12J the size in words of the newly allocated block.

The advantage cf New-tag results from the fewer blocks contained on its free list.
In the 100 free-block example given in section 2, a single call of New-org runs
3,542.35 us., while New-tag runs 378.00 us. The free list for New-tag contains only
one block. Remember that New-org is extending the heap, while New-tag is reusing
memory from the free list.

The Dispose-org algorithm has two major forms of releasing storage: (1) add the
block to the free list and do not decrease the upper bound of the heap, and
(2) decrease the upper bound of the heap by the size of the block being disposed.

Also, (3) worst-case execution time for a single call is the dispose of the keystone

block described in section 2; representative time is given with Norg-25 for comparison

with (1) and (2). Dispose-org:

L
:J0-
e-.
rl',

1. add to free list
2. decrease heap
3. worst-case

72.45 + 42.00*Norg
92.05 + 42.00*Norg

72.45 + 42*(Sqr(Norg)/2) + 61.60*Norg

[ l,122.45us]
[ l,142.0SUs]
[14,737.45~s]



original boundary tag

1. LAFF 134.05
*

X 134.05
*

X
[ 13,405~s] [ 13,405~s]

2. FAFF (134.05*X)+(42*(Sqr(X)-X)/2) 355.60+(142.S0*(X-2»
[221,305~s] [ 14,350~s]

3. LAFF- (134.05*X)+(42*(Sqr(X)-(X/2») 134.05
*

X
keystone [431, 305~s] [ 13,405~s]

4. odd-LAFF/ (134.05*X)+ (174.4S*X)-(S.05)+

even-FAFF (42*«3/4)*Sqr(X)-X» (14.70*«Sqr(X)/S)-(X/4»)
[324, 205~s] [ 35,447~s]

The Dispose-tag algorithm has six forms of releasing storage: (1) scan the free
list and insert the block without a merge, and (2) five forms of merging the block
without a scan, the range and average of these are given. (3) The keystone dispose is
not worst case for Dispose-tag; it would execute as a merge operation. Instead, worst
case is a full scan of the free list to insert the block at the bottom of the free
list. Dispose-tag:

The test program runs in simulated time; the major loop of the program defines a
simulated-clock tick. Briefly, at each clock tick: (1) All blocks that are at their
lifetime limit are disposed. (2) Then, a single block is allocated, its size and
lifetime determined by generator functions. The allocated block is placed on a list
that is ordered by lifetime limit. (3) Statistics on heap size and utilization and the
numbers of allocated and free blocks are recorded. Periodically, statistics and an
optional picture of memory are output. The program continues until a simulated-time, a
real-time, or a heap-size limit is reached; all tests reported here ran the full
simulated-time limit of 25,000 ticks. At the end of the program, summary statistics
and a frequency plot of memory use are output.

All tests were run with the same main program; only the generator functions for
size and lifetime differed. A variety of generator functions were used. The functions
were chosen so that the average allocated-block size was 12 words and so that the
average number of allocated blocks was 50. A random number generator (0 .. 0.99999)
serves as the basis for size and lifetime selection; the same sequence of random
numbers was used for all tests.

Seventeen size functions were used. Each generated an even distribution of N
block sizes (N - 1..17) centered around 12 words. These 17 size functions are of the
form:

1. scan and insert
2. merge
3. worst-case

143.S5 + 14.70*(Ntag/2)
range (134.05 .. 205.10)

143.S5 + 14.70*Ntag

[ 202.65us]
[average 173.74us]

[ 261.45~s]

An examination of the time needed to dispose an entire list shows the effect that
multiple Dispose operations have on program execution. Assume a list of blocks is
allocated and numbered in order of allocation (l,2,3..X); the free list is initially
empty. Two simple cases of disposing the list are: (1) LAFF--1ast allocated, first
freed--b10cks are disposed in the reverse order from which they were allocated
(X..3,2,l). Each call of Dispose decreases the upper bound of the heap. And,
(2) FAFF--first allocated, first freed--b1ocks are disposed in the same order as
allocation (l,2,3..X). Each call of Dispose adds the block to the free list; the last
call decreases the upper bound of the heap by the extent of the entire list. Also,
worst case for each version of Dispose is: (3) LAFF-keystone, described in section 2
«X-1)..3,2,l,X), is worst case for Dispose-org. And, (4) odd-LAFF/even-FAFF is worst
case for Dispose-tag. The odd numbered blocks are disposed in reverse order, then all
even numbered blocks are disposed in increasing order «X-1)..5,3,l,2,4,6..X); assume
X is an even number. Each dispose of an odd numbered block must scan the entire free
list to insert the block in order, the even numbered blocks merge with both 10wer- and
upper-adjacent, and the Xth block decreases the upper bound of the heap by the extent
of the list.

size(N) : Trunc( (random*N) + (12-Trunc(N/2» )

The function for N-5 requests allocations of 10, 11, 12, 13, or 14 words with equal
probabi1ty. For N-4, allocations of 10, 11, 12, or 13 are requested; functions for

even values of N request blocks whose average size is 11.5 words.
Four lifetime functions were used: (1) Random, evenly distributed from 1 to 100

simulated-clock ticks, (2) Queue, fixed value of 50 ticks, (3) Stack, allocate 100
blocks, one per tick, then dispose all of them in the reverse order from which they
were allocated, LAfF, and (4) SO% Stack,lifetimesare SO% stack-likeand 20% random.
The equations for these functions are (simtime is the value of the simulated clock in
ticks) :

Dispose a list with X blocks [X-l00]:

1. Random:
2. Queue:
3. Stack:

4. SO% Stack:

Trunc(random*100) +1
50
100 - (simtime mod 100)
80 - (simtime mod SO) + Trunc(random*20) [if 0 then 1]

Each size function (17) was paired with each lifetime function (4) to produce a
test (1 of 6S) performed with each New and Dispose module. (Other tests produced
similar results.) Statistics were gathered separately for each test-modu1e
combination.

Figure1 plotsthe averagenumberof blocks on the free list versus the size
function for each test. Data points of the same lifetime function and New and Dispose
module are connected Each data point is the sum of the free-block counts from each
simulated-clock tick averaged over 25,000 ticks. The free-block counts for the
stack-lifetime tests were always zero and are not plotted.

Another way to view the results is to consider the ratio (E) of free blocks to
allocated blocks; the average number of allocated blocks is approximately 50 for all
tests. In the random-lifetime curves, the boundary-tag module starts with 1:5.4% when

N-l and increases to £-20.3% when N-7 where a plateau develops not rising above 24%;
results with the original module begin with ~10.7% when N-1, £-72.6% when N-7 and
continues to increase until £-130.2% when N-17. The other lifetime functions show an
even greater difference between the two modules.

Figure 2 shows the average of total heap size divided by the number of allocated
words, a measure of a module's memory-space efficiency. A value of 100% means that all
words (average 600) are allocated and that there is no additional overhead; the
stack-lifetime tests with the original module show this performance. Even though there
are no free blocks, stack-lifetime tests with the boundary-tag module show a 17%

overhead due to the two boundary words needed for each block. Since the average
allocated block is 12 words, 14 words actually are used; smaller or larger blocks

LAFF and LAFF-keystoneare respectivelythebest-andworst-caseexamplesfor the
original Dispose. The similarity of ordering between the two complicates the
evaluation of run time for programs using the original module.

While the original implementation of New and Dispose exhibits a wide range of
execution times, the boundary-tag implementation is orderly even in the extreme
examples.

6. Dynamic Analysis

Simulation tests were run to collect additional information on the comparative
performance of the original and boundary-tag implementations of New and Dispose. The
simulation program is similar to the one recommended by Knuth [K73] and is based on
Monte Carlo techniques.

V1
tV



oo

~ 200-

o 180-

<

~

~,

:I: 140-

<

i 4:20-

j4:00 -
E

'j
3:40-

3:20-

~
3:00 -

+-

70 -

'0 -
50-

o

40 -

1,J30-
E

20 -
,
<

LO-

0-
I

N- 1
I I I I I I I I I I I
7 8 9 10 11 12 13 14 15 16 17
SizeFunction.

FIGURE 1. FREE BLOCK COUNT

240 -

220 -

160 -

120 -

100 -
I

N- 1
I I

10 11
SizeFunction

I I I I I
12 13 14 15 16

FIGURE 2. HEAP UTILIZATION

5:20 -
5:00 -
4:40 -

1:50 - I
1:47-,

I
N- 1

I I I
9 10 II

Size Function

I
I

I I I I I
12 13 14 15 16

FIGURE 3. TOTAL RUNTIME OF TESTS

- 80% St.ack

-QJ.eue

--Random

Randolll

80% Stack
Que ue

- 80% Stack

- Random- QJ.eue

80% Stack

-- Random

- Queue

-- Stack

I
17

- S tae k -Original

- 80% Stack

-Queue

- Randolla

- 80% Stack
+ - Queue
! - Rando.

+ - Stack -Original
I - Stack - Boundary-tag
I

17

Original

Module respectively raise or lower this overhead. The other lifetime tests show a
correspondence between overhead and free blocks. The original module's overhead
increases with increasing N while the boundary-tag module's overhead stabilizes.

Maximum heap size also closely corresponds to the number of free blocks and to the
average heap size for the various tests. The maximum heap size for the original module
was about 17% greater than average heap size, and the maximum for the boundary-tag
module was 20% greater. However, maximum heap size for the original module wss
generally more than 20% greater than maximum heap size for the boundary-tag module.

Figure 3 presents the total run time of each test. Special hardware to measure
only the run time of the New and Dispose operations was not available. The simulation
program was revised to provide more meaningful run times; specifically, free blocks
were not counted and statistics were not gathered since these measures vary between
modules. The same random number sequence was used so that these statistical measures
would be the same as in the previous tests with the unrevised program. The revised
simulation program still included test-specific operations, such as calculation of
lifetime and size of the block to be allocated and maintenance of the
ordered-by-lifetime list of allocated blocks; however, since the test specific
operations depend on the test performed rather than the New and Dispose module, a
comparison between modules is meaningful even though comparisons between different test
types may not be. Note that the run time difference between the original and
boundary-tag modules on the same test is entirely due to the run times of New and
Dispose.

The stack-lifetime tests contain the fewest test-specific operations and are
considerably shorter than the other tests. The tests with other lifetime functions
contain more test-specific operations and exhibit a shape similar to the previous two
figures.

The boundary-tag module frequently maintains a smaller heap even though the two
additional boundary words are needed per block. Thus, programs using the boundary-tag
module are less likely to terminate from heap-stack collision. The boundary-tag module
executes faster even though it involves more computation to allocate a portion of a
larger block and to doubly link and order the free list.

The boundary-tag module's performance can be explained by the "systematic"
memory-management strategy employed. The effects of the ordered free list, the
first-fit allocation, and the allocation of the lower portion of a free block ensure
that allocations are made as low as possible in memory; this results in s smaller heap
and in maximal reuse of free memory. The boundary tags permit a merge of adjacent free
blocks without a scan of the free list, and the resulting shorter free list permits a
faster scan, when necessary. Similar results are analyzed more fully by Shore [S77].

BOWldary-tag
Mod ule

Original
Module

Boundary-tag
Module

7. Future Directions

~ Tuning

Orig inal

Module

The boundary-tag New and Dispose module shows improved performance in execution

time and free block count. However, the two boundary words per block sometimes can use

a significant proportion of total memory. This is true only when the heap contains

many small blocks. Can this overhead be reduced?
The current module optimizes execution time with the added boundary words;

however, much of the boundary-tag module's improved performance can be attributed to
merged adjacent free blocks, the ordered free list and first-fit allocation. It may be
possible to modify or eliminate the boundary words with only a slight increase in

execution time.
To permit separate tests of each modification, the module should be revised in

stages that progressively simplify the structure of a heap block. First, remove the
upper boundary word. Without this boundary tag, the dispose operation must always scan
the free list. Second, remove the backward pointer and singly link the free list.
Now, the free list can be scanned only forward. Currently, Dispose scans the free list
from top to bottom in order to minimize the average depth of a scan; a block being

disposed would seem to be nearer the top of the heap (a test of this supposi~ion is

Boundary-tag
:iodale



Notes
The Pascal code in Appendixes A and B closely mirrors the actual run-time library
sources which are in Macro-II assembler code. The original New and Dispose Pascal
sources are trsnslated from OMSI-Pascsl's run-time librsry.

--Extensions to standard Pascal are used.
(1) Pointer arithmetic is used where necessary. A pointer is evaluated as a
positive 16-bit integer. i.e.. range 0..64K. Although addresses are actually in
bytes. word addressing is generally used. The comment. {.}. at the left margin marks
pointer arithmetic.
(2) The construct. "@"(identifier>. evalustes as the
where the named object. (identifier>. is stored.
will recognize this extension. The comment. {@}. at
usage.

--In Appendix D. much of the documentation text has been removed.
information has been covered in the body of this paper.

--Persons wishing to install the boundary-tag module in their
that file open code (in S3 or SUPOPN) uses storage on the
This code should be changed so that storage is allocated by

necessary. cf.. [S77]). Finally. remove the lower boundary word. This lower boundary
word contains the actual size of the block which may be slightly larger than the
requested block. Remember that while a free block is being allocated if the upper
portion is too small to fit on the free list. the entire block is allocated.
Therefore. the elimination the lower boundary word is not recommended.

Alternately. other methods of allocsting small size blocks could be explored.
Architectures which have large word sizes (32..64 bits) and restricted byte addressing
exhibit a greater memory-space overhead when small blocks are requested. One possible
method (described using a 16-bit architecture) allocates a larger block. e.g.. 16
words. and allocates successive requests of one word from this same block; an
additional word in the block would "bit map" the allocated portions. When the block is
full. another 16-word block would be allocated. This method would require a separate
free list of these partially allocated blocks. This two-tier structure could be
considered for 2. 3 word blocks. also. Such an arrangement of heap structure could
reduce memory-space overhead for small blocks while maintsining the advsntages of
boundary tags. Other improvements in the boundary-tag module may be possible in a
different implementation environment.

[HS76]

[HS78]

[JW74]

[K73]

[NAJNJ76 ]

[OMSI78]

[S74]

[S77]

[W76]

Extensions

The boundary-tag module provides a fully general facility. permitting all typical
uses of memory management. The heap becomes a perfect place to store objects whose
size is run-time dependant.

The run-time system can make extensive use of the heap for I/O buffers. queues.
etc. Small processor systems can use the heap for external code swapping instead of
using the traditional overlay scheme. Demand paging (with random access files) can be
used for virtual arrays and data base files.

The Pascalset typeneednot be restrictedto the typical64 or 256 elements.
Extensions to standard Pascal (i.e.. dynamic arrays. strings. etc.) are easily

implemented. For example. an Allocate procedure has been written with which a program
can request any size block from the heap at run time. Allocate has been used to
implement dynamic arrays accessed via a pointer.

The boundary-tag module provides the programmer with a powerful and efficient heap
structure that not only implements standard Pascal effectively. but also permits
applications that extend Pascal's scope.

Acknowledgment

I would like to thank William J. McIlvane and F. Garth Fletcher for their helpful
comments on drafts of thispaper.

References

[AU77]

[DEC77]

[DEC78]

[ES 176]

[FL77]

Aho. Alfred V.. and Ullman. Jeffery D.. Principles of Compiler Design.
chapt. 10, Addison-Wesley. Reading, MA, 1977.
Microcomputer Handbook. Digital Equipment Corporation. Maynard. MA. 1977.
pp. Bl-B5.

RT-!! Advanced Programmer's Guide, Digital Equipment Corporation. Maynard.
MA. 1978.
"ESI-Pascal Supplement to the User Manual and Report." Electro-Scientific
Industries, 13900 NWScience Park Drive, Portlan~ 1976, 1977.
Fischer, Charles N.. and LeBlanc. Richard J., "Run-Time Checking of Data
Access in Pascal-Like Languages," in Lecture Notes in Computer ~.
Vol. 54, Springer-Verlag, New York, 1977, pp. 215-230. --
GrTffi ths, M.. "Run-Time Storage Management," in Lecture Notes in Computer
Science, Vol. ~, Springer-Verlag, New York. 1976;pp:-r9~.

[G76]

[H76] Hill. Ursula, "Special Run-Time Organization Techniques for Algol-68." in
Lecture Notes in Computer Science, Vol. 21. Springer-Verlag. New York. 1976.
pp:-m-~ -- - - - --
Horowitz. Ellis. and Sahni, Sartaj. Fundamentals
Computer Science Press. Woodland Hills. CA. 1976. pp.
Horowitz, Ellis. and Sahni. Sartaj. Fundamentals of
Computer Science Press. Woodland Hills. CA. 19/8.
Jensen. Kathleen, and Wirth. Niklaus, Pascal User Manual and Report,
Springer-Verlag. New York, 1974. 1978.
Knuth, D.E., The Art of Computer Programming.

Addison-Wesley. Reading. MA. 1973, pp. 435-463.
K.V. Nod, U. Amman, K. Jensen. H.H. Nageli, Ch. Jacobi, "The Pascal <P>
Compiler: Implementation Notes. Revised Edition." Eidgenossische
Technische. Hochschule. Zurich. 1976.
"OMSI-Pascal-l User's Manual," Oregon Minicomputer Software. Inc., 2340 SW
Canyon Road. Portland, OR 97201. 1978.
Shaw.AlanC" The Logical Design of Operating Systems. Prentice-Hall.
Englewood Cl1ffS:-NJ~ pp:-Tm-lJi.
Shore. John E.. "Anomalous Behavior of the Fifty-Percent Rule in Dynamic
MemoryAllocation."Com.ACM 20.11 (Nov. 1977), pp. 812-820.
Wirth. Niklaus. Algoritnms + Data Structures Programs.
Prentice-Hall. Englewood Cliffs, NJ, 1976.

of Data
14!-1~

Computer

Structures,

Algorithms.

Vol.
.!.'

2nd

chapt. 4.

Appendix

address of the storage location
Those familiar with OMSI-Pascal
the left margin marks this

Most of

OMSI-Pascal should note
heap without calling New.

an explicit call to New.

ed. ,

the



Free~.utag :-alloc;
Kore~.ltag :- freed;

Appendix A--Driginal New and Dispose

type
blockptr - ~block;
block - record

--;;ext

baize
filler

~;

blockptr; {--link to next free block--}
integer; {--size in words of block--}
array [3..bsize] of word

var
Free,

Kore : blockptr;
{--pointer to beginning of free list--}
{--pointer to beginning of unused area--}

function New (size{in words} : in~eger) : blockptr;
(--calling sequence: P :- New size)--}

var
--Scan, lastscan blockptr;

i : int'}ger;
begin{New

scan :- nil;
if ( (Free-<> nil) and (size >- 2{words}) )

!:hen {--free-Tistls not empty--}
-cegin {--search for exact-fit--}

{@} --r&8tscan :- @Free; {-i.e., lastscan~ - Free--}
scan :- Free;
while

( (scan~.bsize
<>

size) and (scan <>
nil)

)
~

begin
lastscan :- scan;
scan .. 8can~.next

end
endj-

if ( (scan <> nil) and (size >- 2{words}) )

~hen {--free~oc~ound, unlink it from list--}
---rastscan~.next :- sC8n~.next
else {--no free block found or size is I word--}
begin {-extend heap for new block--}
--scan :- Kore;

{~} Kore :- Kore + size;

if (Kore>- Stack Pointer)
~hen {-collision with stack-}
---ratal_error(-Heap overwriting Stack-)

end;

New:- scan; {--return address--}

{--clear the new block-}
for i:-size downto I do scanA.filler(i] :- 0

endTNew}; --
procedureDispose(P ; blockptr; size{in words} integer);
var
--Scan ; blockptr;
begin{Dispose}

if ( (P
<> nil) and (size>- 2{words})

- {--no action fur I word block--}

then
begin
scan ;- P; {--set up free block--}

scan"'". baize . - siz'e.;

}
-}

scan next :- Free;
Free :- scan;
scan :- @Freej{@}

{--link to beginning--}
{-- of free list-}

{--search free list to release blocks from heap--}
while (scan~.next <> nil) do

rf ( (scan~.next ~can~.next~.bsize) - Kore
~hen {--release block and try again--}

be~in
ore :- scanA.next;
scanA.next :- scan next next;
scan :- @Free

end
elSe'"

scan :- scan next

{@}

end
end {Dispose};

}

AppendixB--Boundary-TagNew and Dispose }

const
aIToc true; {-bit set--}
freed false; {--bit clear-}

type
blockptr - ~block;

block - record
---rai ze

ltag
next
prev
filler:
us!ze
utag

end;

integer, {-only bits<I..15>--}
boolean; {-only bit<O>--}
blockptr; {--up link by address--}
blockptr; {--down link by address--}
array (3..lsize] of word;
integer, {--onlY-bits<I..15>--}
boolean {--only bit<O>--}

var
Free.

Kore: blockptr;
{--pointer to boundary block at bottom of heap--}
{--pointer to boundary block at top of heap--}

function New (size{in words} : integer) : blockptr;
var
scan, remscan : blockptr;
i : integer;

procedureinitializeheap;
begin {--onlycalledonce,to set up boundaryblocks--}

{~} --yr;e:- Kore + l{word};
FreeA.Isite ;- 2{words}, FreeA.ltag;- alloc;

Free next :- Free;
Free~.prev :- Free;
FreeA.usize :- 2{words},

{A} Kore ;_ Kore + 4{words}.
KoreA.Isize :- 0

~;

begin{New}
if (size < 2{words})
!:hen size:- 2{words};

scan :-' Free;

{--s request of one word--}
{--will return two words--}

>-
<S'o
C



if (Free - nil)
~hen {-thIS is the first New ca11--}
---rnitia1ize heap;
else {-search free list for first-fit-}
-repeat

scan :- scanA.next
until ( (scan - Free) ~ (scan4.1size >- size) );

{
-block

then
beg:np

.1tag
p4.utag
LA :- P
IIA :- P

:- freed;

:- freed;

- 2{words} - LA4.usize;

+ P4.1size + 2{words};
{--lower adjacent of P-}
{--upper adjacent of P-}

better not be free already-}

if (scan - Free)
-rhen {--did not find a large enough free b1ock--}
~in {--must increase heap size--}
--scan :- Kore + l{word};

Kore :- Kore + aize + 2{words};
{--stack is moved for some system ca11s--}
if ( (Stack <- Kore) and (Stack> Free) )

~hen {-collision with stack-}
---rata1 errore-Out of Memory-);
Kore4.1size :- O. Kore4.1tag:- freed;

end

if (LA4.utag - freed)
-rhen {--merge P with LA--}

begi~
LA .1size :- LA4.1size + P4.1size + 2{words};
LA4.usize :_ LA4.1size;

P :- LA
end;

remscan next
remsean prev

:- scan next;
:- scan prev;

if (UA4.1tag - freed)
-rhen {-decrement or merge?--}
---rf (UA

- Kore)
~hen {--decrement Kore-}

begin
if (P - LA)
~hen {-remove P from free 1ist--}
~in
~prev"'.next :- Free;

Free4.prev :- p4.prev
end;

Kore-:- P - l{word};
Kore4.1size :- O. Kore4.1tag:- freed

end
else {--merge P with UA--}

befin
f (P <> LA)

~en {-also link P to previous--}

beg:n
P .prev :- UA4.prev;
p4.prev4.next :- P

end;
P next :- UA next;
P4.1size:- P4.1size + UA4.1size + 2{words};
P4.usize:- P4.1size;
p4.next4.prev :- P

end

else if ( scan4.1size>- (size + 2{words} + 2{words})
"t1ien-{-found a free block that is too large--}
~in {-split into remainder-}
--reMscan :- scan + size + 2{words};
remscan4.usize :- scan4.usize - size - 2{words}.
remscan utag :- freed;
remscan lsize :- remscan uslze.
remscan ltag :- remscan utagj

remscan next prev remscanj
remscan prev next ".remscan

end

else {--found a free block just about the right size-}

begin {--use the entire b1ock-}
--siZe :- scan lsizej

scan next prev ". sean prev;
scan prev next :- scan next

~;

New :- scan;
scan lslze :- size, scan ltag:- alIoc;
scan uslze:- size, scan utag:- alIoc;
{-clear the new b1ock-}

for i:-size downto 1 do scan4.fi11er(i] :- 0
en<ITNew}; --

procedure Dispose (P : b1ockptr);

t do not need size parameter because-}

{-boundary words contain actual size--}
var
--rA. UA. scan: b1ockptr;

bei~n{D1spose}
( (P < Free) or (P > Kore) ) {--oMSI permits pointers-}

~en warning(-nOt a heap pointer-) {- to non-heap objects-}

!!!.! .!!.

( (P
<> nil) and (p4.!tag

<> freed) )

else if (P <>
LA)

~n-{--must search to insert P in order--}

begin
Bcan :- Free;
repeat
~an :- scan4.prev {--search from top to bottom--}
until (scan < P);

~xt :- scanA.next;
scanA.next :- P;
pA.prev :- scan;
p4.next4.prev .- P

end
end-

end{1IT"ipose};



INTHEP:
MOV RO,-(SP)
MOV @I$KORE,RO
MOV 15..(RO)+
MOV RO,@I$FREE
MOV RO, (RO)

MOV (RO)+,(RO)+
MOV 15.,(RO)+
MOV RO,@I$KORE
CLR (RO)
MOV (SP)+,RO
RTS PC

, -----

Module Version l.lc: 2D-Jan-80

Module Version l.lb: l7-Nov-79
Module Version l.1 16-Mar-79
Module Version 1.0 : 03-oct-78

.PSECT $$$NEW 11.1

.ENABL LSB 11.1

.GLOBL $B70,$NEW {I export global procedure I}

.GLOBL $FREE,$KORE {I import global pointers I}

.GLOBL ERRI.1 {I import global conditional I} IB

.MCALL .EXIT, .PRINT {I importsystem macros I}

j { for Pascal Vl.l, debugger, set true } IB
.IIF NDF,ERRl.l,ERRl.l-0; (undef(errl.l)lerrl.1-false)j IB

--

Error handling receives only brief mention since its implementation depends

on the fscilities of the total Pascal systemj however, a few problems with
memory management and pointers, in general, are worth consideration (cf.,
[FL77J).

Correct operation depends on the integrity of the information stored to
manage memoryj a program that writes outside of an allocated block can corrupt
management information. To prevent corruption, bounds checking should be
incorporated in the Pascal implementation (bounds checking is available in
OMSI-Pascal Vl.l). However, a few additional tests in the boundary-tag module
may provide information on the cause of a failure and possibly show how to
continue program execution.

During Dispose, a block's upper and lower boundary words can be comparedj
a difference indicates an out-of-bounds access. The size parameter, which
approximates the actual block size, can be used to examine adjacent blocks and
possibly to reconstruct the boundary words. In addition, since the free list is
ordered, the pointers can be checked for proper order. With a short free list,
these tests would not incur a great time overhead. If the free-list links have
been overwritten, the entire heap could be scanned by use of the size field in
the boundary words. Sometimes regeneration of the free-list links and
correction of mismatched boundary words may be possiblej in most cases though,
little can be done, except to terminate program execution.

Dangling pointer references also pose a problem. Compiler generated code
passes the address of the block to be disposed and leaves the pointer to this
block unchanged. In other words, the pointer points to a free block giving the
program direct access to the free list. Dispose should be able to reference the
pointer so that its value can be set to nil. When there are multiple pointers
to the same block, however, the other pointers continue to reference the free
list, even though the disposed pointer may be set to nil. A solution requires

redesign of pointer implementation.

.SBTTL Heap Initialization

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Appendix C--Remark on Error Handling

Initag Version : 1.0 03-oct-78

.PSECT $$$NEW

.GLOBL $FREE,$KORE

Il.l

{I import global pointers I}

proc init heapj
begin -

{I RO--$KORE #}{ $KORE is first of heap

$FREEA.lsize:-2w $FREEA.ltag:-alloc;
$FREE:-$KORE+lwj
$FREEA.bot:-$FREE;
$FREEA.top:-$FREEj
$FREEA.usize:-2w $FREEA.utag:-alloc;
$KORE:-$KORE+4wj
$KOREA:-O;

end;

.SBTTL $B70: New with boundary tag

----- - - - - - - - - - - - - - - - - - -

Newtag Version :

Newtag Version :

--option call to

Newtag Version :

Newtag Version :

1.lc: 20-Jan-80 j change in memory overflow test
l.lb: 17-Nov-79 j change in memory overflow test
debugger,PascalVl.l
1.1 16-Mar-79 j minor changes to improve speed
1.0 : 03-oct-78

Calling Sequence
Appendix D--Boundary-Tag New and Dispose, Macro-II

.TITLE NEWDIS : NEW&DISPOSE w/boundary tag

.IDENT/VOI0IC/

.ENABL LC,REG

NEW(P)j

.REPT0
Stack Image during call :

Tested 26-Jan-80

Tested
Tested
Tested

24-Nov-79
30-Mar-79
16-oct-78

Branko J Gerovac
Eunice Kennedy Shriver Center
200 Trapelo Road
Waltham, Massachusetts 02154
(617) 893-3500 ext 157

MOV
JSR
MOV

SIZE,-(SP)
PC, $B70

(SP)+,P(Rx) register 5 or 6 offset

even size in bytes

.ENDR



$B70:
$NEW:

1$:

2$:
3$:

4$:

41$:

5$:

.IF 1£,

. GLOBL

.GLOBL

.ENDC

ERR1.l
RTERR
COROVR

MOV
MOV
MOV
MOV
MOV
CMP
BRIS
MOV

RO,-(SP)
Rl,-(SP)
R2,-(SP)
R3,-(SP)

10. (SP) ,RO
RO,14.
1$
14.,RO

MOV
MOV

@#$FREE,Rl
Rl,R3

BNE
JSR
BR

2$
PC,INTHEP
4$

MOV (Rl) ,Rl

CMP
BEQ
CMP
BRIS
BR

Rl,R3
4$
-2. (Rl) ,RO
5$
3$

MOV
TST
MOV
TST
ADD
MOV
BCS
CMP
BRI
CMP
BRI

@1$KORE,Rl
(Rl)+
Rl,R2
(R2)+
RO,R2
R2,@#$KORE
OUTMEM
SP,R2
41$
SP,@I$FREE
OUTMEM

CLR
BR

(R2)
7$

MOV
ADD
CMP
BLO
MOV
MOV
SUB
SUB
ADD
MOV
SUB
MOV
MOV

18. ,R2
RO,R2
-(Rl),R2
6$
(Rl)+,R2
R2,R3
RO,R3
14.,R3
Rl,R2
R3, (R2)
R3,R2
R3,-2.(R2)
(Rl)+,R3

lif (errl.l<>O) Ithen
{I import global proc I}
{I import global label I}

lendif

proc NEW(size:int):pointer;
begin

{I save registers I}
{I RO-size I}
if size < 2w

then
size:-2w

endif ;
{I Rl-scan I}
{I R3--$FREE I}
if (scan:-$FREE)-nil

then
init heap;
goto-alloc from $KORE

endif; --
repeat

scan .. scan-,next
until

(

scan-$FREE
or

scanA.size>-size
);

if scan-$FREE
then allocate_from_$KORE

scan:-$KORE+lw;
{I R2--$KORE I}

if carry set($KORE:-$KORE+size+2w)
or «SP<-$KORE)

and
(SP>$FREE) )

then error(out of memory)
endif ;
$KOREA:-o;

else if scanA.size >- size+2w+2w
then

al1oc_lower_portion_of_scanb1ock

{IRJ--scsnA.size-size-2w I}
{IR2--remscan #}

remscanA.usize:-scanA.size-size-2w; 11.1
11.1
11.1remscanA.ls1ze:-remscanA.uslze;

{IR3--scanA.next I}

IB
IB
IB
IB

6$:

7$:

8$:

11.1
ILl

OUTMEM:

IB
IB
IB

ERRO:

MOV
HOV
CMP
MOV
HOV
BR

R3, (R2)+
(Rl),(R2)
-(Rl),-(R2)
R2,2.(R3)
R2,@2.(R2)
7$

remscanA.next:-scanA.next;
remscanA.prev:-scanA.prev;

remscanA.nextA.prev:-remscan;
remscanA.prevA.next:-remscan;

else allocate entire scanblock :
s1ze:-scanA7sizej-
8canA.prevA.next:-scanA.next;

scanA.nextA.prev:-scanA.prev;
end if ;

New:-scan;

scanA.us1ze:-slze. scanA.utag:-al1ocj
{I clear carry et a1 I}

for i:-size in words downto 1 do

scanA[i]:-o-
endfor;

{I pop registers I}

end;

lif (errl.l<>O) Ithen
rterr(corovr)

lelse
print('out of memory')

,
.ASCIZ /?Pas1ib-F-NEW-out of Memory/
.EVEN
.ENDC lendif

IC
IB
IB
IB
IB
IB

MOV
HOV
HOV
HOV

(Rl )+,RO
(Rl),@2.(Rl)
(Rl) ,R2
2.(Rl),2.(R2)

11.1

IB
IB
IB
IB

IB

'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.
n.l

HOV
INC
HOV
ADD
DEC
MOV
CCC
ROR

Rl,lO. (SP)
RO
RO,-(Rl)
(Rl)+,Rl
Rl
RO, (Rl)

.SBTTL $B72: Dispose with boundary tag
ILl
11.1
11.1
11.1

RO

CLR
SOB

-(Rl)
RO,8$

Calling Sequence

Distag Version: 1.1 16-Mar-79; check for pointer not to heap
Distag Version: 1.0 03-OCt-78

11.1
11.1
11.1

HOV
HOV
HOV
HOV
RTS

(SP)+,R3
(SP)+,R2
(SP)+,Rl
(SP)+,RO
PC

.IF
JSR
.WORD
.IFF
. PRINT
.EXIT

NE, ERRl.l
R5,RTERR
COROVR

ERRO

.DSABL LSB

DISPOSE(P);

HOV
HOV
JSR

P(Rx) ,-(SP)

SIZE,RO
PC, $B72

register 5 or 6 offset

even size in bytes

Vl
00



22$: end if ;

Stack Image during call I I CLR -(R1 ) (P_1w)A :-0; 11.1
I block addr 1 MOV R1,@#$KORE $KORE:-P-1w;,- PC ret -I BR 27$ u

RO I size I
I-R1-sav-1 23$: ..lse { merge(P,UA) :10.

-- I-R2- sav-' v(- SP CMP R1,RO ifP<>LA n
1- - -I :r-BEQ 24$ th...n r

MOV 4.(R2),2.(R1) PA.prev:-UAA.prev; z
.PSECT $$$DIS 11.1 MOV Rl,@2.(R1) pA.prevA.next:_P n
.ENABL LSB 11.1 24$: ,mdif; :£

(/'
MOV 2.(R2),(R1) ?h.next:-UAA.next;

'"
.GLOBL $B72, $DISPO {# export global procedure #} ADD (R2),-(R1)

'".GLOBL $FREE, $KORE {# import global pointers #} ADD 114.,(R1) PA.lsize:-pA.lsize+UAA.lsize+2w; <J'

.GLOBL WRND1 {# import global conditional #} 11.1 ADD (R2)+,R2

.MCALL . PRINT {# import system macro #} 11.1 MOV (R1)+, (R2) PA.uslze:-P"'.lsize;
MOV (R1),R2

.IIF NDF,WRND1,WRND1-1 (undef(war~d1)lwarn_dl-true); 11.1 MOV R1, 2. (R2) pA.nextA.prev:-Pj
, BR 2'1$
$B72: 25$: endif;
$DISPO: proc DISPOSE(P:pointer); CMP R1,RO else if P(>LA

MOV Rl,-(SP) begin BEQ 27$ a:hen { scan and insert(P) j

MOV R2, -(SP) MOV @#$FREE,R2 scan:-$FREE; {I R2--scan n
MOV 6. (SP) ,R1 {I R1--P I} 26$: repeat
BEQ 27$ if P-n1l then goto return endif; MOV 2. (R2"R2 scan:-scanA.prev v

CMP R2,R1 until n

.IF NE, WRND1 lif (warn d1(>O) 'then !l.1 BKIS 26$ (scan<P);
~CMP R1,@I$FREE if P($FREE 11.1 MOV (R2),(R1) pA.next:-scanA.nexc;
~BLO NOHEAP or 11.1 MOV Rl, (R2 ) scan.....next:-Pj e

n
CMP R1, @I$KORE P>$KORE 11.1 MOV R2,2.(R1) P"oprev:-scan; :;<

BHI NOHEAP then warn(not a heap ptr) endif; 11.1 MOV (R1),R2
.ENDC lendU 11.1 MOV R1,2.(R2) P.....next.....prcv:-P; "',

"27$: dndif; c
BIT 11.,-(R1) { use physical size } MOV (SP)+,R2 return : c

BEQ 27$ if PA.ltagafree then goto return end if; MOV (SP)+,R1
MOV (SP)+,(SP)

DEC (R1) pA.ltag:-free; RTS PC end;
MOV R1,RO {# RO--LA--lower_adjacent(P) #}

MOV (R1)+,R2
ADD R1,R2 .IF NE, WRND1 11.1
DEC (R2)+ P.....utag:-free; NOHEAP: :1.1

{I R2--UA--upper_adjacent(P) #} .PRINT WP.N1 11.1
BIT #l.,-(RO) if LAA.utagafree 11.1 BR 27$ 11.1
BNE 21$ then WRN1:

j i -, 1
SUB (RO) ,RO { merge(LA,P) .A&CIZ /?Pas1ib-W-DISPOSE-nota heap point..r/ 11.1
ADD -(R1) ,-(RO) .EVEN 11.1
ADD #4.,(RO) LAA.lsize:-LAA.lsize+PA.lsize+2w; .ENDC 11.1

L
ADD (R1)+,R1 :10

MOV (RO)+, (R1) LAA.usize:-LAA.lsize; .DSABLLS8 11.1 c-rT,
MOV RO,R1 P:-LA

21$: end if ; ,.~-"'-...~._-- V1

-'-'-~' ...- -; cD

BIT 11.,(R2) if UAA.ltag-free
BNE 25$ then
CMP R2,@#$KORE if UA-$KORE
BNE 23$ then { merge(P,$KORE)

CMP R1,RO if P-LA
BNE 22$ then
MOV (R1),@2.(R1) P"'.prev.....next:-P.....next;
MOV (R1),R2
MOV 2.(R1),2.(R2) P.....next.....prev:-P.....prev;



ANPA

1350 Sullivan Trail,

P.O. Box 598, Easton

L Pennsylvania 18042 -.J

UNIVERSITETET I OSLO

EDB . SENTRET

A Simple Extension of Pascal

for Quasi-Parallel Processing

POSTBOKS 1059 -
BLINOERN

OSLO:3 . NORWAY

PHONE (47)-

BLINDERN. June 18, 1980
Terje Noodt
Dag Belsnes

Computing Center

University of Oslo

Mr. Richard J. Cichelli

1 Introduction

The University of Oslo has for a number of years been engaged
in the development of systems for data communications. The
main work investments have been the design of suitable
protocols, and the implementation of these in network node
machines. Most of the node machines have been of the Nord
family, produced by the Norwegian manufacturer Norsk Data A.S.

Dear Mr. Cichelli,

There exists no suitable language on the Nord for programming
real-time stand-alone systems. Therefore, all programming has
been done in assembly code. Even though we have felt the need
for a high-level language tool, the cost of developing and/or
implementing a suitable language was thought to be high.

'1e are of course happy to submit the QPP article for

publication in Pascal News. (Actually, being a member of PUG

myself, I should have thought of sending you the article

earlier.)

Some time ago, we looked into the possibility of using the
existing Pascal compiler for our purposes. It proved that a
simple but usable language tool could be made from Pascal very
cheaply. We have called this extension of Pascal for QPP
(Quasi-Parallel Pascal). This article describes QPP and its
implementation.

l Basic E~imitive~

Enclosed is a copy of the SIGPLAN article together with the

code implementing the external procedures on the Nord.
The present section first discusses how to establish a
suitable process concept. Then the sequencing of processes is
treated.

2.1 Processes

The most important task in the design of QPP was to establish
a process concept without deviating from Standard Pascal. In
this context, a process is a sequential program together with
a set of data on which the program operates. We call this set
of data the attributes of the process.

In several respects, the Pascal procedure has the
characteristics of a process. We have managed to use the
procedure as a process, by overcoming the following two
obstacles:

1. It is necessary that several processes can be executed
simultaneously - that is, the processes must be able to
have active phases in quasi-parallel.

8



When a process p calls DETACH, it becomes passive. Control
goes to the last process x which called RESUME(p).

additional concepts are needed. Also in this case SIMULA 67 is
used as a source of inspiration. The new programming platform
contains:

The following method has been used to implement RESUME and
DETACH efficiently and with ease. * a system time concept.

A Pascal procedure object will normally contain one location
for the return address (RA), and one location for the dynamic
link (DL). Let CP be a pointer to the currently active
process, and consider the main program to be a process with
the name MAIN.

* a "sequencing set" containing the processes scheduled for
future execution.

*
primitives for process scheduling.

In this section we show how these concepts may be implemented
in Standard Pascal, using the basic primitives of section 2.The operation RESUME(p) leaves the current program address in

CP.RA, and the address of the currently active object (which
may be CP itself or an ordinary pr ocedure called by CP) in
CP.DL. p.DL becomes the new active object, and execution is
resumed at p. RA.

3.1 Simulated time, ~eal tim~

In the case of simulations, the system time is introduced as
in SIMULA, but in a real-time environment the system time
corresponds closely to the time defined by the computer's
real-time clock. The system time is represented by a variable
in the main program:

SYSTIME: real;

The DETACH operation is restricted to be used to give control
back to the main program. It leaves the current program
address in CP.RA, and the address of the currently active
object in CP.DL. MAIN.DL becomes the new active object, and
execution is resumed at MAIN.RA.

The DL location of
executing. Thus, CP
DL equals zero. The
the Pascal program to

a process is zero while the process is
is found by following the DL chain until
following function is provided to enable

find CP:

The execution of an active phase of a process, called an
event, is regarded as not consuming system time. That is,
SYSTIME is only updated between the events. How SYSTIME is
updated is described below.

function THISPROCESS: PTRPROCESS;
~ The sequenci~ ~et

A process may be scheduled
event. An event is associated
when the event will occur.
variable local to each process:

EVTIME:real;

for the execution of a future
with a system time, indicating
This time is represented by a

~ Summary

With a very small effort a primitive but usable process
concept has been implemented within Pascal. On the Nord-10,
the routines NEWPROCESS, RESUME, DETACH and THISPROCESS
consist of ca 60 assembly instructions. No changes have been
made to the Pascal compiler or the Pascal run-time library.
Although Pascal may operate differently on other computers,
the authors believe that our method of implementation may be
adapted to most Pascal systems.

All scheduled processes are collected in a set, the sequencinq
set, sorted on the EVTIME variable. The sequencrng-5ef-rs

represented by a main program variable:

SQS:PTRPROCESS;
which points to the first member of the set, and a variable

NEXTPR:PTRPROCESS;
in each process pointing to the next element of the sequencing
set.

On the Nord-10, an ordinary procedure called from a process
will execute in the memory space allocated to that process.
This requires that the process object be large enough to
accommodate such procedure calls. We have solved this problem
by letting NEWPROCESS have one extra parameter, giving the
largest necessary space for the process.

When an active phase of a process ends, the first process P in
the SQS will be the next process to execute an event. The
value of SYSTIME is changed to EVTIME of P. If simulated time
is used, the simulation is carried on by resuming the process
P.1 Proc~~~ Sch~d ul in'l

Section
concept
program

2 defines and indicates how to implement a process
and the basic primitives for process sequencing. To
a real-time system or a simulation model, some

In a real-time system the new value of SYSTIME is compared
with the computer's clock. If the difference is positive, the
Pascal program makes a monitor call to release the use of the

a;
N



2. It must be possible for processes to exchange
information that is, one process must be able to
access the attributes of another process.

p'!'.y .-

with pt do
-n x = .

To transform the procedure concept into a process, point 1.
requires that the attributes of a "p~ocess-procedure" m~st be
retained while it has a pass1ve phase. That 1S, a
"process-procedure" cannot execute on the stack top as usual,
but must have some permanent space in memory.

Point 2. requires some form of looking "into" a procedure. In
Pascal, a similar mechanism is given by the record concept.
Consider the following program fragment:

Several processes of the same type may be generated as
follows:

var
--PI, p2: PTRPROCESS;

pI .- NEWPROCESS(processprogram)
p2 := NEWPROCESS(processprogram)

~
PROCESS record

x, y: T
end;

PTRPROCESS~tPROCESS;
var
--p: PTRPROCESS;

Processes of different types may be defined by declaring
different PROCESS types, or by defining a variant part for
each type of process within PROCESS.

Thus, a usable process concept has been established by

1. Implementation of the function NEWPROCESS. In Nord-10
Pascal this is an assembly routine of 15 instructions.

proced~ processprogram;
var
~OCALS: PROCESS;
begin

with LOCALS do
beg1n

2. Requiring that the programmer stick to the following
rules:

a. Define a record type PROCESS which contains those
variables of a process which are to be visible from
outside the process.

end
encr--

within the with statement in processprogram the attributes x
and y may be accessed directly.

A process is created by calling the function

b. Declare a variable LOCALS of type PROCESS as the
first variable within the process procedure.

c. Surround the statements of the procedure by

with LOCALS do begi~ end

function NEWPROCESS(proce~ure PROG);

This function allocates data space for the procedure PROG on
the heap. The function value is a po~nter to th7 reco~d
containing the process attributes. In rea11ty, the p01nter 1S
a reference to the inside of the procedure object. The Pascal
system, however, treats the pointer as if it were generated by
the NEW function.

2.2 Seque~c ing

It must be possible to start and stop the execution of any
process, in order that operations occur in the sequence
required by the actual application. For this purpose, two
operations are implemented (these are modelled after the
corresponding primitives in Simula 67):

procedure RESUME(p: PTRPROCESS);

The main program (or another process) may access
attributes through the pointer generated by NEWPROCESS.

The following program fragment shows how a process
generated, and its attributes accessed from the outside:

the This procedure transfers
process given by the actual
is resumed at the place
passive. The caller becomes

control from the caller to the
parameter p. The execution of p
where the process last became

passive.is

p := NEWPROCESS(processprogram) ;
procedure DETACH;



----

CPU for the given amount of time. On return from the monitor
call the procedure RESUME(P) is called.

which hooks one or more computers into the network. ~t the
University of Oslo, this node is a Nord-10. The size of the
UNINETT node program is about 2200 lines of QPP code. In the
development of this program, keeping to the restrictions of
QPP was neither hampering nor the cause for any serious
problems. The UNINETT project has shown that a considerable
amount of development time may be gained by going from
assembly code to a "primitive" high-level language tool. In
cases where a fUll-fledged language tailored to the actual
application (such as Concurrent Pascal) is not available,
there seems to be good reason to select a solution such as
our s.

3.3 Pro~es§. sch<:.~i~

The following procedures define a small but convenient set of
operations for discrete event scheduling. ~ll procedures are
written in Standard Pascal. The amount of Pascal code is about
40 lines. For a detailed description see the appendix.

procedure PASSIVATE;

The caller process ends its active phase, and the next
event is given by the first element of the SQS. SYSTIME is
updated, and in the real-time case the program may request
a pause before the next process is resumed.

The UNINETT node program was developed on a Nord-10 running
the MOSS operating system. The first step in testing the
program was to run it under MOSS as a simulation, using
simulated time. Then the program was run in real time under
MOSS. Finally, the program was transported to the UNINETT node
machine, where it runs in real time. The node machine has a
rudimentary operating system only, which supports stand-alone
systems of this kind. The small size of the code which
implements the QPP process primitives, has allowed us to
easily make different versions to adapt to the environment in
which the UNINETT program was to be run. It has proved very
valuable to run the program as a simulation before it was run
in real time. Development time was also saved by testing under
an operating system with utilities such as interactive
debugging, a file system etc. The errors remaining after
transporting the program to the node machine have been few.

proced~~<:. HOLD(del:real);

Equivalent to PASSIVATE, except that the caller is put into
the SQS with an event time equal to SYSTIME+del.

procedure ACTIVATE (p:PTRPROCES; del:real);

The process p is scheduled to have an event at the time
SYSTIME+del.

procedure CANCEL(p:PTRPROCESS);

If the process p is scheduled to have an event, this event
is cancelled. That is, p is removed from the SQS. The reader who compares QPP with for instance Concurrent

Pascal, will remark that QPP contains no primitives for the
protection of shared data. Such a mechanism could be useful in
QPP, but is not strictly necessary. The reason is that
processes run in quasi-parallel rather than true parallel. ~n
active phase of a process is regarded to take zero time, and
thus is an indivisible operation. Time increases only when
control is transferred from one process to another. It is the
programmer who decides at which points in the program this may
occur.

l..:..! Summary

Based on the basic primitives discussed in section 2, we have
defined a set of additional primitives suitable for discrete
event scheduling. These primitives are implemented by Standard
Pascal procedures and data structures. The system time concept
is introduced in two variations: simulated time and real time.
In the implementation the difference between the two time
concepts is only visible as a small modification of the
procedure PASSIVATE. An important consequence is that it is
possible to test out a program by simulation and afterwards
use the same program as a part of a real time system.

Append ix

This appendix contains a simple example of the use of QPP. A
producer process generates characters which are read by a
consumer process. The rate of production/consumption is up to
the processes themselves, and in order to remove some of the
time dependency between the processes, they are connected by a
bounded buffer. However, since the buffer may get full (or
empty) there is still need for some synchronization of the
processes. This is achieved by the use of the ACTIVATE and
PASSIVATE primitives.

i Concluding remarks

As an example, the Bounded Buffer problem has been programmed
in the append ix .
At the University of Oslo, QPP has been used to program the
UNINETT node. UNINETT is a computer network of the central
computers of all universities in Norway, plus several other
governmental computers. Each institution has a node machine

....
<.r0--::
C

en
W



The program also
concepts defined in
and primitives in
small letters are
example.

contains a complete implementation of the
section 3. Names corresponding to concepts
QPP are written in capital letters, while
used for variables particular for the

(** sequencing routines **)

program prodcon;

const
buflength = 16;
buflgml = 15;

type

procedure INTOSQS(p:PTRPROCESS);

var rp,rpo:PTRPROCESS;
begin
with pt do
begin

rp:=SQS; rpo:=nil;
while (rp<>nil) and (rpt.EVTIME<EVTIME) do
begin rpo:=rp; rp:=rpt.NEXTPR end;

if rpo=nil then SQS:=p else rpot.NEXTPR:=p;
NEXTPR:=rp; INSQS:=true

end;
end;

(* definition of bounded ring buffer *)

bufindex = 0..buflgml;

buf=record
p,c:bufindex;
txt:packed array[bufindex] of char;

procedure CANCEL (p:PTRPROCESS) ;

var rp,rpo:PTRPROCESS;
begin
with pt do
if INSQS then
begin

INSQS:=false; rp:=SQS; rpo:=nil; W,
~hile rp<>p do begin rpo:=rp; rp:=rpt.NEXTPR end; ~
If rpo=nil then SQS:=rpt.NEXTPR else rpot.NEXTPR:=rpt.NEXTPR; ~.

end; ~
end; ~

end;
ptrbuf=tbuf;

(* definition of the data structure of the processes *)

PTRPROCESS=tPROCESS;
processtype=(producer,consumer) ;

PROCESS=record

NEXTPR:PTRPROCESS; EVTIME:real; INSQS:boolean;
case processtype of

producer: (outbuf:ptrbuf; outcha:char);

consumer:(inbuf :ptrbuf; incha :char);
end;

procedure PASSIVATE;

var p:PTRPROCESS;
begin

p:=SQS; if p=nil then DETACH else SYSTIME:=pt.EVTIME;

(* if real time then monitor call PAUSE (SYSTIME-CLOCK)
SQS:=pt.NEXTPR; pt.INSQS:=false; RESUME(p)

end;

*)

var
SQS:PTRPROCESS; SYSTIME:real;

ptrpro,ptrcon:PTRPROCESS;

function NEWP(procedure p; siz:integer) :PTRPROCESS;
function THISP:PTRPROCESS; extern;
procedure RESUME(p:PTRPROCESS); extern;

procedure DETACH; extern;

extern;

procedure HOLD(del:real);

var p:PTRPROCESS;
begin p:=THISP; pt.EVTIME:=SYSTIME+del; INTOSQS(p); PASSIVATE end;

procedure ACTIVATE(p:PTRPROCESS; del:real);

begin CANCEL(p); pt.EVTIME:=SYSTIME+del; INTOSQS(p) end;

(** basic primitives **)



~ ~

(** buffer routines **)

function bufempty(bp:ptrbuf) :boolean;
begin bufempty:=(bpt.p=bpt.c) end;

function buffull(bp:ptrbuf) :boolean;
begin buffull:=«(bpt.p+l) mod bUflength)=bpt.c) end;

function putchar (bp :ptr buf; ch :char) : boolean;
begin with bpt do

if ((p+l) mod buflength)=c then putchar:=false else
begin txt[p] :=ch; p:=(p+l) mod buflength; putchar:=true end;

end;
function getchar (bp:ptrbuf; var ch:char) :boolean;

begin with bpt do
if p=c then getchar:=false else
begin ch:=txt[c]; c:={c+l) mod buflength; getchar:=true end;

end;

(** processes **)

procedure pproducer;
var LOCALS:PROCESS;
begin DETACH;

with LOCALS do
while true do

beg in

(* produce next character *)
if bufempty(outbuf) then ACTIVATE(ptrcon,0);
while not putchar(outbuf,outcha) do PASSIVATE

end
end;

procedure pconsumer;
var LOCALS: PROCESS;
begin DETACH;

wi th LOCALS do
while tr ue do

beg in
if buffu11 (inbuf) then ACTIVATE (ptrpr 0,0) ;
while not getchar{inbuf,incha) do PASSIVATE;
(* consume character *)

end
end;

(* * main program **)

begin
ptrpro:=NEWP(pproducer,100); ptrcon:=NEWP(pconsumer,100);
new(ptrprot.outbuf); ptrcont.inbuf:=ptrprot.outbuf;
RESUME (ptrpro)

end.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% QPP %
% %
% RUN-TIME ROUTINES TO TRICK THE NORD PASCAL SYSTEM %
% INTO TREATING QUASI-PARALLEL PROCESSES %
% %
% (IN THIS VERSION THE RESTRICTION THAT DETACH MAY RELINQUISH %
% CONTROL TO THE MAIN PROGRAM ONLY, HAS BEEN REMOVED) %
% %
% PROGRAMMER: T. NOODT, COMPUTING CENTER, UNIV. OF OSLO %
% DATE: JUNE, 1980 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% NOTE:
%
% l.
%
%
%
%
%
%
%
% 2.
%
% 3.
%
% 4.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RETB=
RETP=
STLK=
DYLK=

LSC=
PARAM=
SAVB=
SAVL=
SAVX=

)9BEG
) 9LIB
)9ENT
)9EXT
%
%
%
%
%
%
%
NEWP=

THE NORD-10/100 REGISTERS ARE:
P PROGRAM COUNTER
L LINK REGISTER
X POST-INDEX REGISTER
B PRE-INDEX REGISTER
T TEMPORARY REGISTER
A ACCUMULATOR
D EXTENDED ACCUMULATOR
THE B REGISTER CONTAINS
OBJECT + 200 OCTAL.
WHEN A ROUTINE IS CALLED, THE PARAMETERS ARE FOUND AT ADDRESS
(B) + (A) + N, WHERE N=4 FOR FUNCTIONS, N=3 FOR PROCEDURES.
A FUNCTION RESULT IS TRANSFERRED IN A.

A POINTER TO THE CURRENTLY ACTIVE

-2
-1
o
1

% RETURN B
% RETURN P
% STATIC LINK
% DYNAMIC LINK
% POINTS "INWARD" IN PROCESSES
% LOCAL SEQUENCE CONTROL
% RELATIVE LOCATION OF PARAMETERS
% SAVE LOCATIONS

2
4
10
11
12

NEWP
NEWP 5PESH
5PNEW

FUNCTION NEWP(PROCEDURE P; SIZE:INTEGER) :PTRPROCESS;

GENERATE NEW PROCESS
P IS THE PROCESS CODE
SIZE IS THE OBJECT SIZE

*
SWAP
RADD
STA
COPY

SA DB
SA DB
SAVB,B
SL DA

% B IS NOW TOP OF STACK
% SAVE POINTER TO CALLER OBJECT

""<.r
c
c



*
COPY SA DX
LDX 3,X,B % PTR
AAX -3 % TOP OF OBJECT
COPY SL DA
STA RETP,X % RETURN POINT )9END

)9EOF

*
(71(j\

COPY SA DX
LDX 3,X,B % GET POINTER TO PTR
LDA 0,X % GET PTR
STZ 0,X % PTR := NIL
AAA -5 % ADJUST TO TOP OF ALLOCATED OBJECT
SAX 177
RADD SB DX
STA 0,X % TRANSFER PARAMETER TO DISPOSE
JMP I (5PDSP % CALL DISPOSE

) FILL

5PESH=

)9END

STA
COPY
LDA
AAA
JPL
LDX
AAX
LDA
STA
LDA
STA
LDA
STA
STZ
LDT
AAT

COpy
AAA

COpy
AAB
COpy

) FILL

*
EXIT

)9END

)9BEG
)9LIB DETACH
)9ENT DETACH
%
% FUNCTION DETACH: PTRPROCESS:
%
DETACH= *

SAVL,B
SB DX
PARAM+3,B
2
(5PNEW
0,B
2
PARAM+1, B

STLK,X
SAVL,B
RETP,X
SAVB,B
RETB,X
DYLK,X
PARAM+2, B

4

% SAVE POINT OF CALL

% GET SIZE
% ADD SPACE FOR RETB AND RETP
% CALL NEW TO GET OBJECT

% OBJECT POINTER
% ADJUST POINTER PAST RETB AND RETP
% P'S STATIC LINK

% INDICATE ACTIVE PROCESS

% P'S CODE
% SKIP FIRST 4 INSTRUCTIONS OF P
% (THEY DO NON-RELEVANT CHECKS)

SX DA
3 % "RECORD" POINTER

% (REFERS TO FIRST LOCAL VARIABLE)
SA DB
175
ST DP

% STACK POINTER
% EXECUTE PROCESS

% (GENERATE LITERALS)

% IGNORE THE USUAL STACK-HEAP OVERFLOW CHECK

)9BEG
)9LIB
)9ENT
%
% FUNCTION THISP: PTRPROCESS;
%
THISP=

THISP
THISP

*
COPY
LDA
JAZ
COpy
JMP
COpy
AAA
EXIT

)9END

SB DX
DYLK-200,X

*+3
SA DX
*-3
SX DA
-175

)9BEG
) 9LIB
)9ENT
)9EXT
%
%
%
%
%
%
%
%
DISPP=

% FOLLOW DYNAMIC LINK
% UNTIL IT IS ZERO (=PROCESS FOUND)

COPY
STA
LDA
COPY
STZ
LDA
COPY

COPY
LDA
JAZ
COPY
JMP
AAX
COPY
STA
COPY
STA
LDA
COpy
LDT
COPY
AAA
COPY

DISPP
DISPP

5PDSP

SB DA
RETB,X
DYLK,X
SA DB
DYLK,X
LSC,X
SA DP

% RETURN OBJECT
% ACTIVE OBJECT INSIDE PROCESS

% INDICATE ACTIVE PROCESS

% JUMP z:

SB DX
DYLK-200,X

*+3
SA DX
*-3
-200
SB DA
DYLK,X
SL DA
LSC,X
RETB,X
SA DB
RETP,X
SX DA
3
ST DP

% FOLLOW DYNAMIC LINK
% UNTIL PROCESS OBJECT IS FOUND

% ADJUST X TO TOP OF OBJECT

% SET "INWARD" DYNAMIC LINK

% SAVE PROGRAM POINT
% CALLER'S OBJECT

% PROCESS PTR (FUNCTION RESULT)

% RETURN TO CALLER

PROCEDURE DISPP(VAR PTR: PTRPROCESS):

% ADJUST POINTER BY -200+3

)9END

)9BEG
)9LIB RESUME
)9ENT RESUME
%
% PROCEDURE RESUME(PTR: PTRPROCESS):
%
RESUME=

DISPOSE PROCESS

MAY BE INCLUDED IF DYNAMIC DEALLOCATION OF PROCESSES IS
WANTED, AND THE PASCAL SYSTEM HAS THE DISPOSE PRIMITIVE.



Open Forum For Members ~ il'lfl Tirnfl-fllrI[]l'Iirlfi [ill... 1J'in l'uj1J- [J"1j
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Telephone 415/486-4000
FTS: 451-4000

Dear Editor,

Pascal Users Group
clo Rick Sha,v
DOC
5775 Peachtree Dunw000Y Road
Atlanta, GA 30342

I am happy to have(at last) PUGN #15.

It arrived only in July, 1980, but better late than never. 2 Questions:

Hi,

1) What happened to #147 I've never seen it.

2) How do I renew my membership for the next year (starting June-1980)7

PUG #15 does not have any "all-purpose coupons". I am very interested

in PUGN, just let me know how to pay for it.I understand that the Pascal Users Group is interested in putting
together a package of software tools. ~Ieof the Software Tools
Users Group are doing much the same thing. We have sane 50-60

tools (edi.ting,text manipulation, formatting, sorting, carmand
line interpreter, etc.) which simulate the Unix environment and
originate<'!from the little book Software Tools by Brian Kernighan
and P. J. Plauger. The tools are curren'tly wr itten in r atfor, a

portable Fortran-preprocessor language, and running on everything
from an 8080 to a Cray. Our users group has a mailing list of

almost 700 and holds meetings twice a year.

Now,for the PASCAL issues. We use the FORMAT prgram published in PUGN #13,

and all OUT sources have to pass it,so we achieve uniform layouts.

There were several problems setting up FORMAT,some of them were real bugs.

But now it is well and running with all the options operative. I must mcntior.

its portability. We moved it from RSX-llM to UNIX within half an hour,just

by changing the file handling part.

We do almost all our development in PASCAL and have several utilities

to offer to anyone interested:

There have been several people in the group interested in
translating the tools into Pascal.. One man has already hand-coded

a few of them in Pascal.. Another group in England has used a

mechanical translator written in Snooo.l,to transfer the tools
into BCPL. I think a similar translator could be developed to
translate into Pascal. If people in your group were interested in

our tools, perhaps we could work together to build such a
translator.

1) File copying between CP/M and UCSD in both directions

2) File copying between RSX-llM and UNIX in both directions

I've enclosed an LBL Programmers Manual to give you an idea of
what we have available. Other sites also have nice
tools--University of Arizona and Georgia Tech. have gcod packages
too. I've also sent along our newsletters to give you an idea of

.~at the users group is doing.

3) The debugged FORMATon RSX and on UNIX

4) File copying from an IBM diskette to UCSD

5) A big (CMD) disk driver for a 280 under UCSD

Even if translation of our tools into Pascal doesn't seem
feasible, do let me know if you think there might be other ways

our groups cou1d work together. By the way ,UCSD software seems very unportable,due to lots of non-

standard tricks which are heavily used.

Sincerely,
Best regards

Y"~ .

\
Gershon Shamay

Mgr. Software Development

Debbie Scherrer
Co-ordinator, Software Tools

Users Group
Eder St. 49a, P.O.B. 72, Haifa, Israel. Phone: 04- 24'6033.
Telex 46400 BXHA IL, For No. 8351



SDC INTEGRATED SERVICES, INC System
Development

Corpo!" ation
Indicates the field is in word W relative to
the start of the record and uses bits Bl
through B2.

The formats used above have the following meanings:

W: <Bl,B2>

Wt<Bl,>-W2:<,B2> Indicates the field is longer than 1 word
beginning at word WI, bit position Bl and
going throughword W2 bit position B2.

PASCAL USER'S GROUP
c/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

This type of information can be very helpful when interfacing with other
languages such as CO~WASS or FORTRAN and also when trying to minimize the
size of a record by rearrangement of its fields.

Sincerely,

Dear Mr. Shaw:
Ricky W. Butler
Systems Programming
SDC-Integrated Services, Inc.

I maintain PASCAL 6000 Version 2 and Version 3 at NASA, Langley Research
Center, Hampton, Virginia. I have made several modifications to our com-
pilers to enhance the usability of the compilers without changing the
language itself. I am writing to describe briefly one such modification
because it is easily implemented and may be useful to other installations.
This modification introduces a new option to the compiler which displays
the locations of the fields within a record when invoked. Following
each record type declaration, the field identifiers with their relative
locations in the record are given. The following is an example of the
output generated by our compiler with the option invoked:

for

NASA, LangleyResearchCenter
Hampton, Virginia
MS l57B

RWB/ghf

3 REC = P~CKEO RECO,O
4 FIELD1: CH~R;
5 FIEL02t CHA~:
Eo FIELO~t INT~GER:
7 FIELD4: PAC~EO ~~R~Y{1..200) OF BOOLEAN;
8 END;

P.S. To obtain more information or the update mods for this option contact:

~--------------------------------------.----------

Rudeen S. Smith
MS l25A
NASA/Langley Research Center
Hampton, Virginia 23665
(804) 827-2886

FIELDl
FIEL03

0:<59,54"
1t<59, 0>

o t < 5,
0"

2:<5CJ, > - 51< ,40"
FIEL02
F I EL 04

-----------------.----------------------.------------------------------.
9

10 VAR
11 VREr;:
12
13
14
15
10

~Er;DRO

STOPAG"lt
STORAG~2:
STOP AGE 3:
STOPAG,,4:

ENO;

INTEGE":
CHAQ;

B'10L<:AN;

~EAL;

-----------------.----------------------------------------------------.-
STORAGE1

STOR~GE3

STOR~GE2

STORAGE4

It< 5,
0"

31<59,
0"

01<59,
0"

2:< 0, 0"
~----------------------------------

17



THE UNIVERSITY OF KANSAS LAWRENCE, KANSAS 66045

Departmentof Computer Science
114 Strong Hall
913864-4482 have put t.ogether a brochure which we are distributing to the faculty of

other schools within the university who use our introductory class. The
purpose of the brochure is to introduce the other faculty members to Pascal
and to explain why we (CS) want to teach Pascal, instead of FORTRAN, in the
introductory course. After sending the brochure, we meet with the faculty
from the other department or school and answer any questions they want to
ask and furtherexpand upon the reasonsfor teachingPascaloutlinedin the
brochure.(Withinthe CS department,our littlegroup is knownas the "Pascal
Road Show",) Thus far, we have only met with faculty from the School of
Engineering.We havehad somesuccess. If theycan find 1 more credithour
in the majors involved, they have tenatively agreed to allow their students
to take Pascal as their first language if we also offer a 1 hour course for
their students in which they would learn FORTRAN. We currently have plans
to meet with the faculties of Business and Journalism next fall.

Rick Shaw
Pascal User's Group
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

Since the last time I wrote to PUGN (PUGN #11 - February 1978), many

things have happened both here at KU and with Pascal on Honeywell/GCOS.
I'll start off with the new happenings with Honeywell Pascal (under GCOS
not MULTICS). If any other schools have done this, I would very much appreciate

hearing from you. If anyone is interested in our brochure or in talking
about our experiences, I'd be happy to do whatever I can.Pascal version 7 is available and is finally complete (up to now the

PROGRAM statement waS not recognized). This version has much better error
messages and is very stable (at the moment there are only a very few ~nown
bugs and those are minor). It fully implements the Pascal de~cribed In. .
Jensen and Wirth (except for file of file). There are two major extenslons.
and "else" clause in the case statement and the variant record, and a
relaxation of the type checking when applied to variables and constants of
"packed array of char" (the first elements of each are made ~o align and

.
the shorter is logically blank extended for compares and asslgnments; strlngs
can be read using read). Pascal is available through Honeywell marketing,
but was written and is maintained at the University of Waterloo. Anyone
interested in obtaining a copy of the documentation should write to:
The Oread Bookstore / Kansas Union / The University of Kansas / Lawrence,
Kansas 66045 and request a copy of "Pascal on the Honeywell Computer
System" ($3.00 plus $1.00 postage).

Other Pascal news from KU: we have a student oriented Pascal syntax
checker (written in Busing YACC - probably not portable except to another
Honeywell). The syntax checker runs much faster than the compiler and
generates much more explanative error messages. It explicitly looks for
many of the mistakes commonly made by novice programmers and diagnoses them.
There should be a paper written on this project (by Jim Hoch and Uwe Pleban)
in the upcoming months. I have ported the Path Pascal compiler (written
at the University of Illinois and acquired through Dr. Edwin Foudriat at
NASA-Langly) to the Honeywell and am currently porting a newer version of
the compiler(wehave to change112out of 7562 linesin the source). We
have almost all of the programs that have appeared in PUGN up and running,
most of which required only minor changes. (The portability of Pascal and
its availability on micro computers have been the most important arguments
to others in convincing them of the value of Pascal, let's keep it standard!)

I have been promoting Pascal in the Honeywell Large System Users
Association (HLSUA). I am the chairman of the Scientific Language co~ittee
and have given 3 talks about Pascal over the last 2 years; one a tuto:lal
about Pascal, and the other 2 comparisons of Pascal compile and run tlmes
versus FORTRAN, Band C (unfortunatelyPascal came out ~n the sh?rt end most

of the time). I will include a copy of the 'comparison paper wlth this
letter.

Pascal has been in use at the University of Kansas since 1976. Almost
all the undergraduate computer science classes use Pascal. .We teach a .
university wide service course which serves as an introductl0n to programmlng
to over 900 students a semester. For the past two years some portion (at
least 1/3) of these students were taught Pascal (the others were taught
FORTRAN). This coming Fall semester, the Pascal portion will be slightly
greater than a half. Myself, another graduate student, and a faculty member

I'd like to thank everyone at PUG central (Andy, Rick, and all the others
whom I don't know) for the great job you're doing. PUGN is a tremendous
help in promoting Pascal and the standards efforts by PUG-USA and Tony
Addyman with BSI are extremely important to the vitality Pascal currently
enjoys. Again, thanks.

Sincerely,

Gregory F. Wetzel
Assistant Instructor

~'
IS'oc
C



;, i
'
1

huntec I
('70) LIMITEDi
I!".''''~

.. 1

Dr. A. M. Addyman,
Dept. of ComputerScience,
University of Manchester,
Oxford Road,
Manchester Ml3 9PL
England

Dear Dr. Addyrnan:

This is a comment on the proposed Pascal standard.

It is good to see that conformant array parameters are to be
included in the Pascal standard in a neat and carefully
consideredmanner.Thiswill preventthe proliferationof non-
standard implementations (an alarming thought).

I do wish to takeissuewith the proposalto excludethe
"packed" attribute from the conformant array schema (Pascal
News 17, p. 54). My reasoning is this.

1. A problemwith Pascalperceivedby a numberof applications
programmers is the difficulty of manipulatinq strings and
of formatting text output (and interpreting printable input).

2. The logical response is to make available a library written
in standard Pascal which will perform formatting and string
manipulation. (Some can be found in Pascal News 17.)

3. If conformant packed arrays are not permitted, such a library
must use standard length strings, longer than the longest actual
string which is to be processed. Alternatively strings must be
processed in unpacked arrays. In either case, there is a wastage
~f stora~8 space, which ~s a si9n~iic~nt problem for some users.
Or, space can be allocated dynamically in chunks for strings.
This complicates the library routines, resulting in a wastage
of program storage, again a significant problem.

4. The problems cited by A.J. Sale which lead him to recommend
against packed conformant arrays are really no more serious
than the implementation of packed arrays themselves. When
referencing any packed array, information on the bit-length
of the component type is always needed. When the packed array
is a conformant packed array of conformant packed arrays, the
bit length will have to be passed by the calling procedure,
rather than being a constant. Since the arrdY dimensions already
must be passed, this is hardly a serious problem:

5. More generally, packed arrays should be permjtted to be
used anywhere that unpacked arrays are permitted, unless
there is a very powerful reason to forbid that use. One
place where there is a real problem is in the use of
a component of a packed array as a var~able argument to
a procedure. That is the only place where packed arrays
arelimited, at present. If more limitations are introduced,
the result, as Sale suggests, will be non-standard
compilers which support conformant packed arrays. This
will have a detrimental effect on port~)ility.

My reasoning may appear highly dependent on the perceived
need for easy string manipulation facilities. But articles
too numerOllsto mention haveteen app2.a.r.:~g on t.he t.opi;;; of
strings, and the reason is that this is a problem which is
encountered by virtually every applications programmer. So
please- let'snot go halfwayon the conformantarrayproblem.

Thank you for considering my comments.

Yours truly,

7
1~4 )~1.

j
Jack Dodds

cc A. J. Sale
J. Niner
Pascal News



~rtec inc. /" IENXlNSAV<, LANSDALE,PA. 1'_
Phone: (215) -362-0966

I've enclosed a technical article which walks through the pro-
gramming of a simple real-time operating system in Micro Concurrent
Pascal. Anyone interested in mCP is invited to call or write to
ENERTEC.

Keep up the great work with Pascal!

Sincerely,

'-

P
,
scal Users' Group

c 0 Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

This letter is to inform you and all PUG members of the
duction of a Pascal-based real-time applications programming
called Micro Concurrent Pascal (mCP). mCP was developed and
used by ENERTEC over the past two years. ENERTEC is a small
software house which uses and develops Pascal-based software
our programming needs.

I'acro Concurrent Pascal was developed from Per Brinch Hansen's
Concurrent Pascal; however mCP is a language in its own right The
mCP compiler is a stand-alone program and interpreter,/kernels' presently
exist for the 280 and 8080/8085 microprocessors.

Cynthia Fulton

CF/cc
enc.

intro-
language

has been
systems
tools for PASCAL USERS' GROUP

Gentlemen:

I am a deputy district attorney in a rural area at the foot
of the Rocky Mountains. The Institute for Law and Research,
Washington, D.C., has implemented a Prosecution Management

Information System (PRONIS) in COBOL for Big l1achines and for
minicomputers.

Brinch Hansen's Concurrent Pascal extends Pascal with the real-
time p~ogramming constructs called processes, monitors and classes.
In add~tion to the process, mOnitor and class constructs, Micro Con-
current Pascal contains the device monitor construct.

A device monitor is a variant of a monitor which permits the writing
of device drivers directly in mCP. Each device driver is associated
with a specific interrupt. Processes call device monitors to do I/O.
The DOIO statement, permissable only in a device monitor, blocks the
process which called the device driver until the associated interrupt
occurs. Other statements restricted to device monitors allow an mCP
program to access absolute hardware addresses and perform bit manip-
Ulations on data. Among other ErffiRTEC additions are:

- a drop-to- assembly language capability- separate data types for 8 and 16 bit integers

- string manipulation intrinsic routines

- hexadecimal constants

Additionally, P-code output by the I1icro Concurrent Pascal compiler is
approximately one third the size of the P-code output by Brinch Hansen's

Concurrent Pascal compiler.

I am interested in adapting at least part of that system to
microcomputers, especially in view of the availability of 8" hard

disc drives. Pascal may be the ideal language for it. Can any of
your readers provide insights into the process of creating data

base management systems with Pascal, and with practical, if not
optimum, algorithms for using hard disc storage? I'm fluent in

MBASIC and the CP/M systems, but Pascal is new to me. I would
appreciate hearing from anyone interested in the PROtUS project,

as well as anyone who can recommend books or articles for the
study of Pascal. The Pascal available to me presently is the UCSD

Pascal for microcomputers.

Finally, I would be interested in comments concerning the

relative strengths and weaknesses of the Ilicrocomputer CaBaLs for
data base management vis-a-vis Pascal (assuming a Pascal

implementation which includes random disc files, and reasonable
interactive facilities for on-line terminal I/O).

Thank you. I look forward to seeing my first copy of the
newsletter.

)

Sincer~,
/ ~

(
...

~//a-~// /

Denn 1 . Faun I'? t
,'----

9 anison lw
Canon City, CO 81212
(303) 275-1097



DataMed
RESEARCH

I would be interested in hearing fram anyone with further ideas on sharing micro-
computer software inexpensively, especially in the area of medical computing. Let me
know, too, if you would like to work out some sort of reciprocal sharing arrangement.
Perhaps I would send the PUG a copy of each disk as it was released and you would pub-
lish items of interest to the broader PUG.

'

~
Jim Gagn~ M.D.
President

The Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

SOFTDOC is a new service recently announced by Datamed Research to aid
health professionals who are interested in utilizing computer systems in their prac-
tices.

Dear Rick:
Small computers have the potential to serve a myriad of needs in health care

practices. Such applications as obtaining the routine portions of histories directly
from patients, patient education, and limited assistance with diagnosis or treatment
are readily achievable. To date, most authors of medical computer programs have not
taken into account the true needs of health care professionals, and the programs have
not been utilized by those they were designed to serve. Effective medical computing
requires a network of health professionals writing progr(}rT'S and sharing their software.

In the post fifteen years, over a hundred health professional office business sys-
tems have reached the market. While the majority have failed, a few have trans-
formed the business office into a streamlined, highly accurate system. Unfortunately
for the small office, the cost of the better systems usually exceeds $30,000. Now,
however, with the advent of quality hardware systems for well under $10,000, new,
less expensive medical business packages are being released. The difficulty is to lo-
cate software of quality amid a rain of inadequate programs.

SOFTDOC will support the emergence of high-quality, low-cost medical comput-
ing in the following manner:

I) We are now issuing a call for health-related software to be published in a
quarterly machine-readable software journal.

2) The journal will also contain in-depth user reviews of both SOFTDOC and
commercial software, so that together we can determine just which programs are the
most effective and why.

3) Datamed Research will collect and evaluate vendor's descriptions of commer-
cial software. In addition, user evaluations of software will be collated and summar-
ized. Our findings will be published semiannually in the SOFTDOC journal. \lendors
and users who porticipate in the evaluation will also receive a summary of the find-
ings. Because to date the focus of software products far health professionals 'oas been
the business office, our initial concentration will be in this area.

I am enclosing with this letter notices of two new projects of which I am very ex-
cited: the UCSD Pascal Users' Group and SOFTDOC, a medical software network featuring
Pascal as the preferred language.

Fundamentally, the reason behind the UCSD users' group is that to date, it is the
best Pascal system for microcomputers, trading somewhat slower execution for speedy disk
access (three times faster than CP/M), a superb development and operating system, and
compact code, allowing macro programs in mini memories. As we all recognize, because
Pascal is so close to the machine, there is a great need to develop a library of commonly
used routines so we don't have to continually "reinvent the wheel" each time we program.
I and my friends have been using the UCSD system a great deal, and a fair amount of
software is beginning to be exchanged -- enough to fill up two volumes. I have included
the two Pascal formatters/prettyprinters published in the Pascal News No. 13, as well, and
plan to enter the other superb Pascal software tools you publish as time permits.

We microcomputer users receive little benefit from software offered on 9-track tapes
(J suspect the tape drive costs more than my entire system); so machine-readable software

must be shared on floppy disks. Because UCSD' has been so careful (almost paranoid) about
preserving the integrity of their RT-I I-like disk and directory format, it turns out that
anyone running UCSD Pascal on a system with access to an 8-inch floppy drive can share
software inexpensively, regardless of the host CPU.

I do have a question about software published in the Pascal News. Programs pub-
lished in magazines or journals are generally considered to be in the public domain.

Would the members of the Pascal User's Group have any objection to my offering, as inex-
pensively as possible, the software published in the Pascal News to anyone who can utilize
an 8-inch floppy disk? Of course, the source will be acknowleged, and I am including suf-
ficient documentation on the disk so that users need not refer elsewhere to be able to use
the software. I have made the minimal changes necessary for the programs to run on a
UCSD system. I would like specifically to inquire whether there is an objection to my
making available the Validation Suite published in No. 16.

SOFTDOC is more ambitious than the users group project. Medical computing has
been at an impasse almost since its inception: medically trained people tend not to use
tools developed by nonmedical personnel, including programmers, because these tools rarely
fit into the pecularities of medical thinking and practice. So there is a history of failure,
and not a little bitterness on the part of computer professionals. Few accepted uses of
computers in the health sciences exist outside of the laboratory.

The preferred medium of SOFTDOC is IBM-compatible floppy disks; for the con-
venience of those without 8-inch floppy drives, it will also be issued in printed form.
Material on a disk may be submitted to SOFTDOC for inclusion in the first issue un-
til May I, 1980; all programs must be in source code form and contain adequate doc-
umentation. Publication will take place on June I, 1980, and quarterly thereafter.
Subscriptions will cost $55 per year, or $18 per individual diskette. Those who donate
software, reviews or articles will receive a one-issue credit per item published.

Subscribers must indicate which they prefer: 8-inch, single-density, single-sided,
IBM-compatible floppy disk available in CP/M or UCSD Pascal format (specify) or hard
copy. We would like to find someone who can copy the material on 5-1/2 inch disk-
ettes for distribution in that format. However, these are not available at the present.

As you can see in the enclosed material, the aim of SOFTDOC is to form a net-
work of health care professionals, via a floppy-disk journal, so th~t. t?gether we ~an de~el-
op medical applications for computers that are truly valued by clinicians. I am informing
the members of the PUG of SOFTDOC becaus~ U.CSD Pascal. i~ the pre!erred language for

programs submitted to SOFTDOC for disk publlca!,on. In a?dltl.on, I bel!~ve t?e enormous
potential of Pascal for medical computing (exclusive of apploc.atlons requIring sizeable
mathematical power and speed) has been insufficiently emphasized.

If you are interested in promoting valid medical uses for microcomputers, we in-
vite you to send us programs you have written. Your software will be given the wid-
est possible distribution. Together, we may change the long overdue promise of medical
computing to a reality.



A New, Minimal-Cost Software Club for Users of UCSD Pascal

Introduction.

The UCSD Pascal language system is one of the most sophisticated microcomputer

software systems available today. Because of the ease with which one can write and
maintain high quality programs of most types, from systems software to business appli-
cations to games, it promises to be the vanguard of an enormous interest in Pascal in
the coming decade. Already a number of other Pascal implementations have appeared for
microprocessors, though none so complete.

UCSD Pascal compiles its programs to P-code, designed for a hypothetical 16-bit
stackmachine that mustbe emulatedin softwareon mostmicroprocessors.As a result,
once the P-codeinterpreterhas been installed,programswrittenin UCSD Pascal may be
run on any microprocessorwithoutmodification.Even the disk formatsare the same,
except for the minifloppies used for the Apple, North Star, or TRS-8D. So disk soft-
ware in either source or object form may be freely shared among users of such diverse
machines as a PDP-ll or an 8080.

The Pascal Users Group.

It would seem natural for a large users group to arise to share software. To
date, however, only the original Pascal Users Group ("PUG") serves this function. Pri-
marily, they support the standard language basedon the Jensen andWirthPascalUser
Manual and Report and report on available Pascal implementations and programmer oppor-
tunities. Only secondarilydoes the PUG disseminatesoftware(basedon Jensen and
Wirth Pascal), although since 1978 the PUG has published several superb "software
tools". The major difficulty with the PUG newsletter is that it is offered only on
paper; any machine-readable software is offered on 9-track tapes, which are not sup-
ported by the majority of microcomputers. So a microcomputer user must type the soft-
ware into the machine on his/her own.

A UCSD Pascal Users Group on machine-readable media.

Datamed Research is announcing the formation of a UCSD Pascal users' group. It
will take a form very similar to the highly respected CP/M Users Group: all offerings
will be on 8-inch,singledensity,IBM-compatiblesoft-sectoredfloppies,offeredvir-
tuallyat cost ($10 per disk). Softwarewillbe donatedby interested users. Software
donors will receive a free disk volume of their choice in acknowledgement of their do-
nation. For software to be accepted for distribution it MUST come with adequate docu-
mentation on the disk. Further, with rare exceptions it must be supplied in source code
to allow otherusersto adaptit to theirsystems.

Potential sources of Pascal software abound; by no means must one donate only ori-
ginal work. There is a mountainof public-domainBasicsoftwarethat is easilyadapted
to Pascal. In the process, one can usually spruce up the program a good deal, because
Pascal is so much easier to work with than Basic. It will be important, in addition,
for the users to begin a library of Pascal procedures and functions to handle the more
common programming problems. For example, we need a set of mathematical functions for
complex variables, statistical functions, and basic business software support (routines
to translate integers into dollars and cents and vice versa) to realize the full power
of the language.

You can find outmore aboutthe presentstatusof the usersgroupby sendinga
self-addressed,stampedenvelopeto the following address:

DATAMED RESEARCH
1433 Roscomare Road
Los Angeles, CA 90024

Alternatively, 8-inch floppies can be ordered at $10 per volume; there are two vol-
umes available at the present time. Because the BIOS for the 512-byte sectors is writ-
ten for Digital Research's CP/M-based macroassembler, the second volume contains both a

CP/M- and a UCSD-format disk (though if you prefer, both disks can be of the same type;
the volume is of use primarily to those who have both CP/M and the UCSD system, however)
and costs $20. California residents must add 6% sales tax. Be sure to 'specify UCSD or
CP /M forma t .

2103Greenspring Dr. Timonium, Md.
21093

(301) 252-1454

":t'cr
n
:P
r

Protection
Systems

24-June-1980

-~--_._-

Pascal User's Group
c/o Rick Shaw
Digital Equipment Corp

5775 Peachtree Dunwoody Rd
Atlanta, GA 30342

Dear Rick:

Thanks for all your work to help keep the lines of communication
open between all us Pascal user's. It's good to hear that all

the moving and setup is now complete.

I am currently using Pascal in developing small real-time process
control systems based around Z80 micros. At present I am using

Pascal/Z runming under CP/M and MP/M although I am also interested

in finding more out about using a concurrent Pascal compiler for
the same application. Also I use UCSD Pascal for other development

on the side although I am disappointed at Pascal/Z incompatability
with the UCSD Pascal. May the standard corne soon.

I would very much like to hear from others in the Baltimore-Wash-
ington-Philadelphia area using Pascal/Z and/or doing real-time

multi-task applications with Pascal in order to swap stories.
Also would like to borrow if possible any of issues 1..8 of PN
to look through or copy from someone close by.

Thank you.

Sincerely,

David McKibbin
c/o Sygnetron

2103 Greenspring Drive
Timonium, MD 21093

************************************
Pascal Standards



Pascal Standard: Progress Report
by Jim Miner (1980-07-01)

A serious disagreement over conformant array parameters is the only majo:
remaining obstacle to obtaining an ISO standard., Hopef~lly both sldes wlll
quickly resolve this impasse in a friendly and dlplomatlc way, because there

is a real possibility that one or more national groups will be compelled,by
time constraints to break with the international effort and seek to obtaln
their own standard.

RECENT EVENTS

Voting on DP 7185

The latest draft standard ("DP 7185") was published ~n,Pasca~ News #l~ and

in SIGPLAN Notices (April 1980). Votes cast by speclflc natlonal bodles on
this draft are as follows.

Votes on DP 7185

Approval

with comments

Australia **
Czechoslovakia *
Denmark *
France
Netherlands

U.K.

* "Observer" member -- vote is advisory.

** Australia has become a "Principal" member since

this vote.

Approval

Finland
Hungary
Italy
Romania *
Sweden

Disapproval

Canada
Germany
Japan
U.S.A.

Working Group 4 Meeting

The comments accompanying the votes revealed several

well as some issues on which there is disagreement.

"The Pascal Standard: Progress and Problems" (below)
these issues.

The ISO Working Group on Pascal (WG4) met in Manchester England during June in
an effort to resolve these issues and to prepare a second Draft Proposal.
(See Pascal News #17, pages 83-84, regarding the origins of WG4.) Attendees

were:

technical inadequacies as
Tony Addyman's report
discusses several of

Tony Addyman (U.K.)

Burkhard Austermuehl (Germany)
Albrecht Biedl (Germany)

Coen Bron (Netherlands)
Joe Cointment (U.S.A.)
Christian Craff (France)

Jacques Farre (France)
Charles Haynes (U.S.A.)
Ruth Higgins (U.S.A.)

Mike Istinger (Germany)

Pierre Maurice (France)
Jim Miner (U.S.A.)

Kohei Noshita (Japan)

Bill Price (U.S.A.)
Helmut Sandmavr (Switzerland)

Karl-Heinz Sarges (Germany)
Barry Smith (U.S.A.)

Alain Tisserant (France)
David williams (Canada)

JPC Meeting

A few days after the Manchester meeting, the U.S.A. committee (JPC) met ~n

Portland Oregon. Out of that meeting came the memos from David Jones to WG4
and to the National Bureau of Standards which are reproduced below.

THE PROBLEM

As Tony's article points out, the most difficult problem which the standard ~
~~:a~a~~Sm~~yt~~ ~~s:~~e:~:n~e~;~~ ~~~~i~~~a~~ ~~~a~t;~~:~~i~~~~;n ;;r~a~o~een ~
some time that this topic could give us much trouble. The extent of the '
present difficulty became more obvious at the Working Group 4 meeting in =
June. No conclusion was reached by WG4 regarding conformant array parameters. ~.

The papers by Tony Addyman and David Jones, together with Arthur Sale's
article in Pascal News #17 (pages 54-56), provide much insight into the
nature of the disagreement.

In favor of conformant arrays

The capability to allow formal array parameters to have "adjustable" index
ranges is deemed necessary for the construction of libraries of separately
compiled procedures, especially numerical routines. It is argued that failure

to standardize now on the form of such a capability will make future
standardization impractical due to many incompatible extensions which will be

made to provide the capability.

Based on statements made in the WG4 meeting, the following member bodies are
likely to vote "No" on a Draft Proposal which does not contain a conformant
array feature: Germany, Netherlands, U.K.

Against conformant arrays

Those opposing the inclusion of conformant arrays in the standard argue that
..-.-

the proposal is technically flawed and as a result that its inclusion in the ~,
draft will delay the entire standard. (The attachment to David Jones' memo to c
Working Group 4 contains a technical assessment of the existing proposal.) It
is also argued that conformant arrays are not needed more than other
extensions which have not been included in the draft proposal.

Based on statements made in the WG4 meeting, member bodies likely to vote "No"
if conformant arrays remain are Canada, Japan, U.S.A.

variations on the theme

Some member bodies have expressed a preference for generalizations of the

conformant array feature; Germany, for example, voted "No" partly because

value and packed conformant arrays are not allowed.

The U.S.A., which has expressed opposition to conformant arrays on several
occasions, proposed a compromise in its vote. The compromise would make
conformant arrays optional for an implementation, but with the requirement

that any such capability supported by an implementation have the syntax and
semantics specified in the standard. Several members of WG4 expressed dislike ~
of this proposal.

CONCLUSION

The standard has been stalled by the disagreement over conformant array
parameters. In order to obtain an ISO standard, it is necessary that a

compromise of some kind be reached. At this time it is hard to predict what

the nature of that compromise will be.



The Pascal Standard : Progress and Problems,
May. 1980

3.1 Minor Problems

3.1.1 Alternative Lexical Tokens

A. M. Addyman The issue is simply that (.and.) should be accepted as alternatives
for [ and]. There are strong feelings both for and against this. The
strongest opposition appears to be from the U.K. The probably outcome
will be acceptance of the alternative tokens.University of Manchester

1. Introduction

3.1.2 String Truncation on writing

This is a requestwhichinvolvesa change from
definition. Its advocates cite efficiency, utility
of the de facto definition as justification for the
argue that

(a) this is a change and consequentlymust be rejected, and

the current de facto
and frequent violation
change. Opponents

Within the International Standards Organization (ISO), there is
a work itemwhich is to resultin the productionof a standardfor
the programming language Pascal. This work began in ISO in October1978
as the result of a proposal from the United Kingdom. Work in the
United Kingdom began early in 1977. At the time of writing this report,
a ballot is taking place within ISO on the acceptability of the first
Draft Proposal for the Pascal standard. This report, written immediately
after the April 1980 meeting of the U.S. Joint Pascal Committee (X3J9),
contains a summary of the substantial progress made to date and
discusses the few remaining problems which stand in the way of inter-
national agreement.

(b) that a truncated representation of the array cannot in any way
represent the array.

The possible outcome is unclear, but will undoubtedly be influenced by
the U.S.A. position on the major problem (see later).

3.1.3 Tag-fields

There are three loosely related problems in this area:2. Progress

There is now agreement on the details of all the main areas,
although in one or two areas the wording is being improved or drafting
errorsare being corrected.The areasin whichagreementhas been
reached include:

(a) a change to prohibit use of tag-fields as var-parameters

(b) a relaxationof the syntaxto replaceIttype" by "type-identifier"

lexical issues,
scope rules,
type rules,

the syntax and semantics of
almost all of the input and

(c) a change which would disallow the creation of tag-less variants

Each of these is a change to the de facto definition and as such
provoke opposition.

The first is proposed in the interests of promoting the implementation
of certain checks desired by the Draft Proposal. It will probably be
accepted.

The second change is a change to the syntax to eliminate~ of

the circumstances in which a type-identifier is necessary am a type
definition is unacceptable. The change was strongly opposed at th:
Pascal Experts meeting in Turin. I expect this opposition to cont~nue..

the statements and declarations,
output facilities.

Indeed, since there is agreement on so much, it would be better to devote
space to the consideration of those issues which have yet to be resolved.
Before doing SO it should be noted that there is agreement that a
standard is needed without delay. This attitude has helped to resolve
minordifferencesof view,sinceneitherparty haswantedto risk the
standard on such issues.

3. Problems The third change is proposed on the grounds that its only uses are
in implementationdependent "dirty tricks". Wh~le this is. untru7, the
wording of the Draft Proposal suggests that an 1mplementat10n Wh1Ch
performs checks in this area will have to provide a tag-field if,the.
programmer does not. The only justification for this feature wh1ch 1S
within the proposedstandardis associatedwith the savingof storage
space for variables. Since a large number of imple~entations ~ncorporate
this restriction,which is aimedat improvingsecur~ty,there15 a
possibility that it will be accepted.

The outstanding problems will be divided into two categories
minor and major. The major ~roblems are the ones which could substantially
delay the production of the standard. The category into which a problem
has been placed is necessarily a matter of personal judgement.



3.1.4 New and Dispose 12.2 In favour of the Draft Proposal

There is a form of these standard procedures which may be used to
reduce the storage requirements of a program. The use of this feature
may lead to errors which are difficult for the programmer to detect,
furthermore an implementation can detect such errors only by using
additional stomge! There is pressure to have this form of new and dispose
removed.

1. There is great demand for the feature to be added to the language,
and those making the demands have not specified any particular syntax
or semantics. Those supporting the addition include Prof. Hoare and
Prof. Wirth.

2. In the interests of portability the feature should be required in
any implementation of a Pascal processor.

Given the increasing usage of Pascal on microcomputers it is likely
that the definition of new will be unchanged. There is a much stronger
caSe for changing dispose since most implementationsmaintain enough
information to ensure the security of the heap. The final irony is that
theDraftProposalidentifiestwo errorconditionswhich can only be
detected by maintaining enough information to make this form of dispose
redundant.

3. There are no technical difficulties with implementing the feature
in theDraftProposalsinceall the "run-time"operationsthatare
requiredalreadyexist.

4. Requiring value adjustable array parameters has an impact on the
procedure calling mechanism - the amount of space required by a
procedure cannot always be determined at compile-time. There is concern
thattheremay be existingimplementationswhich relyon sucha
determination at compile-time and which would therefore be destroyed
by the introduction of value adjustable array parameters.

3.1.5 The Rest

There are a number of minor problems which have been raised by
various parties and subsequently dropped e.g. the U.K. Pascal group has
expressed a desire to remove pack, unpack and page from the language;
other Europeangroups haverequestedextensionsto the case-statement
and changes to the syntax of a block etc. There is a danger that
decisions to make changes in any of the areas cited above may provoke
more requests.

5. Requiring packed adjustable array
heads on an implementation which packs
overheads may result in a reduction in
request is heeded.

parameters places increased over-
multidimensional arrays. Such
the extent to which a packing

3.2 The Major Problem
6. If action is not taken at this time a number of vendors will surely
introduce incompatible extensions to fulfill this obvious need. Such
action would effectively prevent future standardisationof this feature.

3.2.1 Introduction
7. Of all the requests for extensions received during the comment
periodon ISO/TC97/SC5 N462, thisis the onlyone whichaddsto the
functionality of the language. All the other requests addressed
issues of convenience and/or efficiency.

There appears to be only one substantial problem which may prevent
agreement being reached on a Pascal standard. This is the problem of
adjustable array parameters.

In the de facto definition of Pascal, a parameter of a procedure
must have a specific type which in the case of an array will include a
specification of the bounds of the array. This is viewed by many
people as an unacceptable restriction in a language that is being
proposed for international standardisation. As a result of the comments
received on the document ISO/TC97/SC5 N462, the U.K. Pascal group resolved
to introduce into the draft a minimal facility which would address the
problem. The U.K. solution provided for var-parameters but not value
parameters and also excluded packed arrays. The proposal from the U.K.
has received objections on two counts:

3.2.3 In favour of a less restrictive proposal

1. All the above arguments are accepted apart from 4 and 5.

2. Those in favour of value adjustable array parameters claim that
no existing implementationswill be embarassed and claim (correctly)
that there are no technical problems.

3. Those in favour of packing fall into two distinct groups:

(a) it is a change to the language in particular, more work should
be done on the details of such a feature before it is added to the
language.

(a) those who believe that there are no implementation problems and

that in the interests of generality the restriction should be
removed.

(b) the feature is too restrictive - value parameters and/or packed
arrays should also be allowed.

(b) those who wish to use string constants as actual parameters.
They appear to need both value (since a constant is not permitted

a. an actual var-parameter) and packed (since the Draft Proposal
specifies that string constants are of a packed type). An
alternative solution to this problem is to change the specification

so that the type of string constant is context dependent (as is
the case for set-constructors) in which case a string constant
could also be a constant of an unpacked type. The same proposal
also reqtJires that those operators which apply to packed

character arrays al~o apply to unpacked character arrays. This
has the considerable merit of removing the only case in which

To clarify matters the arguments which support the three positions will
be presented separately.



the prefix "packed" is used for reasons other than storage
reduction.

3.2.4 In favour of the feature being optional

This is a view expressed by the U.S.A. Pascal committee (X3J9).

1. A language designer must not add to a language any feature that
is not very well understood, that has not been implemented, or that
has not been used in real programs. The proposed adjustable array
parameter feature is just such a feature. This feature should be widely
implemented and used before it is incorporated into a standard for
Pascal. ------

2. By placing the proposal in an appendix entitled "Recommended
Extension" we derive the benefit of having the opportunity to
implement the feature before casting it in concrete.

3. Implementors who add a f~ature which performs this function are
required to comply with the recommended extension. This will make
compatability with any future extended Pascal more likely without
foregoing the possibility of learning more about the feature in the
interim.

3.2.5 The Probable Outcome

There is considerable pressure from several ISO member bodies (the
U.K. excepted) to remove the restrictions which the Draft Proposal
incorporates relating to adjustable array parameters. The probable
conclusion will be to permit value but prohibit packed and at the same
time introducethe changes describedaboverelatingto theoperations
etc. available for character arrays. Unfortunately the proposal from
the U.S.A. for removal of the feature to an appendix is likely to be
opposed strongly by one or more member bodies. This view is based on
the comments received from other ISO member bodies since the April X3J9
meeting. The strength of support for removal of the restrictions is
unlikely to be compatible everywhere with a willingness to accept less
than is contained in the Draft Proposal. One possible solution would
be for X3J9 to accept the feature as part of the language. At this
stage this does not seem likely since the X3J9 position was taken for
largely non-technical reasons. This observation is justified as
follows:

1. X3J9 is requesting changes to the existing de facto definition
while objecting to this extension.

2. X3J9 is currently soliciting extension proposals - it is unlikely
that any such proposals will be acceptable by their criteria in
3.2.4. 1 above.

3. To promote portability and improve the probability of agreement
in a futurestandard, theextensionmustbe implementedas specified
in the appendix.An implementormay onlyexperimentwithan alternative
if the recommended extension is also implemented. This adds no new
freedom to the implementor since language extensions are not prohibited
by the Draft Proposal~

4. X3J9 also supports the removal of some of the restrictions
mentioned earlier.

3.3 Conclusions

The meeting of ISO/TC97/SC5/WG4(Pascal)to be held in June 1980
will be a crucial one. There is pressure within the United States to
move on to considerationof extensions- thisis being delayed by the
currentactivities.In theUnitedKingdom thereis a government
funded project to create a validating mechanism for Pascal. This
clearly needs a standard to validate against. Significant progress
is required on this project by April 1981!

A negative vote by any member body on the second Draft Proposal,
later this year, will probably terminate the internaku& standardisation
effort because it will introduce delays which are unacceptable to one
or more member bodies who will have little alternative but to produce
national standards instead.

There is a real danger that one of more ISO member bodies
find the removal of adjustable array parameters to an appendix
unacceptable as the United States finds their inclusion in the
of the standard.

will
as
body

,

f-'
<S'
0'C



U. S. concerns on Pascal Standardization

27 June 1980

This committee understands and shares the view that the conformant
array feature attempts to solve a significant technical deficiency
in Pascal. However, it feels that the technical objections should
be resolved before such a feature is included in an International
or American National Standard. The committee believes that this
leaves two possible courses of action if a failure to agree on an
International standard is to be avoided. The first is that a
major international effort through the Working Group must be
mounted to prepare a technically sound proposal. The committee
believes that this is likely to require yet another complete
revision of the proposed feature. Sufficient time must be made
available for such work to be completed and properly evaluated.
The second approach is that we should proceed as quickly as
possible to standardize the language at a level at which it has
been widely used for a number of years.

MEMO

To: ISOjTC97jSC5jWG4
Re: U. S. concerns on Pascal Standardization With Respect to the

Conformant-array Extensions

The Joint X3J9jIEEE Pascal Standards Committee has resolved to
express its concern that the issue of conformant array parameters
may significantly delay the acceptance of the draft proposed
standard for Pascal as an international standard. The committee
is anxious to explore any option which will lead to a solution of
the conflict over this issue acceptable to all member bodies of
SC5.

It is clear that the second offers the quickest route to a
standard and we strongly recommend that it be adopted. However,
we further recommend that the effort identified in the first
approach be simultaneously initiated and that an acceptable
conformant array proposal should be defined and included in a
subsequent standard for Pascal as soon as possible.

Yours sincerely,

As you know, the US member body of ISO TC97jSC 5 voted against the
acceptance of the first draft proposal, on the grounds that the
conformant array feature should be described in an appendix to the
standard. This position was a compromise offered in the hope that
it would be acceptable to the other member bodies of SC 5 and
thereby an international consensus could be quickly achieved. The
position did not, in fact, reflect the true sentiment of the JPC,
as expressed in a number of formal and informal votes, which was
that a conformant array feature should not be included in the
current standard for Pascal. In the beginning there was no
proposal available to evaluate technically, and the committee's
view was based on strategic considerations. These were that the
introduction of a new and largely untried feature at such a late
date would introduce technical problems which could not be
resolved in time to avoid delaying the acceptance of the standard.
This has in fact turned out to be the case, since the first
proposal for a conformant array feature was sufficiently
technically flawed to justify its replacement by a quite different
proposal. There are still major technical objections to the
latter so that the view of the JPC on conformant arrays remains
unchanged, although it is now based on technical considerations.
These are described in the attachment (which was accepted
unanimously) .

D. T. Jones
International Representative
Joint ANSIjX3J9 - IEEE Pascal Committee

Enclosure



1.0 Overview and general problems

identify a fundamental concept that this extension is to
support. The best approximation yet suggested is the
adjustability of the bounds of a scalar-type used as the
index-type of an array-type under certain circumstances of
parameter usage. Inasmuch as this concept is founded on at
least five identifiable concepts, it is difficult to see how
it may be considered fundamental.

This absence of fundamental underlying abstraction is
foreign to the nature of the language. This absence leads
inexorably to user confusion and to language-designer
confusion. The user is not provided a concept on which to
base his understanding; the designer, likewise, is given no
guidance in his language design. Since user experience is
lacking, no evidence exists from which to draw any
conclusions with respect to the lack of user
understandability. However, the lack of guidance to the
language designer is quite nicely evident from the volume of
technical objection: the most acute examples are the
dilemmas of packing and of value-parameters.

Attachment: Conformant Array Ad hoc Task Group Final Report

U.S. Objections to Conformant Array Extension

The U.S. Joint Pascal Committee (X3J9) created an ad hoc
task group to investigate the conformant array extension
appearing in JPC/80-161 (Working draft/6) (6.6.3.1). This
report together with JPC international liaison David Jones'
cover letter to the international working group (WG4) is the
result of the task group's investigation. Contributing
members of the task group included Bob Dietrich, Hellmut
Golde, Steve Hiebert, Ruth Higgins, Al Hoffman ,Leslie
Klein, Bob Lange, Jim Miner, Bill Price, Sam Roberts, Tom
Rudkin, Larry Weber (chairperson), and Tom wilcox.

1.1 Lack of implementation experience

The current proposal has no widely known implementations.
Various portions of the extension have been implemented in
different compilers, but the group of features proposed here
have never been combined together, except on paper.
Furthermore, the implementations of the various parts of the
extension have not (of course!) been in the context of the
proposed standard. Since this is a new feature to the
language, the introduction of this extension in the standard

document is especially distressing.

2.0 Problems with existing proposal

2.1 Set of types that may have to conform is unrestricted

1.2 Large change to text of standard

The conformant-array extension provides no way to identify,
at the point of declaration, the array types that may have
to conform to some conformant-array parameter.
Consequently, an implementation must ensure, a priori, that
ALL array types can be handled correctly by the
implementation of the conformant-array parameter extension.
Hence, a user may have to endure severe implementation
inefficiencies even though he does not use the
conformant-array parameter extension. For example, an
implementation of packed conformant-array parameters (an
almost irresistible evolution of the present extension) may
make many of the possible forms of data packing totally
impractical. A solution that is integrated with the type
naming mechanism would alleviate this problem.

I-
'-'c
c

The conformant-array extension requires a large amount of
text in the standard in order to describe it. Moreover, it
requires modifications to sections outside of section 6.6.3
on parameters. In other words, the extension interacts --
at least in its description -- with many other parts of the
language. For example, in section 6.7.1 the alternative
"bound-identifier" has to be added

This means that the extension is major, with wide impact on
the language. This is especially unfortunate in view of the
fact that it only provides a single capability that of
array parameters with adjustable bounds. A broader
capability, might not require a significantly larger
description.

2.2 Structural Compatibility

It is of the essence of the Pascal language,
principal distinguishing characteristic, that it
on certain fundamental concepts clearly and
reflected by the language" (page 1, section 0,
the Draft ISO/DP 7185). It is difficult, at

and its
is "based
naturally

forward to
best, to

One of the fundamental clarifying decisions made in
developing the draft standard from Jensen and Wirth was the
rejection of so-called "structural type-compatibility" in
favor of the more natural "name compatibility" (or a
variation thereon). Such decisions have had a profound
effect on the resulting language; it is important that such
principles be applied consistently throughout the language.

1.3 Conformant-array concept not defined

Unfortunately, two areas of the existing (Jensen and

language resisted consistent application of
compatibility": set-types and string-types. Both of

Wirth)
"name
these



The conformant-array extensions introduced in N510 and in DP

7185 both violate the underlying principle of
"name-compatibility"; we have seen no attempt to justify
this violation. This is inexcusable in the absence of
problems of upward-compatibility, very simply because
conformant-arrays are an extension.

TYPE varray = array[i..j: integer] of integer;

problems are directly attributable to the existence of
inadequately typed value designators (i.e., character-string
constants and set-constructors). It was deemed necessary to
violate "name compatibility" in these two cases in order to
avoid introducing new (and incompatible) language features.

that, as yet, have not been discovered.

2.4 Need to name a conformant array schema

There is no construct to allow the use of an identifier to
denote a conformant array schema:

One practical effect of this unnatural regression to
stuctural-compatibility, as discussed elsewhere in more
detail, is the difficulty encountered in extending the
conformant-array capability to allow multi-dimensional
packed arrays.

PROCEDURE p(var param: varray);

The lack of this construct makes the proposed conformant
array schema weaker, due to considerations of consistency

and user convenience.

2.3 Parameter List Congruency

Before proceeding, it must be noted that the naming
construct above must be accompanied some means of
distinguishing the array bounds "[i..j]" for each individual
usage. it is not clear that the currently proposed
~onformant array extension allows such a capability: this
1S a general problem in itself as well as a limitation on
extensability (see section 3.5).

In the comments from the French member body (p.3, 6.6.3.6),
they note that "the parameter lists (x,y:t) and (x:t, y:t)
seem to be not congruent" and that this is the only part of
the language where these two notations are not entirely
equivalent. It is a correct observation that these are not
congruent. However, given the current form of the
conformant-array proposal, this surprising and aesthetically
unpleasant inconsistency is absolutely necessary. If the
two parameter list forms were congruent (as in N510), then
the following example would be a legal program fragment:

type t = integer;
proc pl(var fl,f2: array[i..j: t] of u);

begin fl:= f2 end; {end - pl}

The first objection to the proposed conformant array
extension is the bulkiness of the construct. The parameter
list of a procedure or function is frequently placed on one
line. The use of a conformant array schema makes this
virtually impossible when more than one parameter exists.
This and the added user cost of retyping the schema become
significant when the same schema is used over and over
again, as, say, in a library of mathematical routines.

proc p2 (proc fp(var fl:

var f2:
var a: array[1..2] of u;

b: array[1..3] of u;

array[il. .jl:t] of u;

array[i2..j2:t] of u»;

When one conformant array uses another, in the following
manner, the lack of an identifier becomes a clear oversight
in the language:

begin fp(a,b) end; {end - p2}

begin p2(pl) end;

procedure p(var a: array[lowa..higha: atype]

of arecord;
var b,c: array[xlow..xhigh: integer;

clow..chigh: color] of
array [lowa2..higha2: atype]

of arecord);

It is impossible to know at compile time that the assignment

(fl:= f2) is an error. To remove the necessity of this

run-time check, a seemingly unrelated aspect of the language
had to be altered. The alteration has been recognized as

undesirable and the reason for it was certainly not obvious.
It took some time to detect the effect of
conformant-array-schemas on parameter-list congruency. In
addition, there may be other apparently unrelated aspects

Here it is desireable that the type of
"a" in the type of

the components of "b" and "c" to be the same.
00
C1

The unfortunate consequence of adding the inadequately
conceived conformant array schema to Pascal is a reduction
in the prime desirabilities of convenience of usage and
clarity of the printed program.



array[u..v:Tl] of array[j..k:T2] of T3

The lack of an identifier construct for conformant array
schemas results in user, language, and implementation
inconsistencies. Except for procedure and function
parameters, the conformant array schema is the only
construct in the parameter list that is not a single word.
To new students of the language, it will always appear
inconsistent. And, since the parsing of conformant array
schemas is so different from other
parameter-type-identifiers, it becomes an exception case,
resulting in added complexity in the compiler.

array[u..v:Tl; j..k:T2] of T3

to be equivalent to

This conflicts with the use of the character "," to express
a similar equivalence for array types (6.4.3.2), where

array [T4, T5] of T6

The proposed conformant array schema

that it does not permit the use of a

as a part of a record, to be passed
example, many programs make use
implemented as records, i.e.

is also shortsighted in
conformant array schema
as a parameter. For
of dynamic "strings"

is equivalent to

array [T4] of array [T5] of T6

type string = record
length: O. .80;

chars: array[1..80] of char
end;

One might therefore argue that for uniformity and possibly
as an aid in compiler error recovery, the character ","
should be used in the conformant-array extension.

for a dynamic "string" of maximum length 80. Supposing it
were necessary to write a string-handling routine to handle
records with differing maximum lengths, one could, with the
help of a schema label, construct the following:

However, there is unresolved disagreement as to whether the
separator should be a comma or a semicolon. The existence
of this disagreement demonstrates that the nature of the
object to be separated is not well understood nor well
specified.

2.5 Required Runtime checking of types

type natural = l..maxint;
dynamicarray = array[i..j: natural] of char;
string = record

length: integer;

chars: dynamicarray
end;

The proposed scheme specifies that the
parameter is the same as the type of
This presents serious difficulties
parameter is further used as an
illustrated in the fOllowing example.

type of the formal
the actual parameter.

when a conformant
actual parameter, as

procedure concat (var a,b,c: string );

program example;
type arraytype = array[l..lO] of integer;

var
a : arraytype;
b : array[l..lO] of
c : array[l..ll] of

procedure simplearray
begin end;

procedure fancyarray(var a:array[m..n:integer]
of integer);

integer;
integer;
(var a:arraytype);

This concise construct is absolutely unimplementable under
the current proposal. On the other hand, the above type of
construct could lead to some interesting extensions (not
that they should be dealt with here) .

Finally, note that making a change to a conformant array
schema, used allover a program, is much more involved than
changing the definition of a single conformant array schema
identifier.

2.4 Separator ";"

begin
simplearry (a)

end;
begin {main

fancyarray(a)

fancyarray(b)

fancyarray (c)
end.

program}

!

legal}
illegal - name incompatible}

illegal- structure incompatible}The abbreviated form for contained conformant-array-schemata
introduces the character ";" as an abbreviation for the
sequence "]" "of" "array" "[" (6.6.3.1), thus allowing the
form



type
natural = O..maxint;

procedure pl(var b:array[i..j:natural] of u);
begin end;

procedure p2(var a:array[i..j:integer] of u);
begin plea) end;

Draft/6, restricts the allowable actual parameters to arrays
not having the attribute "packed". This restriction
eliminates the direct use of conformant arrays for string
handling under the current limitation that the only arrays
of char-type that may be compared, written to files or
declared as constants are those arrays having the attribute
"packed". This particular problem could be corrected by
removing the "packed" restriction on string type although
care would still be required on the part of the programmer
to use only arrays with lower bounds of one and run-time
checks would be required to ensure this care had been taken.
Even if this string-type problem were resolved, the lack of
orthogonality contradicts the Jensen-wirth Report in which
the obvious intent is that packed and unpacked arrays be
generally equivalent except for the possible differences in
storage requirements.

Another illustration of runtime type checking is shown in
the fOllowing example.

In this example, the passing of the variable "a" to "pl" may

or may not be valid, depending on the actual parameter
passed to "p2"

This problem is not addressed by the UK Member Body comments
on DP 7815.

3.3 Value conformant-arrays

3.0 Limitations of existing proposal
Introduction of a value parameter as part of the
conformant-array extension is a natural addition, and there
seem to be good reasons to consider this aspect of the
conformant-array parameter. However, if this feature were
to be added to the extension, then this is the first
instance of a case where the size of the activation record
is not known during compilation. The unknown size of the
activation record causes a problem in an implementation that
relies on knowing the activation record size in order to
handle activation stack overflow. This is not to say that
efficient implementations are impossible, but the two
situations must be treated efficiently by compilers.

3.4 Conformant-arrays and bounds limitations

The following items are brief descriptions of features that
could someday be considered as possible extensions to the
language. An evaluation and rationale for their
desirability has not been completed at this time. The
process of including these is impacted by the current
definition of the conformant array extension. It is felt
that unifying fundamental abstractions must be developed to
cover the total set of any newly defined features.

-

3.1 Leading index types

Only leading index types of conformant-array-schemata are
adjustable. Thus,

array[T2] of array[j..k:Tl] of T3

The conformant-array extension is not sufficiently general
nor extensible: it does not provide the ability to fix
either the lower or upper bound of a given index
specification. Nor does it allow the user to equate the
extent of one index specification with the extent of
another, be it within the same conformant-array parameter or
a different conformant-array parameter. This deficiency
results in increased time and space complexity and hinders
compiler optimization. Moreover, it requires an author to
either validate one or more conditions or trust the caller.
The former introduces further deterioration of efficiency
while the latter is inconsistent with the strongly-typed
nature of Pascal. In addition, this lack in the
conformant-array extension is in conflict with one of its
primary uses: the construction of independent array
manipulation routines. For example, possible uses of
conformant-array parameters include general matrix
multiplication and inversion routines where one would like
to place restrictions on the bounds and interrelationship

00
N

array[j..k:Tl] of array[T2] of T3

is acceptable, while

is not (6.6.3.1). This introduces an asymmetry into the
definition. While a relaxation of this restriction does not
offer any additional functionality, it would allow a more
natural expression of certain relationships between index
types.

3.2 The lack of packing

The conformant-array extension, as defined in Working



2. as the base type of a set;

3. as the component type of an array;

4. as the type of a field;

5. as the index-type of an array used as the type of a
field.

3.5 Conformant scalar-types

The conformant-array extension addresses only the role of a
scalar-type as an index-type of an array-type parameter. It
ignores the many other roles where it is desirable to
conform a scalar-type parameter. A few such roles where
such conformance might be desirable are:

1. as the type of a parameter;

TO: National Bureau of Standards

between index types of the actual parameters.

FROM: David Jones
X3J9 International Liaison

SUBJECT: Report by A.M. Addyman

The Joint ANSI/X3J9 - IEEE Pascal Standards Committee (JPC)
has received a copy of a report, "The Pascal Standard: Progress
and Problems," written by A.M. Addyman of the University of

Manchester. This report, hereafter referred to as JPC/BO-164,
presents an interpretation of the current impasse in the Pascal

standardization effort with which JPC does not agree. I have
been charged, as the JPC International Liaison, to present the

committee's point of view.

The primary issue over which Mr. Addyman and the committee
disagree is discussed in sections 3.2.5 and 3.3 of JPC/BO-164,
although JPC takes issue with remarks in other sections. Before
addressing the comments specifically, however, I shall present a
summary of JPC's point of view.

The true sentiment of the committee is that a conformant
array parameter feature should not be included in the version of

Pascal being standardized through the current effort. This view
has been repeatedly documented, by both formal and informal
resolutions passed either unanimously or by large majorities,
beginning with the first time JPC became aware that the BSI group

was considering the introduction of this feature. Initially, the
opposition was based on strategic grounds (i.e., there was no
proposal to formally evaluate). These were that the delay

introduced by requiring a technical evaluation prior to
acceptance of the feature would substantially postpone the
adoption of a standard. The JPC does believe that the conformant
array extension attempts to solve a real problem that will have

to be eventually solved, and that finding such a solution is a

matter of urgency.

The pessimism of JPC was justified in that the initial
proposal offered by BSI was so flawed that it was withdrawn and

replaced by an entirely new proposal at the Experts Group Meeting

in Turin in November 1979. It is the position of JPC that this
second proposal still contains technical errors and deficiencies

sufficiently grave that yet another complete revision of the
proposal will probably be required before an acceptable solution



to the problem is found. Consequently, the strategic objections
remain, but are now substantiated by technical considerations.

2. It is a subjective opinion that the criteria
of 3.2.4, item 1, would preclude other extensions. It
is stated quite clearly within the proposed standard
that implementation dependent features are allowed, and
that by implication a user is free to provide one or

more versions of any given feature. By this means, an

extension could become widely implemented before

acceptance in a standard. In particular, an Appendix

could be created for such a feature for the reasons in
3.2.4, paragraph 2, of JPC/80-164.

Nevertheless, when the committee voted in April, 1980 to

recommend that the U.S. position should be to disapprove the
draft proposal identifying conformant array parameters as being
the only issue, it only required that this feature be removed to

an appendix so that its implementation could be made optional.
This represented a major compromise which, from the JPC point of
view, was far from the real sentiment requiring that the feature

be removed entirely from the proposal.

JPC is convinced that it is in the best interests of the
Pascal User Community that any revision or extension to the
language be supported by sound technical grounds, and that it is

better to take the time to do it correctly or to accept a
standard without conformant array parameters than to accept a
technically inadequate proposal merely because it is timely to do
so.

3. The JPC would prefer that the conformant-array

extension be removed entirely from this standard for
technical reasons. However, we recognized the claims
of the other member bodies that they require this
capability in the language. Therefore, the JPC
proposed that the extension be in an appendix to

address our concerns and we proposed that if the

extension were implemented, it was to be implemented in

the format specified to encourage acceptance by the
other member countries. Since it is our preference to

remove the extension entirely, it would be consistent
with our position to soften the wording from a
requirement to a recommendation.

As far as the actual comments in JPC/80-164 are concerned,

the remark in section 3.3.2 on support by Professors Hoare and
wirth should be qualified by the results of the discussions
members of JPC had with them before and during the April meeting,
of which Mr. Addyman was aware. Both indicated that the U. S.
compromise was preferable to delaying the standard, and Professor

Hoare himself was the source of this method of introducing this
extension. The substitution of the word "standardizer" for

"designer" in 3.2.4, paragraph 1, line 1, would accurately
reflect the U. S. position. without the substitution, it does
not. Thus 3.2.5, paragraph 2, is also misleading. The use of
the term "(correctly)" in 3.2.3, paragraph 2, is difficult to
substantiate. The JPC is particularly at odds with the position
that non-technical reasons were the justification for its
disapproval. We cannot assume Mr. Addyman is referring to our
strategic reasons because these reasons have a technical basis.
Even in the beginning, the basic issues were technical although
they could not yet be identified. Consequently, Mr. Addyman's
remark must be construed as implying a pOlitical basis for the
JPC's position. This is certainly not the case and we disagree
with Mr. Addyman's justification for his point of view as
expressed in 3.2.5, paragraphs numbered 1 to 4. The following
numbered paragraphs discuss our corresponding disagreement:

4. JPC does indeed support the removal of these
restrictions, but feels that the technical issues
raised by doing so would introduce an unjustifiable
delay into the standardization process.

Addressing section 3.3, it is the view of JPC that the
position taken by Mr. Addyman (i.e., a negative vote would

terminate the standardization process) is unduly pessimistic. In
addition, this statement represents unwarranted pressure on the

U.S. and the other two countries which voted against the
conformant array extension due to significant technical
deficiencies.

1. There have been many changes to the de facto
definition of Pascal which have not been regarded as
extensions and have been the sUbject of wide
implementation and use. This does not apply to the
feature in question, reflecting consistency in JPC's
position in this regard.

~.
~
c
c



Implementation Notes

Editor's comments
Of course, th is I ist does not include the many
supply Pascals for the xyz computer. Often
compan ies do a nuch better Job than the compan ies
the processors. You can draw your own conclusions

more compan ies that
(and why not?) these
that actually bui Id
from this list.

Well, it was bound to happen. ~ section of issue +17 got scrambled.
The right half of page BB shouldn't have appeared at all, the Zilog Z-90
reports became recursive, and the machine-dependent section was all out
of sequence. ~ sincerest apologies go to ~thur Sale, whose letter on
the Burroughs B6700/7700 implementation was dropped completely, and to
my co-editor Greg Marshall, whose hard work on the One-Purpose Coupon
went without credit. Things should be straightened out with this issue
<I hope).

Validation Suite Reports

Just to add to the overall confusion, I've changed my address and phone
number within Tektronix. This move is not intended to make it more
difficult to reach me. Mail to my old address will be forwarded for the
next few years, and If my phone rings more than four times now, the
secretary (Edie) should answer (theoretically). Here's my new address
and phone:

Telephone: 230561. Cable, 'Ta,uni' Telex: 58150 UNTAS

The University of Tasmania
Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Austra!ia 7001

IN REPLY PLEASE QUOTE

Bob Dietr ich
MS 92-134
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077
U.S.A.

FILE NO

phone: (503) 645-6464 ext 1727 IF TELEPHONING OR CALLING

ASK FDA 14th March, 1980

The Editor,
Pascal News.for those of you that are still trying to convince other people that

Pascal has 'arrived', I put together this short list of companies. It
consists solely of those companies that both manufacture processors and
have announced a version of Pascal On one or more of their products.
Hopefully I have not left out anyone. Due to my own lack of Information
only U.S. companies are listed.

Validation Suite Report

This report to readers of Pascal News is intended to let everyone know of our
intentions and plans. The demand for the validation package and response to
it has almost swamped our capability of replying.

The current version 2.2 of the Validation Suite has been distributed to about
150 organizations or individuals, not counting the several thousands reached
via Pascal News. As an indicator, the distribution list of our US distributor

Rich Cichelli, is enclosed. Some suppliers are using the ValidatioR Suite
results in their advertising, and many are using it as a development tool.
I have received a number of comparative reports, and have noticed a healthy
competition to achieve 100% on the conformance/deviance tests.

We have almost completed an update to Version 2.3, which will correct the
known errors in Version 2.2, and will include a few tests which were accidently

omitted in the first release. Unfortunately, even with the greatest care we
could muster, several erroneous programs slipped through into the release of
2.2, and a few had features which caused them to fail on some processors for
unrelated reasons. Version 2.3 is the response to such problems. However,
it is still derived from the version of the Draft Standard printed in Pascal
News and IEEE Computer, and known in ISO circles as ISO/TC97/SC5-N462.

American Microsystems
~Timesharing
Control Data Corporation
Data General
Dig i tal Equ ipment Corporat ion
General Automation
Hewlett-f'ackard
Honeyllole II

18'1
Intel
I'btoro Ia
National Semiconductor
Texas Instruments
Three Rivers Computer
Varian division of Sperry Univac
Western Digital
Zilog



As soon as this is tested and released, we begin work on updating the whole

package to the ISO Draft Standard now being circulated for voting. 1 estimate
that this will take us about 2-3 months, for completely checking over 300
programs is non-trivial, and the insertions will require to be carefully
drafted. The sources of change are primarily due to:

(i) areas in the earlier draft standards that were poorly drafted
now being more precisely defined,

(ii) areas in the draft standard which have been altered, usually
because N462 contained some mistake or ill-conceived change,

(iii) field experience with the package showing us weak spots in its
attack strategies on compilers.

I should like to thank all those who have sent Brian, Rich or me copies of
their results, or better still concise swnmaries and comments for the future.
Your praise and criticisms help sustain us through a quite difficult piece
of software engineering. Indeed we now realize that we should perhaps have
written ourselves more tools at the start to carry through what I think to
be a most significant piece of change in the software industry, and I am very
much aware just how many contributions have gone up to make this effort.

Te~ eo-rporatton
Scottsdale, Arizona 85254

University of Waterloo
Waterloo, Ontario, Canada

Sperry Univac
Blue Bell, Pa. 19424

Perkin Elmer Corporation
Tinton Falls, NJ 07724

Boston Sys tems Offi ce Inc,
Waltham, Mass 02154

Intel Corporation
Santa Clara, Calif 95051

General Research Corporation
-Santa Barbara, Calif 93111

May I simply continue to urge readers of Pascal News to keep on pushing the

view that "correct is right" (with apologies to T.H.White), and to refuse
to accept second-best.

University of Minnesota
Minneapolis, Minn 55455

Comshare Inc.
Ann Arbor, Michigan 48104

OCLC Inc.
Columbus, Ohio 43212

TRW CS&S
San Diego, Calif 92121

Medical Data Consultants
San Bernardino, Ca-'if 92408

University of California at San Francisco
San Francisco, Calif 94143

Timeshare
Hanover, NH 03755

Fairchild Camera & Instrument Corp.
Mountainview, Calif 94042

Arthur Sale,
Professor of Information Science

University of California at San Diego Process Computer Systems
La Jolla, Calif 92093 Saline, Hich 48176

NCR Corporati on
Copenhagen, Denmark

Intermetrics Inc.
Cambridge, Mass 02138

University of British Columbia
Vancouver, British Columbia, Canada

Vrije Universiteit
Amsterdam, The Netherlands

Scientific Computer Services
Glenview, III 60025

PASCAL VALIDATION SUITE USERS

Virginia Poly technical Institute & State University
Blacksburg, Va 24061

Burroughs Corporation
Goleta, Calif 93017

Oregon Software Inc.
Portland, Oregon 97201

Honeywell PMSC
Phoenix, Arizona 85029

Rational Data Systems Inc.
Uew York City, NY 10019

Digital Equipment Corporation
Tewksbury, Mass 01876Systems Engineering Labs

Ft. Lauderdale, F1a 33310

General Automation Inc.
Anaheim, Calif 92805

Philips Labcr=:ories
Briarcliff M=nor, NY 10510

University of California at Santa Barbara
Santa Barbara, Calif 93106

Honeywell M~l2-3187
Minneapolis, Uinn 55408

Advanced Computer Techniques
Arlington, Virginia 22209

RCA-HSRD 127-302
Moorestown, ~J 08057Texas Instruments

Dallas, Texas 75222

Prime Computer
Framingham, Mass 01701

Hewlett Packard
Palo Alto, Calif 94304

Boeing Co.
Seattle, Washington 98124National Semiconductor Corporation

Santa Clara, Calif 95051

Boeing Co.
Seattle, Washington 98124

David Intersimone
Granada Hills, Calif 91344

Business Application Systems Inc.
Raleigh, NC 27607

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Language Resources
Boulder, Colorado 80302

Jet Propulsion Lab
Pasadena, Calif 91103

Michigan State University
East Lansing, Mich 48824

co
0>



Beckman Instruments
Fullerton. Calif 92635

University of California
Los Alamos. NM87545

Ford Notor Co.
Dearborn, Mich 48121

Online Systems Inc.
Pittsburgh. Pa. 15229

Data General Corp.
Westboro. Mass 01581

Northrop Research & Technology Center
Palos Verdes. Calif 90274

Motorola Microsystems
Mesa. Arizona 85202

TRW DSSG
Redondo Beach. Calif 90278

White smiths Ltd
New York. NY 10024

University of Alabama in Birmingham
Birmingham. Alabama 35294

Sperry Univac
St. Paul, Minn 55116

NASA
Hampton. Virginia 23601

Carnegie Mellon University
Pittsburgh. Pa. 15213

University of Guelph
Guelph, Ontario. Canada N1G 2W1

MacDonald Dettwiler & Associates
Richmond, British Columbia. Canada V6X 2Z9

Digital Technology Inc.
Champaign. III 61820

The f1edlab Co.
Salt Lake City, Utah 84115

System Development Corp.
Santa Monica. Calif 90406

University of Illinois
Urbana, III 61801

IBM Corp.
San Jose, Calif 95150

University of Scranton
Scranton. Pa. 1B510

RUNIT
Trondheim. Norway

BT! Compu ter Systems L1C.
Sunnyvale, Calif 94086

University of Iowa
Iowa City. Iowa 52244

Bobs Software Systems
Austin. Texas 78745

GTE Automatic Electric Laboratories Inc Modcomp
Northlake, III 60164 Ft. Lauderdale. Fla 33310

California Software Products Inc.
Santa Ana, Calif 92701

General Electric Co.
Fairfield. Conn 06431

Tektronix Inc.
Beaverton. Oregon 97077

Enertec Inc.
Lansdale. Pa. 19446

Arthur A. Collins Inc.
Dallas. Texas 75240

RCALaboratories
Princeton. NJ 08540

Renaissance Systems Inc.
San Diego. Calif 92121

University of Western Ontario
London. Ontar~oCanada N6A5B9

Perkin Elmer Computer Systems Division
Tinton Falls. NJ 07724

Burroughs Corp.
Pasadena. Calif 91109

University of Michigan
Ann Arbor, Mich 48109

Control Data Corp.
La Jolla. Calif 92037

Viking Computer Corp
Lexington. Mass 02173

Jet Propulsion Laboratory
Pasadena, Calif 91103

California State University & Colleges
Los Angeles. Calif 90036

Cogitronics Corp.
Portland. Ore 97229

Western Michigan University
Kalamazoo, Mich 49008

Computer Sales & Leasing
Denver, Colorado 80222

Sperry Division Headquarters
Great Neck, NY 11020

GTE Sylvania
Mountain View. Calif 94042

Lambda Technology

New York; NY 10017

Amherst College
Amherst, Mass 01002

Gould Inc.
Andover, Mass 01810

Technical Analysis Corp.
Atlanta. Georgia 30342

Rhintek Inc.
Columbia, Me. 21045

Tymshare Inc.
Cupertino. Calif 95014

Motorola Inc.
Austin. Texas 78721

L':1'-

Stanford Linear Accelerator Center ~
Stanford. Cali f 94305 ;=.

Centre de Calcul EPFL
Lausanne Switzerland

Sperry Univac
Blue Bell, Pa. 19424

Procter & Gamble Co.
Cincinnati, Ohio 45201

Compagnie Beige Burroughs
Herstal Belgium

GENRAD Futuredata
Los Angeles. Calif 90045

Wayne Catl ett
Santa Ana, Calif 92707

Western Digital Corp.
Newport Beach, Calif 92663

Three Rivers Computer Corp.
Pittsburgh. Pa. 15213

Singer-Librascope
Glendale. Calif 91201

Computer Translation Inc.
Provo, Utah 84602

NCRCorp.
San Diego, Calif 92127

Westinghouse Electric Corp.
Pittsburgh, Pa. 15238

Chemical Systems Division
Sunnyvale. Calif 94086

>-<ro
c



THE PASCAL VALIDATION PROJECT

Department of Information Science
University of Tasmania
GPO Box 252C,
HOBART, Tasmania; 7001 :fiT~~HtInlSei

Validation Newsletter No 1

1980 March 28

Some time ago you acquired a version of the Pascal Validation Suite, either from
us or from Rich Cichelli in the USA or from Brian Wichmann in the UK. ~f your
version is up to date, you should have Version 2.2.

To briefly explain our numbering system for versions, the first digit i".-ntifies
a major break in the evolution. Thus Version 1 related to the pre-1979 work
derived from the Pascal User Manual and Report, and Version 2 is the completely
revised package produced after receipt of the first public draft of a Pascal
Standard (ISO/TC97/SC5 N462, known as Working Draft 3). The second number
relates to a revision level within that major version.

With the release of Version 2.0, and its subsequent rapid evolution through 2.1
to 2.2, we have achieved a relatively stable product. It is by now quite well

known that in the 350+ programs of the package there are a small set which are
incorrect (they do not test what they ought to, or have a syntax error, or a
convention error), and there is a small set which are not as well-designed as
they might be (failing for reasons which are unrelated to their purpose).
Accordingly, while I was on sabbatical leave from"-theUniversity of Tasmania in
1979/80, Brian Wichmann and staFf at the National Physical Laboratories in
Englandproduceda new version2.3 whichattemptsto correcttheseerrors,and
wl1.L<..:hatlds a number of new teststogetherwith old oneswhich were omittedfrom
version 2 but were in version 1.

We will not distribute this version, and it will remain purely an internal
revision level. Of necessity, the first production of a new level must be
testedbeforerelease,and our tes.tingof version2~ 3 yieldsmany issueswhich
would have to be clarified before we could distribute it with the confidence
in its quality that you are entitled to expect.

Even more cogently, we consider the revision of the validation p~ckage to conform
to the new Draft Proposal (DP7185) to be even more important t;,antidying up the
loose ends of an obsolete version level, and accordingly oc~ pfforrs are no~
going into producing that version as soon as possible. It will be J~nowI\3f,
Version 3.0, and will take us at least two or three months to complete.

In this way we think we can avoid delays in the production of 3.0 and minimize
the circulation gf spurious tests and those which are relevant to N462 but not
to DP7185 (orworse,reversed in -the two versions~.~)

While undertaking the major revision required to produce the new version, we shall
also attempt to simplify some aspects of testing. Since Version 3.0 will be
a major revision, we shall issue it complete (i.e~ not an update is~ue), but we
intend in future to include a "last revision level" in the header of each test
to facilitateidentifyingthe latestchanges. -

Thank you for your support of our effort; we have over 150 subscribers now and
the activity is certainly paying off in terms of quality of software and
convenience to users. Best wishes for your future work.

Professor A.H.J. Sale

The University of Taslnania
Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Australia 7001

Telephone: 230561. Cable, 'Ta,uni' Telex: 58150 UNTAS

IN RE"LY PLEASE QUOTE'

FILE NO

IF TELEPHONING OR CALliNG

ASK FOR
11th March, 1980

Mr. P. Pickel~ann,
Computing Centre,
University of Michigan,
1075 Beal Avenue,
Ann Arbor, ~Iichigan
U.S.A. 48109

Dear Paul,

~ank you for your letter, which I have just read after returrdng to

Tas~anla from study leave in USA and Europe. I was very excited to read it,

as It seems a very thorough piece of work, and just the sort of thing

"choped the package would do.

I have t~ke~ the.liberty of sending a copy of your report to Pascal

Ne"s for reprIntIng; If you "ant if kept private please write to Rick Shaw
and say so, or send revisions. I have also sent a copy to the AAEC

(JeffTobIas)as he has toldme thathis fieldtestversionpassesall
conformance and practically all deviance testsI (or at least the correct
tests).

I do not think that a tape with all three tests would be of great use

to.-!meat prese~t as we a:-e about to shift up one sub-level in the tests,

~n~ a new verSlon level IS three months away (to conform to the ncw Draft
"ta.,dard) . I think I can glean all I need from your very comprehens i ve

repGrt.

On your "Distribution problems", etc:

I. Charset: will investigate.

00
co



2. Printfiles: the distributed skeleton program will readily paginate;
I will not put control characters in for the few installations that
want them, at the expense of making 99% of installations strip them

off. The printed version was printed by a slight modification of the
skeleton.

Errors in test programs : will investigate; most have been reported
frequently (sigh; complete correctness of 350+ programs too much for us;
and flaws like 6.2.1-7 slip through.)

THE UNIVERSITY OF MICHIGAN

COMPUTING CENTER

1075 BEI\L AVE"'IUE

AN"'I
AflaOR. MICHIGAN 48109

Specific suggestions

Clock would be less standard than process time. The name of a non-

standard function is irrelevant; processtrme-is deliberately chosen
so as not to be in anyone's system (except ours) and to return results
in standard metric units (seconds). Consequently inadvertent rubbish
results are unlikely.

The suggestion about [1 mod bitsperword] illustrates only poor quality

compilation techniques. Our compiler and the lCL 1900 one should realize

that the result is in the range 0.. (bitsperword-l) anyway. Consequently I

would prefer to keep the algorithm transparent rather than introduce

extraneous var~~bles whose whole purpose is to optimize less-than-perfect

implementations. (As a matter of interest, 1 have been musing over a version
with very large sets here; our implementation will handle them too.)

January 22, 1980

Pascal Support
Department of Information Science

University of Tasmania

Box 252C, G.P.O.

Hobart 7000
Tasmania

Australia

6.3.1 & 6.4.5-5 are slips; our compiler has full significance, artd all

the others 1 used for testing had 10 or 12 or 16 characters up to release.

We also forgot to run the full package with our STANDARD switch set to

enable the compiler to report these.

Dear Sirs:

Here is a copy of my first version of a Validation
Report for three IBM 360/370 compilers, and some comments
ans suggestions on the suite. I'll send another version after
I i:inish adapting Release 3 of the Stony Brook compiler for
MTS, which should fix several of the problems.6.8.3.5-4 Perhaps maxint is a bit severe? We are seeking implementations

which allow 'virtual infinity' of case, to show quality. (Our compiler will

handle maxint of course, but I wouldn't condemn a compiler that had a hash-

table algorithm with packed one-word records and hence was limited to less

than maxint values as the key.)

If you are interested, I could send a tape with the
results for all three compilers.

LOOP. Agree. Didn't realize that anyone was foolish enough to use

loop-exit until talking with IBM implementors.

Sincerely,

For-loops: you are tackling things which were left out of Version 2

because I could not resolve them in advance of the Draft Standard (or at

least tried to influence the Standard first).

Paul Pickelmann

VERSION indication is a good idea, which we had already noted, but not

in so clear a form. Thanks.

PP:kls

Enclosure
Finally, can you send me your size in shirts? We have a free gift to

~alidators who do good work for Pascal...

Yours sincerely,

Dear Readers of Pascal News,

I am sending these reports to Ue\,sto show an example (a gocxione) of the

flood of inforrnation I am receiving on validation. See tl:.e reportby me

MSO in tha He\o/s.

Arthur Sale

Arthur Sale,
Information Science Department

....
<I
C
C



AIIEC Pascal/ECOO (/'IT S version) Version 1 . 2/ n 9

S1BR Stony Sroek Compiler (II'I'S versien) Release 2. l/C'! 12 S

OEC 'Jniversity of British colullbia Version Aug. 16/79 Test Type ~tests Failed/Passed
AHC STER OEC

Coformance 139 17/122 26/113 21/118
reviance 94 33/ 61 35/ ~9 41/ 53
ErrorHandling 46 23/ ~7 22/ 24 211/ 22L_
Itrplm~ntaticn 1~ 1/ 14 0/ 15 1/ 14
Quality 23 5/ 13 4/ 19 3/ 15
Extensions 1 1/ 0 1/ 0 1/ 0
Cest $lE.98 $10.20 $38.75

The rtpascal Vali~ation Suite" is a set of 318 Pascal programs
designed to test a co~pile[ fer coreFliance with tbe draft paseal
standarn. A full listing cf the suite aleng with Arther Sale's
delightful int[c~uction is in Pascal News,16 (October 1979 arrive1
Ja~.8C). The r~sults of running the 3 Pascal compilers available
on r.TS are sum=srize1 belew. A full report is in ONSP:PASCAL.NEWS.

Ce~Futer: IB~ 360/370, Amdahl 470

Amda=l 470/V7 used for tests
Version 2.2 of the suite was used. ~his ccrresFonds to the version
of the :!raft iI: Pascal Nelis, 14 (Jan. 79). 1here are at least two
newer drafts ard a new versien of the suite is comming.

Processors: If the number ef tests failed seems disaFcinting, note that the
designers teek care to test these things whicb have changed from
one jefiniticn ef Pascal tc the next, as liell as those (mostly
errors) which are hard to deal with.

Tester: Paul Pickelmann (University of Michigan)

~ate: January 1980

Version: 2.2

Parameter A para~eter of aDY kind (value, var,
procedure, or function) of a procedure
or fUDcticn.

prccedure Parame~er A paraKeter of a prccedure or function
which is a procedure or function.

I-
L'")oC



AA!C STBR UEC

Nurnl:er of tests Fassed 122 113 116
NUi:ter of tests failed 11 26 21

STER, TJ8C
Assignment te a function identifer is not Fermitted from within
nested procedures and functiens.

""ailed (,.2.2-8.

STER
~~e cardinalit, of sutrances must be less than
;ill run as le;g as tbese'are never assigned a
~in(sDttype)+Ma%int.
Failed 6.4.2.2-2 (errer message, but ~uns)

~axint. Programs
value greater than

l.AEC
6.1.2-3,
6.11.3.5-1,
6. E. 3. <;-1,

6.11.3.3-1, 6.4.3.3-4,
6.6.3.1-5, 6.6.3.4-2,
6.9.4-7

STER
The tag-field is required in varient records.
railed 5.4.3.3-1

(,.1.8-3, 6.2.2-3, 6.3-1,
6.4.3.5-2, 6.4.3.5-3, 6.5.1-1,
6.8.3.9-7, 6.S.2-3, 6.9.4-4,

STEB
5.1.6-2, 6.2.1-6,
6.4.3.3-1096.4.3.5-1,
6.6.3.1-5, 6.6.~.2-1,
6.6.5.2-5, 6.6.6.2-3,
6.9.4-4, 6.9.11-15

AAEC
Empty record declarations containing a semicolon produce syntax
errors.
Failed 6.4.3.3-1

6.2.2-3,
6.4.3.5-2,
6. 6 . 3 . 3:- 1,
6.6.6.4-1,

6.2.2-8,

6.11.3.5-3,
6.6.3.4-2,
6.6.6.5-1,

6.4.2.2-2,
6.4.5-1,
6.6.5.2-3,
6.7.2.4-3,

6. 4.3.3-1,

6.6.3.1-1,
6. 6. 5. 2-4 ,

6.8.3.9-7, AAEC
The tag-field ~ay not redefine an identifer elsewhere in the

declaration part.

Failed 6.4.3.3-11
rYBC

6.1.3-2,

6.5.1-1,
6.6.5.2-3,
6.9.4-15

6.2.2-3,

6.5.3.4-1,
6.6 . 5.2-5,
€.9.4-6,

6.2.2-8,

6.6.3.1-1,
6.6.6.2-3,

6.9.4-7,

6.4.3.5-1, 6.4.3.5-2, 6.4.3.5-3,
6.6.3.1-3, 6.6.3.1-5, 6.€.3.4-2,
6.1.2.5-2,6.8.3.9-7, 6.9.4-4,

STEB
.Case constants cutside the tag-field subrange are not allowed,
which is what later versicns ef the draft standard require
methinks.
Failed 6.4.3.3-1C

AAEC
Only the first eight characters of identifers and reserved words
are used. Some lenger identifers look like reserved words.
Failed 6.1.2-~ and 6.3-1

AAEC, STER, !JEC
Pointers are not allowed within files.
railed 6.4.~.5-1

AAEC
Null and length ene lines have a blank apfended when written.
Failed 6.4.3.5-2

IJBC
Up~er and lower letters are ccnsidered distinct in identifers.
Failed 6.1.3-2 STER, nec

Null lines are replaced by length one lines when written.
~ailp.d 6.4.3.5-2, 6.4.3.5-3STER

Lacels are compared as strings so leading zeros are significant.
Pailed 6.1.6-2 STEB

To solve the "interactive file problem" fi is undefined until
eof is checked.
Failed 6.4.3.5-2, 6.6.5.2-4
There is a bug where an ecf check is need when it shouldn't be.
~ailed 6.4.3.5-3

AUC
In "(*...)" and "(...*)" the starting and ending delimiters don't
match but are considered tre entire comcent, which is what later
versions of the draft star-d~rd require.
!"ailed 6.1_8-~

STER

The program-parameters part of the program-heading is not optional.
Failed 6.2.1-6, 6.6.3.2-1, 6.6.3.3-1, and 6.6.6.5-1

UBC
The end-of-line character is eol not ·

,

Failed 6.4.3.5-2

AAEC, STE3, IJEC
Vhen declaraticn for ~ tYFe which is the domain of a pointer type
appears after the declaraticn ef the poirter type and there is a
cere glotal type with the s~me name, the more gloral type is used
=or the do~ain ef the poir-ter instead of the lecally declared type.
Failed 6.2.2-3

T'EC
Local files (these other than Frogram parameters) are not really
local. They ~ust be provided by the user and all files with the
sa~e nace use the same file.
Failed 6.4.3.5-2, 6.4.3.5-3, 6.5.3.4-1, 6.6.3.1-3, 6.6.5.2-3

6.6.5.2-5, 6.9.4-15



AAEC
Peset d~es net Ge an implicit writeln (except with output)
~ai]ed 5.4.3.5-3

nBC
The expursion "(.C,1.) (= I" causes a run error.
Failed 6.7.2.5-2

the type

the

AAIC
In a fer 100F the assignmer.t is dene before t1e second experession
is evaluated.
~ailed 6.8.3.9-1

STEF
Assignment to a .ar parameter whose type is an alis for
of the value assigned gives an error message and causes
cO~Filer to Frcgram interupt.
"dIed 6.4.5-1

AlIEC,S'IER,UEC
Extreme valuse in fer loops cause problems. DBC infinite lOOFs,
AAEC and STER cause run errors.
Failed 6.8.3.9-7I.AEC, DEC

Fecords may not contain files.
Failed 6.5.1-1 AAIC

Real numbers are converted diferently at comFile time than at run
tiJre.
Failed 6.9.2-3.

S'IER, TJEC
An actual paraueter of scme type for a var parameter whicb is a
sub range of that type is net allcwed. 'Ibis is what the draft
standar~ requires; the test is in error.
Failed 6.6.3.1-1

AAEC,STBR,DBC
The formating ef reals when the field vidth given is too small
is ~rong. 'Iest is likely wrong, as the draft standard is not
clear. 'Ibis section is changEd in later drafts.
Failed 6.9.4-4

AAEC, STBR, DEC
Test has error. I parameter is included .ith a Frocedure paramGter.
Failed 6.6.3.1-5

AAFC, STBR
The syntax for tbe par-list cf procedure Farameters is diferent.
DBC
Full specification (par-list) of procedure parameters is not allowed.
Failed 6.6.3.1-5, 6.6.3.4-2

UBC
strings are left justified, not right justified as the should be.
Failed 6.9.4-6

AIEC,DBC
,

~Fry~' instead of 'TRryE ' is used when
~ay be changed in later versicns of the
Failed 6.9.4-7

~ritin9 booleans.
standard.

This

A~.FC, !jBC
Cann't have procedure para~eters with procedure parameters.
Failed 6.6.3.4-2 STER

Due to a bug, local files .hich are not global may not be used.
Release 3 will fix this and many other problems with files.
Yailed 6.9.4-1=

STEF, DEC
If the ~TS-file
t},e first thing

not true.
Failed 6.6.5.2-3

which is used for a local file is not ecpty and
done is reset, the file is not empty and eof is

STER
Pof used with file being vritten causes an error.
Failed 5.6.=.2-~

STER
Test 6.6.6.2-3 requires tee much precisicn of real functions.
'1BC
The exp~ressicn Arctan(O)=O yeilds false even though Arctan(O)
veilds O.
;'ailed 6.6.6.2-3

!)TER
Ord returns different values when applied to variables of a
suttype and it's base type which have the same value. specifically
Ord (:nin (subtype) )=0.
~ailed 6.6.6.4-1

TEn
!:eexpersion "} ,. [. 0)" causes a run error.

ailed 6.7.2.4-3



AAEC S'IER "EC

!':ur:::er of deviaticns detected 61 59 53
I'ur!:er cf uriletected extenEicns 1 4 3
~:u!!"terof deviaticns not detected 32 31 38

S'::Ef1,tJBC
St~ings are cC~Fatiable with arrays of length n, not just those
~itr. in1ex 1..~.
Failed 5.1.7-6, 6.4.3.2-5

AlIEC
Strings are cc~ratiatle with arrays of su!:range of char.
Failed 6.1.7-7 3~d 6.1.7-8

AAF.C

6.1.2-1, 6.i.7-7,
6.2.2-9, 6.3-6,
6. 4 .5- 1 3, Eo 4. 5- 4 ,
6.6.3.6-3, 6.6.3.6-4,
6.8.3.9-2, 6.€.3.9-3,
6.8.3.9-16,6.€.3.5-19

STER
6.1.7-5,
6. 3- 2,
6. 4.5- 13,
6.6.5.3-4,
6.€.3.9-2,
6.8.3.9-19

6.1.7-6,
6.3-3,
6.4.5-3,
6.7.2.2-9,
6.8.3.9-3,

6.1.7-8,
6.4.1-2,
6.4.5-5,
6.6.3.6-5,
6.8.3.9-4,

6.10-1,
6.3-11,
6.4.5-4,

6.9.:<.4-2,

6.8.3.9-4,

UBC
6.1.7-5, 6.1.7-6, 6.10-1,
6.3-2, 6.3-3, 6.3-4,
6. /I. ]. 1-2, E. 4. :;. 2- 5, 6. 4.5 - 3,
6.4.5-13, 6.6.2-5, 6.6.3.5-2,
5.6.].6-5, 6.7.2.2-9, 6.B.2.4-2,
6.8.3.9-3, 6.8.3.9-4, 6.8.3.9-9,
6.E.3.9-16,6.E.3.9-19,

AA~C
6.9.'1-9

STER
6.1.5-6,

UDC
15.1.5-6, 6.5.4-9,

6.8.3.5-12,6.9.4-9,

6.9.11-12

6. 1. 7- 11 ,

6.4.1-3,
6. 6. 2- 5,
6.8.2.11-2,
6.8.3.5-9,

6.10-3,
6.3- 5,
6.4.5-5,
6.8.2.4-3,
6.8.3.9-5,

AAEC
Null strings are accepted.
Failed 6.1.7-11

6.2.1-5, 6.2.2-4,
6.4.5-2, 6.4.5-3,
6.6.3.5-2, 6.6.3.6-2,
6.8.2.4-3, 6.8.2.4-4,
6.8.3.9-13,6.8.3.9-14,

AAEC,S'IER,!JEC
~eclared tut unused labels a~e allowed.
"ailed 6.2.1-5

AAI'C,S'IER,UBC

Witt in a scone a global name may te used then redefined.
pailed 6.2.2-4

6.2.1-5, 6.2.2-11,
6.4.3.2-5, 6.4.4-2,
6.6.1-6, 6.6.2-5,
6.8.2.4-4, 6.8.3.5-10,
6.8.3.9-14,6.8.3.9-16,

AAFC
Fur.ction identife~s may be assigned to outside the bounds (text)
of the function.
Pailed 6.2.2-9

S'IEF,OBC

"+" (but not "-"I
may be used ou things of type CHAR, string, and

scalars, not jus~ integers and reals.
Failed 6.3-2, 6.3-3, 6.3-4, 6.3-5, and 6.7.2.2-9

AAl'C
A name may te used in it's cwn defi~itiot e.g. "canst ten=ten;"
Failed 6.3-6, and 6.4.1-2

6.10-3, 6.2.1-5,6.2.2-4,
6.3-5, 6.4.1-3, 6.4.3.1-1,
6.4.5-5, 6.4.5-10, 6.4.5-11,
6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4,
6.8.2.4-3, 6.8.2.4-4, 6.8.3.9-2,
6 . 8.3. 9- 11, 6. 8.3. 9- 13,6. 8. 3. 9- 1II ,

6.9.4-12

AA!'C
Nil is not reserved.
F'e.il-=d6.1.2-1

AAFC,UBC
A glotal name may be used within a record which redefines that
namE.
Failed 6.4.1-3

UBC
Allcws packed anything not just (direct) structures.
Failed 6.4.3.1-1, and 6.4.3.1-2

STEE
Pointers to undeclared types may be used, tut not dereferenced.
Failed 6.4.4-2

UEC
CC~Farisons are allowed between diferent types.
Failed 6.4.5-1C and 6.11.5-11

AAFC,S'IER,UBC
~he P4 definition of ~ype equivalence rather than the stricter
currer.t definiticn.
Failed 6.4.5-3, E.4.5-4 (AAF.C,~'IER), 6.4.5-5, 6.11.5-13

S'IFE,rJEC
?acken ~~d unFacked arrays are ccnsidered equivalent.
~ailed 6.1.1-5

AAFC
A cc~patible tYFe is allowed a~ a var paramete~.
"ailed 6.4.5-2



has beED declared.
Failed 6.10-3

5T!!F
r.issing POP.AFt Frocedures go undetected.
Failed 5.6.1-6

AAEC,S'lER,'1EC
~issinq assiqn.e=t to a furctien identifer goes undetected.
"ailed 6.6.2-~

STEt, UEC
'e' for 'E' is 21loved in real constants. Later drafts allow this.
Failed 6.1.~-E

UEC
Actual
forual
Failed

S'IEE
5ubranges in case lists are nct flaged as extensiens.
25 ef the ce~Filer deesn't allew them theugh).
Failed 6.8.3.~-12

(Versionfunction Faramaters returninq types compatible with the
function Farameter are allowed.
6.6.3.~-2

AAF.C,IJBC
Actual and fer~al precedure parameters may have parameters which
are cempaticle, ret just the same.
"ailed 6.6.3.6-2, and 6.6.3.6-3

AAFC,STI!F,UEC
Zero and negitive field widths are allowed. Later drafts may
allow this.
failed 6.9.4-9,

STEil
Trunc and Round with integer arguments get by.
Failed 6.6.6.3-4

STER,"BC
~rite works with unpacked arrays of char, Dot just packed ones.
"ailed 6.9.4-12

AAEC,STER,UEC
Gote's are allc~ed between then and else parts of if statements and
between cases in a case statement. A later draft alowed this but
it locks like it's out of the current one, which is too bad at
least in the case of the case statements.
Failed 6.R.2.4-2, and 6.e.2.4-3

"BC
Fully specified parameter lists are not allowed.
Failed 6.6.3.5-2, 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4, and 6.6.3.6-5

AAEC
Procedure parameters may have only valne parameters.
pailed 6.6.3.6-3, and 6.6.~.E-4

AAEC,S'lER,"BC
Gote's are ~llewed into structured statements. See the test for
sere interesting implicatiens cf this and the definition in the
draft.
Failed 6.8.2.4-4 AAEC,TJBC

Loep is a reserved word.
Failed E.8.3.9-~, 6.e.3.9-13, and 6.8.3.9-14S'1:EF

Peal case selectors get by (when the case constants are reals).
pailed 5.8.3.5-1C

uEC
Com~onents of records are allowed as for loop variables.
pailed 6.8.3.9-11

A}.FC,STER,1'JEC
non-local variatles are allowed as fer leep variatles.

Assignments tc fer loop variables inside the loep are allowed.

neste~ for leops with the same variable are allowed. In STBR
ttis de~sn't cause infinite lceFs, since at the top of the loop
t~e variable gets the value it would have if not changed.
Failed 6.8.3.9-2, 6.8.3.Q-3, 6.8.3.9-4, 6.B.3.9-9, 6.9.3.9-14,
6.6.3.9-16, and 6.8.3.9-19

S'IEF,~EC

0utrut ~av te used even if it dcesn't appear in the progra~ header.
'"ailed 6.;0-1
51 F.F,.!] EC

writ~ roay be used without specifing a file even when output

~.

'"C'c



AAF. C STBB USC

!WIrter of errc::,s detected 23 24 22
1lurnt;er of errC::-E cot detected 22 22 24

AA!C
6.2.1-7, 6.4.3.3-5 ,6.4.3.3-E, 6.4.3.3-7, 6.4.3.3-8, 6.4.3.3-12,
6.4.6-7, 6.4.E-8, 6.6.2-6, 6.6.5.2-6, 6.6.5.2-7, 6.6.5.3-3,
15.E.5.3-4, 6.E.5.3-5, 6.6.5.3-6, 6.6.5.3-7, 6.6.5.3-8, 6.6.5.3-Q,
6.7.2.2-6, 6 . 7 . 2. 4-1 , 6.8.3.<;-5, 6.8.3.9-6, 6.8.3.9-17

STEt!
6.2.1-7, 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8, 6.4.6-7,
6.4.6-8, 6.6.2-6, 6.6.5.2-2, 6.E.5.2-6, 6.6.5.2-7, 6.6.5.3-3,
6.6.5.3-4, 6.6.5.3-5, 6.6.5.3-E, 6;6.5.3-7, 6.6.5.3-8, 6.6.5.3-9,
6.7.2.4-1, 6.8.3.9-5, 6.8.3.9-E, 6.8.3.9-17
ryac
6.2.1-7, 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8, 6.4.3.3-12,
6.6.2-6, 6.6.5.2-6, 6.6.5.2-7, 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5,
6. E. 5. 3-6, 6.6.5.3-7, 6.E.5.3-~, 6.6.5.3-9, 6.6.6.3-2, 6.6.6.3-),
6.7.2.2-6, 6.7.2.2-7, 6.7.2.4-1, 6.8.3.9-5, 6.8.3.9-6, 6.8.3.9-17

- --

l.AEC,S'IER,UBC
Put while F~ iE a parameter tc
teEt has a value parameter and
is a var par.
~ailed 6.6.5.2-E

a prccedure is nct detected. 'Ihe
this ~ay cot be an error unlesE it

AAEC,S'IBR,nBC
~~ teinq chanq.e while it is in use by a ~ith statement is not
detected.
Failed 6.6.5.2-7

AAEC,S'IER,UEC
nisFose does netting so it dces not detect things which may not
be disposed, nil, undefined, or active variables.
Pailed 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5, and 6.6.5.3-6

AAEC,S'IEB,UEC
~ecords created ~ith the varient form of new have
as ethers. Viclations ef the restrictions on UEe
not detected.
Failed 6.6.5.3-7, 6.6.5.3-8, and 6.6.5.3-9

the same size
of these are

USC
Trunc and rcund de not detect values greater than ~axint.
Failed 6.6.6.3-2, and 6.15.6.3-3

AAJ'C,UBC

Results of (scme) operatiocs which are outside -maxint..maxint
are not detected.

Failed 6.7.2.2-15, 6.7.2.2-7(UEC)

A1\EC, S'IER, 'JEC
As with 6.8.3.<;-19,
vari~ble. AA~C,UEC

~ailed 6.8.3.9-17

no errcrs for nested fer locps with the same
go intc infinite lOafs

AAEC,S'IER,nEC

Use of undefined

"'ailed 6.2.1-7,
6.8.J.9-~

variables iE not detected.
6.4.3.3-15, 6.4.3.3-7, E.4.3.3-8, 6.6.2-6,
E.E.3.9-E

AAFC ,
Use of an null record causes an operation exception.
5THI
ryse of a null record is ccnsidered an inccmpatible assignment.
UBe
Use of a null record which is therefor an undefined variab~~ is
no t detected.
Fails E.4.3.3-12

AA"C,5'IER,r:TBC

varient errors are undetected
Failed 6.4.3.3-5

AAEC,S'IER,UEC
Set assignments cut of range are net detected. Comments in
6.7.2.4-1 say something atcut "oper~tions on overlafing sets"
but I canntt fird section E.7.2.4!
"ailed E.4.6-7(AA"C,S!ER), E.4.6-8(AAEC,S'IBR), 6.7.2.4-1

5TH
Get with eof true is net detected.
Failed 6.6.5.2-2



AAEC S'IER DEC

t!uroter of tests =':n = 18 23 18
!lu!i:ter incorrec::ly handled 5 4 3

r.HC S'IER UEC

)lurrter of tests run = 15 15 15
Nutr1:er incorrectly handled 1 0 1

AAFe
5.2.2-1,
6. E. 3.9- 18

AAEC
There was an integer
shculd have returned
Failed 6.6.6.2-11

overflow evaluation trunc ((a+b) -a) which

16.
6.1.3-3, 6.1.8-4, 6.4.3.4-5, 6.6.1-7, 6.8.3.5-2,

STEI'
6.1.8-4, 6.4.3.2-4, 6.8.3.5-2, 6.8.3.5-6, IJBC

Set af charshculd "ark" ~ut doesn't always
Failed 6.4.3_4-2DBC

6.1.8-4,

Test 6.4.2.2-7
AAEC,S'IBR,1J9C

r:axint = 2,147,483,647
}.AEC, UBC

6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, 6.6.6.2-10

Test 6.4.3.4-2-
AAEC,DBC
Set of char is allowed.
nBC
Set of char is allowed and shculd work, tut the test fails.

AAEC
No warning is given for lODg identifers, and only the first eight
characters are nsed.
Failed 5.2.2-1, 6.1.3-3 Test 6.4.3.4-4

Ar.FC
Sets of 0..100e are allowed. Range is 0..2047.
S'!E3
Sets of
men:ters

on1yen
UEC
Sets of 0..1000 not allowed. Ease types may have
meIrcers. Set constructor only works with numbers

upto 256
in 0..255.

AAEC,S'IBR,!JEC
No warning is given for! (shcrt) ccmment with a Irissing "I".
Failed 6.1.8-4 0.. 1000 are allowed. Any subrange ~.ith 204>3 or fewer

can te the rase tYFe fcr a set. Set constructor works
scalars and sn~ranges, not integers.S'IER,DBC

array(.inteqer.) confusses the co~piler and causes an obscure
things at rnn-tiEe.
Failed 6.4.3.2-4

.UEC
(.1 mod bitsperwcr1 .)

changed to (.t.) "here
~ailed ~.4.3.4-:

Test E.6.6.2-11
AAEC
There is an integer overflow in trunc(expr=16.0), only with this
pro,;ram (??).
STE~
Beta=16, T=6, Fnd=O, Ngrd=1, Machep=-S, Negexp=-6, Iexp=7,
~inexp=-65, ma,exp=63, eps=9.53674316e-07, epsneg=5.96046448e-08.
=~in=:.397EC:3:e-7q,xmax=7.2]7C0515e+75

'HJC
Beta=16. T=1~,Fnd=0, Ngrd=1, Machep=-13,Negexp=-14,Iexp=7,
~inexp=-65, rnaxexp=63, eps=2,220446C5e-16, epsneg=1.3877787ge-17,
x~i~=5.397EO:3:e-1S,xttax=7.237CC55Ee+75

is nct dcne correctly.
t was 0..titsminu~1.

worked when

AA:EC
procednre nesting is limited to 6 levels (main,p1..P5).

Failed 15.6.1-7

AA!:C,S'IER,TJEC
No v~rning is given for
outside the sutrange of
later drafts.
Failed 6.B.3.r-2

an i~Fcssi~le case, one whcse label is
tPE ~el€ctor. This Irayte an error in

Tests 6.7.2.3-2, E.7.2.3-3
?r,FC,UBC

Eoclean experessions are fully evaluated. uec has option to use



a~tial evaluaticn.
TEP
aCCarthy evaluaticn of tcclean eXferessions is used.

Tests 6.8.2.2-1, 6.8.2.2-2
AAEC, DEC
Tests show selection tefo~e evaluation.
STfF
~i~st test shc.s selecticn befcre evaluatio, second evaluation
befcre selection.

S'IE11
The~e is a limit cn the size of any one frocedu~e which is about
200 statements. <his could te easily inc~eased, tut this is the
cnly F~og~a~ k~c~r. to excEed it.
"ailed 6.8.3. 5-E

AA':C, DEC
~hese tests used upper case identifers declared in lower case and
had 'e' in real constants.
6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-5, 6.6.6.2-10

Tests 6.9.4.5, 6.5.4-11

AA1'C
Default field widths for integers 12, reals 24, booleans 5.
Exponents have 2 digits.
STEP
Default field .idths for integers 12, reals 14, tooleans 6.
~xfcnents have 2 digits.
UDe
Default field widths for integers 10, reals 22, booleans 10.
Expcnents have 2 digits.

:'est 6.1.3-3

AAEC
Only the first 8 characters of an identifer are used.

STER,TJBC

Tests reForts ~cre than 20 characters of identifers nsed. STBR

uses all characters, UEC uses 32.

Test 6.6.6.1-1
AArC,TIBC
No standard Frccedures ~ay used as Frocedure parameters.
STEB
only Sin, Cos, E~p, Ln, Sgrt, and Arctan may be used as procedure
para me ters.

Test 6.4.3.3-9
AlIEC,STER,DEC
The tag-field in records is not checked. Test reForts 'e]act
correlation'

Test 6.10-2
AAEC,STBR
Rewrite (outFut) is not allowed.
UBC
Rewrite (output) is allowed.

'rest 6.4.3.4-5
Measures the ti~e fo~ Warshall's algorithn cn a 80xeO ~atrix.
Original uses array(.0..7<;.) cf array(.0..4.) of set of 0..15.
Modified uses array(.0..7<:.) cf set of 0..79.

Original Mcdified
time(sec) size(words/rits) till1e(sec) size (;lords/bits)

0.087 ~02/16064 0.021 388/12416
0.060 400/12eJO 0.020 310/ 9920
0.089 670/21440 0.035 562/17ge4

Tcst 6.11-1,6.11-2,6.11-3
~.AFC, STER, TJBC
These subistute symbols are allowed and nc others

"(." "*)" for "}" "("
"(." ".)" for "[" "]"

"~" for "1"

AlI<C
S'IER
nBC

Test 6.7.2.2-4
AAEC,STER,!1I!C

~iv and mod with negative cFerands are as
A div B = Trunc(A/B), and mcd returns the
is it has the sa~e sign as the quotient.

in the latest draft.
remainder of diY, that

Test 6.8.3.9-11:

AA<C
After a for lOOF the loop variable may have a value which is out
of range.
-"TEF,DEC
After a for 10CF the loop variable has value of the finial
ex:r:ression.

'Test
***

(llll)

The tot'll ccst
HEC !16.98
S'::EF !10.20
UBC !3?75

cf running all 318 [rograll1s ;las:

dcne Ca~pile and Execute, several cO~Filations per run
Gcne with LCArNGC



Number of deviations correctly detected: 83

Number of tests showing true extensions: 2 (2 actual extensions)

Number of tests not detecting erroneous deviations: 9 (5 basic causes)

Number of tests ~failed : 0

Details of Jeviations not detected:

BurrOtJ9hs 86700 Test 6.1.2-1 shows that nil may be redefined.

Tests 6.2.2-4, 6.3-6 and 6.4.1-3 show that a common
scope error was not detected by the compiler.

Tests 6.8.2.4-2, 6.8.2.4-3 and 6.4.2.4-4 show that
a goto between branches of a statement is permitted.

Test 6.9.4-9 shows that integers may be written with
a negative format.

Test 6.10-3 shows that the file output may be
redefined at the program level.

PASCAL VALIDATION SUITE REPORT

Pascal Processor Identification

Computer: Burroughs B6700

Processor: B6700 Pascal version 3.0.001
(University of Tasmania compiler)

Test Conditions

Tester: R.A. Freak (implementation/maintenance team member)

Date: March 1980

Validation Suite Version: 2.2 Error Handling

Conformance Tests Number of errors correctly detected: 33

Number of tests passed: 137 13 (4 basic causes)Number of errors not detected:

Number of tests failed: 1 Details of errors not detected: The errors not detected
fall inco a nUITwerof categories

Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7 and 6.4.3.3-8
indicate that no checking is performed on the tag
field of variant records.

Details of failed tests:

Test 6.4.3.5-1 fails because a file of pointers
or a file of sets is not permitted.

Deviance Test Tests 6.6.5.2-1 and 6.6.5.2-7 indicate that a file
buffer variable can be altered illegally and a put
may be performed on an input file.

Tests 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5 and
fail because dispose always returns a nil
B6700 Pascal and no check is performed on
parameter.

6.6.5.3-6
pointer in
the pointer

Details of extensions:
Tests 6.6.5.3-7, 6.6.5.3-8 and 6.6.5.3-9 fail because
nc checks are inserted to check pointers after they
have been assigned a value using the variant form of new.Test 6.1.5-6 shows that the lower case e may be used

in real numbers (for example 1.602e-20). This feature
has been included in the new draft standard.

Test 6.10-1 shows that the file parameters in the
program heading are ignored in B6700 Pascal.

Implementationdefined

Number of tests run: 15

Number of tests incorrectly handled: o

<.D
co



Details of implementation-dependence:

Test 6.4.2.2-7 shows maxint to be 549755813887.

Tests 6.4.3.4-2 and 6.4.3.4-4 show that large sets
are allowed. The maximum set size is 65536 elements.
A set of char is permitted.

Test 6.6.6.1-1 shows that some standard functions
can be passed as parameters. Those which use in-line
code cannot be passed as parameters.

Test 6.6.6.2-11 details some machihe characteristics
regarding number formats.

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean expres-
sions are fully evaluated.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that a variable is
selected before the expression is evaluated in an
assignment statement.

Tests 6.9.4-5 and 6.9.4-11 show that the default size
for an exponent field on output is 2; for a real number
it is 15;-for a boolean 5 and the size varies for integers
according to the value being written.

Test 6.10-2 indicates that a rewrite onfue standard file
output is permissible.

Tests 6.11-1, 6.11-2 and 6.11-3 show that the alternative
comment delimiters have been implemented, as have the
alternative pointer symbols. No other equivalent symbols
have been implemented.

Quality Measuremen~

Number of tests run: 23

Number of tests inc:orrectlyhandled: o

Results of tests:

Test 5.2.2-1 shows that identifiers are distinguished
over their whole length.

Extensions

Number of tests run: 1

Test 6.1.3-3 shows that more than 20 significant
characters may appear in an identifier, in fact, the
number of characters in a line is allowed.

A warning is produced if a semicolon is detected in

a comment (test 6.1.8-4).

Tests 6.2.1-8, 6.2.1-9 and 6.5.1-2 indicate that large
lists of declarations may be made in each block.

An array with an integer indextype is not permitted
(test 6.4.3.2-4).

Test 6.4.3.3-9 shows that variant fields of a re~ord
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.698304
secs CPU on the Burroughs B6700 and 158 bytes.

Tests 6.6.1-7, 6.8.3.9-20 and 6.8.3.10-7 show that
procedures, for statements and with statements may
each be nested to a depth greater than 15.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9 and
6.6.6.2-10, tested the sqrt, atan, exp, sin/cos and
In functions and all tests were successfully completed,
without any significant errors in the values.

Test 6.7.2.2-4 shows that div has been implemented
consistently for negative operands, returning trunc.
mod returns for the remainder of div.

Test 6.8.3.5-2 shows that case constants must be of
the same type as the case-index, if the case-index is
a subrange, and a warning is given for case constants
which cannot be reached.

Test 6.8.3.5-8 shows that a large case statement
(256 selections) is permissible.

Test 6.8.3.9-18 indicates that range checking is
always used in a case statement after a for statement
to check the for variable.

Test 6.9.4-10 shows that file buffers are flushed at
the end of a block and test 6.9.3-14 indicates that
recursive I/O using the same file is allowed.

Test 6.8.3.5-14 shows that the otherwise clause in a
case statement has been implemented according to the
accepted convention.



Number of tests attempted: 139

Number of tests invalid due to known design restrictions: 31

Number of tests passed: 102

Number of tests failed: 6

D~tc.l .GenerilL EcJjps~

PASCAL VALIDATION SUITE REPORT

Processor: Medical Data Consultants BLAISE
(PASCAL P4 v4 DEe 1979)

NIL is a predeclared constant

FORWARD is a reserved word

Only the alternate form of camnent delimiters are allo.~ed

No HAXINT

No TEXT
No ROOND

No PM;E
No DISPOOE

No RF1'IRITE

No RESET

No PACK
No UNPACK

'lheprogram heading is not required
Every variant record must have a tag field
No user declared files or associated features (BLAISE does not
support GET or PUT)

No output of BCX)LEANs
No output of REALs in fixed notation
No formal parameter functions or procedures
No subrange set constructors
64 character ASCII character set which implies upper case letters
only.
No literal text strings longer than 16 characters.
8 character limit on identifier lengths.

PASCAL Processor Identification

invalid due to the known design restrictions, I am pleased to report

that the compiler either accepted each program or printed appropriate

diagnostic messages in every case. No program caused any system

failure or crash either at compile or run time.

Computer: Data General Eclipse S/130
'!he kno.m design constraints of PASCAL-P4 (See PASCAL NEI'lS #11,

Page 70) are listed bel~.

Test Conditions

Tester: Ted C. Park

Date: April, 1980

Validation Suite Version: 2.2

General Corrments

1. 'lhe overall quality and completeness of the validation programs
is excellent.

2. 'lhe orthagonali ty of the programs is poor. Oftentimes many things
are checked in one test. For instance, my compiler supports
TRUNCbut not ROOND. Since these are checked in the same test,
this causes problems.

....
IS'
o
C

3. 'lhe skeleton program seems like a good idea but in actual practice
itdidme verylittlegood. I wonder if it's really helpful
to anyone else.

4. 'lhe skeleton program requires a "dL1I!l!lY"terminating program at the
end of the validation suite. 'lhere is none.

Sincethe upper case only and 16 character literal string length
restrictions applied universally to almost all programs, they were all
adjusted accordingly. Other than that, no changes ~lere made to any of
the programs. 'lhe results are reported bel~.

5. 'lhe first line of program 6.8.3.4-1 is missing a comma.
Conformance Tests

6. Program 6.6.1-6 is missing a semicolon on the next to the last statement.

The PASCAI.-P4 Subset

MDC "BLAISE" is based on PASCAL-P4 which is a known subset of
PASCALas described in Jensen and Wirth. It was not clear at the
outset h~ a subset compiler would react to the validation programs.

All the prograIroS were submitted to the cornpiler and although many were



Test 6.8.3.9-2 fails because assigrunent to the FOR index is
allowed.

Test 6.8.3.9-3 fails because assigrunent to the FOR index is allowed.

~st 6.8.3.9-4 fails because assigrunent to the FOR index is allowed.Number of tests attempted: 94

Number of tests invalid due to known design restrictions: 21

Number of tests passed: 50

Number of tests failed: 23

~st 6.4.5-4 fails because similar records are treated as identical.

~st 6.4.5-5 fails because similar pointers are treated as identical.

~st 6.6.2-5 fails because assigrunent to the function identifier is
not required.

~st 6.1.5-2 failed because long REALsare not accepted by the
canpiler, however, a warning message was issued.

~st 6.2.2-3 failed due to a scoping error.

~st 6.4.3.5-4 failed because no end of line was inserted at
final buffer flush.

6.6.6.4-6 fails because SUCC and PREDare allowed for REALs.

~st 6.8.2.4-1 failed because non-local GOTOsare not allowed.
~st 6.7.2.2-9 fails because the unary plus is allowed for a
variable of type CHAR.

~st 6.8.2.4-2 fails because jumps between branches of an IF
statement are allowed.

~st 6.8.2.4-3 fails because jumps between branches of a CASE
statement are allowed.

~st 6.8.3.5-4 failed because of the large table generated for a
sparse CASEstatement.

~st 6.8.3.9-1 failed because the index of a FOR statement was
set up before the final expression of the FORstatement was
evaluated.

Deviance Tests

~st 6.8.3.9-9 fails because a non-local variable is allowed as a
FOR index.

Test 6.8.3.9-14 fails because a global variable is allowed as a
FOR index.

Test 6.8.3.9-16 fails because the FOR index can be read.

TEST 6.8.3.9-19 fails because nested FORs with the same index
are not detected.

~st 6.9.4-9 fails because zero and negative field widths allowed
are for integer output.

~st 6.9.4-12 fails because output of non-packed arrays is allowed.

~st 6.1.7-8 failed because any character may be assigned to an
element whose type is subrange of CHAR.

~st 6.2.2-4 fails to detect the scope overlap.

~st 6.3-5 fails because it allows a signed character constant.

~st 6.3-6 fails because it allows a constant to be used in its
own declaration. Error Handling ~sts

~st 6.4.1-3 fails because it allows a type to be used in its own
declaration. Total tests attempted: 46

~st 6.4.5-2 fails because subranges of the same host are treated
as identical.

Number of tests invalid due to known design restrictions: 13

~st 6.4.5-3 fails because similar arrays are treated as identical.
Number of tests passed: 8

* Number of tests passed only if "DEBO:;"option selected: 11



*
Test 6.4.6-4 out of range not detected on integer assignment.

* Test 6.4.6-5out of rangenot detectedon integerparameterpassing.

* Test 6.4.6-6out of rangenot detectedon integeran ay index.

*
Test 6.4.6-7 out of range not detected on set assignment.

* Test 6.4.6-8 out of range not detected on set parameter passing.

Number of tests failed: 14 Test6.8.3.9-5 undefined FOR indexed after loop not detected.

Details of Failed Tests
Test 6.8.3.9-6 undefined FOR index after zero pass loop not detected.

Test 6.8.3.9-17 nested FOR using same index not detected.
Test 6.2.1-7 local values are not undefined prior to definition.

Test 6.4.3.3-5 other variants do not cease to exist when tag field

changed.

Test 6.4.3.3-6 variants are not undefined prior to definition.

I~] ementation-Defined Tests

Test 6.4.2.2-7 no ~~INT
Test 6.4.3.3-12 empty field is not flagged as undefined prior to

definition. Test 6.4.3.4-2
SE.'I' of QIAR allowed

Test 6.4.3.4-4 SE.'I'base-type size 0...63

Test 6.6.6.1-1 functions not allowed as parameters

Test 6.6.6.2-11 all floating-point tests OK

Test 6.7.2.3-2 (A AND B) fully evaluated

Test 6.7.2.3-3 (A OR B) fully evaluated

*
Test 6.5.3.2-1 out of range not detected on two dimensional integer

array index.

*
Test 6.5.4-1 pointer equals NIL not detected at use.

Test 6.5.4-2 pointer undefined not detected at use.

Test 6.6.2-6 function having no value assigned to it as undetected.

Test 6.6.5.3-7 assignment compatibility of records not checked.

Test 6.6.5.3-8 assignment compatibility of records not checked.

Test 6.6.5.3-9 assignment compatibility of records not checked.

*
Test 6.6.6.4-4 SUCC function applied to last value not detected.

*
Test 6.6.6.4-5 FRED function applied to first value not detected.

Test 6.8.2.2-1 left side of array assignment evaluated before
right side

Test6.8.2.2-2 left side of pointer assignment evaluated before
right side

Test 6.9.4-5 h~o digits written for exponent

Test 6.9.4-11 IFW=lO RFW=20 BFW not allowed

Test 6.10-2 rewrite not allC\'led

Test 6.11-1 {} not allowed for coornents

Test 6.11-2 equivalent symbols for . - [ ] not all C\'led

Test 6.11-3 equivalent symbols for < > <= >= <> not all<Med

* Test 6.6.6.4-7 character out of range not detected. Duality Tests

Test 6.7.2.2-3 divide by zero not detected.

Test 6.7.2.2-8 mod by zero not detected.

*
Test6.7.2.4-1 out of range SE.'I'values not detected.

Test 6.2.2-1 identifiers not distinquished past 8 characters

Test 6.1.3-3 identifier significance is 8 characters



OECu VAX.11j18Q

Test 6.4.3.2-4 integer not allowed as index type

Test 6.4.3.3-9 reverse allocation of listed vars

Co~ut~r :
Proc~ssor :

VPX 11/78i1
VPX 11 Pasca I V1. 0-1

Test 6.1.8-4 no help in locating unclosed ccmnent

Test 6.2.1-8 >= 50 types all<Med

Test 6.2.1-9 >= 50 labels all<Med

VPX 11 Pascal Validation Report

Pascal Proc~ssor ld~ntification

T~st Conditions
Test 6.4.3.4-5 1.4 seconds - 916 bytes vs. .8 seconds - 143 bytes

Test 6.5.1-2 long declaration lists all<Med

Test 6.6.1-7 procedures may be nested only 10 deep

Test 6.6.6.2-6 SJRl' is OK

Tinr: 1980 01 21
T~st runs carr i~d out by S. MatUlin and B. Si I~man
T~st annotation and anal~sis b~ S. MatUlin
Validation 5uit~ ~rsion: 2.2

Conformanc~ T~sts

Test 6.6.6.2-7 ARCl'AN is OK rtJni!~r of t~sts pass~d:
rtJni!~r of t~sts fai I~d:

127
12, 8 basic caus~s

Test 6.6.6.2-8 EXP is OK
~tails of fail~d t~sts:

Test 6.6.6.2-9 SIN and cas are OK
T~st 6.4.3.3-1 shoUlS that ~mpt~ r~cord is not impl~nrnt~d.
T~st 6.4.3.3-4 shoUlS that th~ proc~ssor do~s not alloUl tag fi~ld

r~d~fin it ion
T~sts 6.4.3.5-1 and 6.5.1-1 shoUl that th~ function EXP do~s not pass

accurac~ t~st
T~st 6.8.3.5-4 shoUlS that ~ lab~1 rang~ is limit~d to 1000
T~st 6.8.3.9-7 shoUlS that MAXINTis too big as an ~xtr~nr ve.lu~ in a

fm: stat~nrnt, I~ads to o~rfloUl
Tut 6.8.4-3, 6.9.4-4, 6.9.4-7, and 6.9.5-1 fail Ulith a compon~nt of

a pack~ structur~ as an actual variabl~ par_t~r. This will
happ~n in ~ compil~r, writt~n in Pascal, as th~ par_t~rs
of READ will b~ variabl~. On th~ oth~r hand th~ Standard prohibits
'th~ us~ of compon~nts of variabl~s of an~ pack~d t~~ as actual
variabl~ par_t~rs'

T~st 6.9.4-15 shoUlS that ~ITE Ulithout th~ fil~ par_t~r r~f~rs to a
locall~ d~fin~d fil~

Test 6.6.6.2-10 LN is OK

Test 6.7.2.2-4 DIV is OK - 1m returns ranainder

Test 6.8.3.5-2 impossible branch of CASE not detected

Test 6.8.3.5-8 >= 256 CASES all<Med

Test 6.8.3.9-18 FOR index is just bumped along without checking

Test 6.8.3.9-20 >= 15 nested FORs allCMed

Test 6.8.3.10-7 >= 15 nested mTHs allCMed

Test 6.8.4-10 outPJt is not flushed at end of job

Test 6.9.4-14 recursive I/O allCMed
~vianc~ T~sts

Extension Tests

rtJni!~r of d~viations corr~ct Iy ~t~ct~d: 67
rtJni!~r of t~sts not d~t~cting ~rron~ous d~viations: 24

( 6 basic caus~s )

Test 6.8.3.5-14 'OTHERWISE' extension not implanented
~tai Is of d~vlat ions not ~t~ct~d:

T~st 6.1.2-1 .shoUlS that th~ r~s~r~d word nil may b~ r~d~fiMd
T~st 6.1.5-6 shows that th~ proc~ssor alloUlS small I~tt~r '~' as an

~xpon~nt indicator (which is sonrti~s c1ainrd to ~ an ~xhnsion)
T~sts 6.2.2-4 and 6.3-6 shoUl that in so~ circumstanc~s th~ proc~ssor

do~s not d~t~ct th~ us~ of an id~ntifi~r prior to its ~finition



T~sts 6.4.5-2 thru 6.4.5-5 and 6.4.5-13 shoUl that th~ procusor r~quir~s
th~ compatibility of th~ typ~s of formal and actual par~t~rs,
rath~r than typ~ id~ntity

T~st 6.6.2-5 shollJS that th~ proc~ssor do~s not ch~ck th~ occurr~nc~ of
at l~ast on~ assignml!nt to th~ function naml! in th~ function block

T~sts 6.8.2.4-2 thru 6.8.2.4-4 shoUl that th~ proc~ssor allollJS JUmps
b~t~~n branch~s of an .if and a ~ stat~mI!nt

T~sts 6.8.3.9-2 thru 6.8.3.9-5, 6.8.3.9-13 thru 6.8.3.9-16 and 6.8.3.9-19
shoUl that th~ proc~ssor omits SOml!r~strictions impos~d on a f!I.C.
stat~mI!nt. Th~ proc~ssor prohibits n~ith~r th~ assignml!nt to th~
control variabl~ nor th~ us~ of that variabl~ aft~r th~ compl~tion
of th~ loop. Oth~r d~viations of that class ar~

- control variabl~ can b~ a formal paraml!t~r or a global
variabl~

- r~ading into a control variabl~ is allo~d
- non-local control variabl~ combin~d Ulith r~cursion l~ads

to an infinit~ly looping program

II!I)I~mI!ntation d~fin~d

Numb~r of t~sts run: 16
Numb~r of tuts incorr~ctly handl~d:

Details of th~ il!l)l~mI!ntation-d~D~nd~nci~s:

T~st 6.4.2.2-7 shollJS MRXINTto b~ 2147483647
T~sts 6.4.3.4-2 and 6.4.3.4-4 shoUl that ill 2f ~ is allo~d, that th~

n~gati~ ~1~mI!nts in a s~t ar~ not allo~d, and that ~1~mI!nts must
not ~xc~~d 2SS

T~sts 6.6.6.1-1 fails b~caus~ formal functions ar~ impl~mI!nt~d folloUling
th~ ~vis~d ~port rath~r than th~ Standard

T~sts 6.7.2.3-2 and 6.7.2.3-3 shoUl that Bool~an ~xpr~ssions ar~ fully
~valuat~d

T~sts 6.8.2.2-1 and 6.8.2.2-2 shoUl that s~l~ction pr~c~du ~valuation
in th~ bind ing ord~r

T~sts 6.9.4-5 and 6.9.4-11 shoUl that th~ d~fault fi~lds ar~:
- 10 for int~g~r
- 16 for Bool~an
- 16 for r~al

T~st 6.10-2 shollJS that REIoIUTEon th~ standard fil~ OUTPUTis possibl~
T~sts 6.11-1 thru 6.11-3 shoUl that on ly al t~rnat~ cOmllll!nt d~ I imi t~rs

(and no oth~r ~quival~nt symbols) ar~ p~rmitt~d

Error HandlinQ

Numb~r of ~rrors corr~ctly d~t~ct~d: 13
Numb~r of ~rrors not d~t~ct~d: 31

Details of ~rrors not d~t~ct~d

T~sts 6.2.1-7 and 6.4.3.3-12 shoUl that th~ und~fin~d valu~s ar~ not
d~t~ct~d by th~ proc~ssor

T~sts 6.4.3.3-5 thru 6.4.3.3-8 shoUl that th~ ~xist~nc~ of a particular
variant in a r~cord variabl~ is not t~st~d by th~ proc~ssor

T~sts 6.4.6-4 thru 6.4.6-8, 6.5.3.2-1 and 6.7.2.4-1 shoUl that th~
proc~ssor t~sts only th~ static compatibility, Ulithout ch~cking th~
appropriat~n~ss of th~ actual valu~ during run-timl! (unlik~, ~.g.,
Zurich Pascal-2 compi I~r)

T~st 6.6.2-6 shoUl that th~r~ is no dynamic ch~cking of th~ fact UJh~th~r
th~ naml! is assign~d to th~ function naml!

T~sts 6.6.2.5-6 and 6.6.5.2-7 shoUl that th~ paraml!t~r call~d by valu~
can b~ chang~d insid~ th~ proc~dur~ in cas~ of a buH~r variabl~

T~sts 6.6.5-3 and 6.6.5-4 shoUl that th~ proc~dur~ DISPOSE do~s not ch~ck
corr~ctn~ss of i ts paraml!t~r

T~sts 6.6.5.3-5 and 6.6.5.3-6 shoUl that both an actual variabl~ par~t~r
and an ~1~mI!nt of a r~cord-variabl~-list of a!l!i1!:l stat~mI!nt can
b~ r~f~rr~d to by a po int~r paraml!t~r of DISPOSE

T~sts 6.6.5.3-7 thru 6.6.5.3-9 shoUl that th~ r~strictions on th~ variabl~,
cr~at~d by th~ s~cond form of I'£W, ar~ not impl~mI!nt~d

T~sts 6.6.6-4 and 6.6.6-5 shoUlthat SUCC and PRED can produc~ valu~s
from b~yond th~ ~numl!ration typ~ ,

T~st 6.6.6.4-7 shollJS that th~ function ~ do~s not ch~ck th~ corr~ctn~ss
of i ts paraml!t~r

T~sts 6.8.3.5-5 and 6.8.3.6-6 shoUl that th~r~ is no dynamic ch~cking of
th~ valu~ of th~ ~ s~l~ctor

T~st 6.8.3.9-17 shollJSthat tllJOn~st~d f!I.C.stat~mI!nts can us~ th~ s~
control variabl~

Q,ja1i tu ~asur~mI!nt

Numb~r of t~sts run: 23
Numb~r of t~sts incorr~ctly handl~d:

Details of ruults

T~sts 5.2.2-1 and 6.1.3-3 shoUl that th~r~ is no oth~r limit on th~ I~ngth
of th~ id~ntifi~rs than th~ l~ngth of th~ lin~, although only th~
first 15 charact~rs ar~ significant

T~st 6.18-4 shollJS that in cas~ of an unclos~d cOmllll!nt th~ t~xt is
sUJallo~d Ulithout any diagnostics

T~sts 6.1.2-8 and 6.1.2-9 shoUl that larg~ typ~- and lab~I-J ists ar~
allo~d

T~st 6.4.3.2-4 shollJS that INTEGER is not allo~d as an ind~x typ~
Tut 6.4.3.3-9 shollJS that fi~lds in a r~cord ar~ stor~d in th~ ord~r of

th~ir app~aranc~ in th~ fi~ld list
T~st 6.4.3.4-5 (Warshall's algorithm) took 129 millis~conds of CPU timl!

T~sts 6.6.6.2-6 thru 6.6.6.2-10 ~r~ compl~t~d Ulith SOml!~rrors, r~quiring
s~parat~ analysis

T~st 6.7.2.2-4 shollJS that ill and.!!!!1!l ha~ b~~n impl~mI!nt~d consist~ntly
for n~gati~ op~rands: quoti~nt. trunc(a/b), .!!!!1!1r~turns r~maind~r
of W

T~st 6.8.3.5-2shollJSthat 'impossibl~' paths through ~ stat~mI!nts ar~
not signall~d by th~ proc~ssor

T~st 6.8.3.5-8 shollJS that a larg~ numb~r of cas~ lab~ls is allo~d
T~st 6.8.3.9-18 shollJS that th~ valu~ of th~ control variabl~ aft~r th~

compl~tion of a f!I.C. loop is in th~ rang~ of its typ~ (and is ~qual



IBM 370~-

PASCAL VALIDATION SUITE REPORT

to th~ final valu~)
T~sts 6.8.3.9-20 and 6.8.3.10-7 show that fQ[: and JI!i!b stat~~nts can b~

n~st~d to a d~pth ~xc~~din9 15
T~st 6.9.4-10 shows that flushin9 of th~ buff~r of th~ output fil~ occurs

at th~ ~nd of th~ pro9rarn
T~st 6.9.4-14 shows that r~cursi~ I/O usin9 th~ s_ fil~ is not

possibl~

Pascal Processor Identification

Computer: IBM 370/158

Processor: Stony Brook Pascal/360
(Developed at SUNY Stony Brook

Dept. of Computer Science)

Release 3.2 CMS versionExt~ns ions

I'tJmb~r of t~sts run:
Test Conditions

Tester: Charles Hill (MTS Philips Labs)
(Member of original implementation team)

Date: March 1980

Validation Suite Version: 2.2

T~st 6.8.3-14 shows that oth~rwis~ claus~ is impl~~nt~d, althou9h
on~ stat~~nt (rath~r than a s~qu~nc~ of th~m) is p~rmitt~d
b~t~~n oth~rwis~ and~

principal Deviations:

Files use fixed length records, even for text files.
Compiler does not permit untagged variants

.
No run-time checking of tags on access to varlant records
FOR loop control variables can be altered

PACKED and non-PACKED structures are indistinguishable
Compiler uses structural equivalence rather than name
equivalence of types
Syntax for specifying the types of the parameters of

procedural/functional parameters differs from
the standard
DISPOSE is not implemented

Main Extensions

Case labels may be a subrange

OTHERWISE clause in CASE statement
Linkage to FORTRAN or machine language programs

External compilation with type checking across module
boundaries

Problems with the Validation Suite

discovered in the
on. The following
by the skeleton

Some syntax errors and invalid tests were
test programs; these are documented later
minor violations of the assumptions made
were found:

Test 6.9.4-12 has a comment that begins "{This
causing the skeleton to mistake this comment for a header.

The header for 6.8.3.4-1 is missing a comma.
The expected delimiter "999" did not appear in the



program file; the termination logic has to be altered
sl igh tly anyway.

- The "END." for test 6.6.1-7 does not begin in column 1.

Inval id tests

6.4.3.5-1 PTRTOI, meant as a

6.6.3.1-1 contains an actual
type to the formal parameter.

when the error was corrected.

6.9.4-7 TRUE is written in a
the program expects it to be
contrast to the standard which

written right justified.
Irrelevant tests

6.1.3-2,6.4.2.2-6 Compiler uses upper case only.
6.6.6.5-1 not a test program.

Tests detecting bugs in compiler

6.2.2-3 When typing a pointer to a type NODE, the compiler
uses a definition of NODE from an outer block rather than a
new definition of NODE appearing later on in the same block.

6.4.3.3-3 causes a bad instruction to be generated.

6.4.5-1 produces an irrelevant error message relating to
file assignment.

6.6.5.2-3 blew up
file using Release

6.7.2.4-3 blew up

type, declared as a variable.

VAR parameter non-identical in
The compiler passed this test

6.6.3.1-5,6.6.3.4-2 A different syntax is used for
declaring the parameter types of formal procedure/function
parameters - only the types of the parameters are expected.
6.6.6.2-3, which tests the real-valued standard arithmetic

functions, failed on the accuracy tests for EXP and SQRT.
6.6.6.4-1 Compiler computes ORD(x) with respect to the

declared subrange to which x belongs, rather than with
respect to the underlying base type.
6.8.3.9-7 When using values near MAXINT in a FOR loop,

compiler gave an INTEGER OVERFLOW run error.

6.9.4-4 The second width specifier for formatting reals is
not implemented.

6.9.4-6 The width specifier for strings must be a constant
in the current implementation.

Conformance Tests

Number of
Number of

Number of
Number of
Number of

tests passed: 113

invalid tests: 3
tests failed: 22 (14 causes)

irrelevant tests: 3
tests detecting bugs in compiler: 6

Deviance

field of 5; when read back,
written left justified, in
says that values should be

Number
Number
Number
Number

of
of
of
of

tests
tests
tests
tests

passed: 54
showing deviance:

failed: 5
detecting bugs: 3

34 (17 causes)

on a RESET to an un-initialized internal
3.1. The test passes using Release 3.2.
on the expression A *

[] = I].

Details of tests showing deviance

6.1.7-5,6.9.4-12 because PACKED and UNPACKED structures are
treated as equivalent; i.e., the compiler makes no
distinction between the two even for storage requirements.

6.1.7-6,6.4.3.2-5 Strings are compatible with all arrays of
CHAR provided the lengths match.

6.2.1-5 If an identifier is declared as a label no error is
produced if it is not subsequently referenced in a GOTO.

6.2.2-4 Use of a type identifier is permitted according to
its definition in an outer block despite its redefinition in

an inner block.
6.3-2,3,4,5, 6.7.2.2-9 shows signed constants of

inappropriate types (e.g. strings) are allowed.

6.4.3.3-11, which tries to assign a value to an empty field
in a record, blows up during semantic analysis (PASS 2 of
the compiler).

6.4.5-3 (and 6.4.5-13, which is identical), 6.4.5-4,5 fail
because the compiler uses structural equivalence rather than
name equivalence of types.
6.4.4-2 The compiler fails to flag references to a pointer

variable that points to a record type that is never defined.
6.6.1-6 Shows that compiler does not catch the lack of a

subsequent full declaration for a procedure declared to be
FORWARD (the program is allowed to run, even though that
routine is actually called!); this is a bug. This test, as
supplied, contained a missing semicolon.

6.6.2-5 Compiler does not detect the lack of an assignment
of a value to a function within the function block.
6.6.6.3.4 Integer arguments to TRUNC and ROUND are

permitted. (Such arguments are coerced to real as they would
be in any other instance where reals are expected).

Details of Failed Tests

6.1.6-2~abels compared for equality as strings rather than
integers and thus labels

"6" and .0006" are considered
distinct.

6.2.1-6,6.6.3.2-1,6.6.3.3-1 Compiler expects at least one
parameter in the program heading.

6.2.2-8 Compiler does not allow assignment to the value of
a function within an inner block of that function.

6.4.2.2-2 The maximum cardinality of a subrange is
restricted to the value of MAXINT; compiler gives a warning
and runs correctly, but only because the subrange is
subsequently treated as equivalent to type INTEGER.

6.4.3.3-1 Un tagged variants are not permitted.

6.4.3.3-10 Case constants outside the tag field subrange
are not allowed.

6.4.3.5-2,6.9.1-1 Implementation uses fixed length records,
even for text files; an empty line thus results in a record
of blanks, rather than a single line-marker character.



6.8.2.4-2,3,4 show the compiler allows jumps into IF and
ELSE parts, and into CASE branches.
6.8.3.5-10 Compiler allows real CASE labels with a

corresponding REAL CASE selector; test executes correctly.
6.8.3.9-2,3,4,14,16, 6.8.3.9-9,19 Show that there are

practically no ~estrictions on FOR loop control variables:
they can be ass1gned to or read in within (or outside) the
loop body, and declared in any block. However, altering

7ontro~ variables do not affect the number of loop
~terat~ons~ an ~lte~ed.value is retained only throughout the
1~erat1on 1n Wh1Ch 1t 1S changed, since the compiler uses a
h1dden temporary variable as the true control variable.

.6.9.4-9 S~o~s the. compiler treats negative field widths
Just as pOs1t1ve f1eld widths that are too small

- it usesthe smallest actual width possible.

6.10-1 OUTPUT is not required to be listed
heading when output is directed to that file

6.10-3 Shows OUTPUT can be redefined as a
the program block.

6.8.3.5-12 shows compiler allows ranges as case labels.

variable is used.

6.4.3.3-5,6 show no run-time check on tag values is
performed when referencing variants.
6.4.3.3-7,8 failed because the compiler does not allow

un tagged variants.
6.4.6-7,8, 6.7.2.4-1 show the compiler does not complain

when the value of the expression in a set assignment lies
outside the subrange to which the variable belongs (but is
within the underlying base type).

6.6.2-6 Shows no check is made whether a function receives
a value.

6.6.5.2-2 No EOF error given. This test fails because the
implementation uses fixed length records for text files, and
thus short lines are padded with blanks.
6.6.5.2-6,7 No error is given if a file component variable
is an actual parameter to a procedure that does I/O to the
file and thus alters the file component.
6.6.5.3-3,4 fail because DISPOSE is not implemented; no

check is made on the validity of its arguments. Similarly,
6.6.5.3-6 shows no error is given when a pointer used in
selection of a WITH control variable is disposed.
6.6.5.3-5 would fail if the test program were valid; the

parameter A should be a VAR parameter.
6.6.5.3-7,8 show that no error is given if a variable

returned by NEW containing tagged variants is used in its
entirety.
6.8.3.5-5,6 When the value of a case selector <> any of the

labels, no error message is given.
6.8.3.9-5,6,17 show that a FOR loop control variable is

accessible outside the loop. After normal execution of the
loop, it has the final value of the range. No error is given
for nested FOR loops using the same control variable; the
program iterates the expected number of times.

in the program
in the program.
variable within

~ showing bugs in compiler
6.4.3.3-11, 6.4.4-2, 6.6.1-6 (described above)

~ showing extensions
6.8.3.5-12,13, 6.8.3.9-10 show ranges are allowed as

labels, and that this extension is implemented safely.

Tests failed
~3.5-2, .6.6.3.6-2,3,4,5 all failed because the compiler
expects a d1fferent syntax for declaring the parameter types
of formal procedure/function parameters.

case

Comments ~ passed tests
6.1.5-4 Decimal point not

number flagged as an error,
run because no ambiguity is
the program.
6.1.7-11 A null string is flagged, but the program is

allowed to run with a blank substituted.
6.1.8-5 Nested comments are permitted if the alternate

delimiter symbols are used.
6.9.4~8 When real format is used to output an integer, the

error 1S flagged but the program is allowed to run.

followed by a digit in a real
but the program is allowed to
present in the case tested by

Implementation defined tests

Number of tests run: 15
Number of tests detecting bugs: 1

Details of Implementation dependence

6.4.2.2-7 shows MAXINT = 2147483647.

6.4.3.4-2 shows sets of CHAR are allowed.
6.4.3.4-4 shows the maximum set cardinality> 1000.
6.6.6.1-1, in which ODD appears as an actual function

parameter, does not compile. The real-valued arithmetic

functions are the only standard functions able to be passed

in this way.

6.6.6.2-11 ran to completion, but some inconsistencies
occured (i.e., XMIN <> BETA**MINEXP).
6.7.2.3-2,3 show short circuit evaluation of expressions is

performed.

6.8.2.2-1 shows selection is performed before evaluation in
A[I] SIDEEFFECT(I). By contrast, test 6.8.2.2-2 shows

Error handling tests

Number of tests passed: 25

Number of tests failed: 23
Number of invalid tests: 1

Details of failed tests

6.2.1-7--No--error--ffiessage is given when an undefined

~.
~c
c



evaluation occurs before selection in p@ := SIDEEFFECT(P).
6.9.4-5 shows 2 digit exponents in output of real numbers.
6.9.4-11 detected a bug in RELEASES 3.0, 3.1. It shows the

default field widths to be:
integer: 12

boolean: 14

real: 9
in contrast to the User manual and earlier releases, in

which these formats are 12, 6, 14, respectively. This bug
has been repaired in RELEASE 3.2.
6.10-2 shows REWRITE (OUTPUT) is not allowed.
6.11-1 shows the alternate comment convention is allowed;

the delimiters must be pairwise matched, thus allowing code
sections to be commented out.
6.11-2,3 show equivalent symbols %, .=, GT, LT, GE, LE, NE,
are not allowed. @ is used instead of the EBCDIC
translation of up-arrow.

variable after normal termination of the loop is the
specified upper limit.

6.9.4-14 shows "recursive" I/O is allowed.

Test not performed

6.4.3.4-5 could not be run because timing is currently not
implemented in the CMS version.

Tests demonstrating compiler bugs

6.4.3.2-4 shows compiler accepts an array
type of INTEGER, but the resulting program

correctly.

6.6.6.2-6,7,8,9,10 all crashed at run-time

3.1. The bug has been fixed in Release 3.2.

with an index
does not run

using Release

Extensions

Number of tests run: 1

Quali ty tests
Test 6.8.3.5-14 did not compile; the compiler supports the

OTHERWISE extension to the CASE statement but OTHERWISE
<statement> replaces END rather than preceding it as in the
proposed standard extension.

Number of tests run: 22
Number of tests detecting bugs in compiler: 6
Number of tests not performed: 1

5.2.2-1, 6.1.3-3 show identifiers are distinquished over
their whole length, but the compiler gives no indication the
programs do not conform (i.e., contain identifiers with> 8
character significance). The compiler permits identifiers of
up to 256 characters.
6.1.8-4 Shows compiler gives no indication of unclosed

comments.
6.2.1-8,9, 6.5.1-2, 6.6.1-7, 6.8.3.9-20, 6.8.3.10-7 show a

large number of label and type declarations, deeply nested
(>15 levels) procedures, FOR loops, and WITH statements are
permitted. However, test 6.8.3.5-8, which contains a heavily
populated CASE statement, caused a compile time data
structure to overflow at case 152.
6.7.2.2-4 shows DIV and MOD are implemented consistently,

and that MOD yields the remainder of DIV.
6.9.4-10 shows that the output buffer is flushed at the end

of the program.
6.8.3.5-2 shows the compiler does not detect that a case

label, while contained in the underlying type, lies outside
the subrange to which the selector belongs.
6.4.3.3.9 shows the ordering of the representation of

variant fields is the same as the order of declaration.
6.6.6.2-6,7,8,9,10, which test the standard real-valued

arithmetic functions, gave a mean relative error between
E-06 and and E-07 in the interval tests. The special
argument tests gave fairly good results. Most identity tests
gave zero, as required; those that did not were within E-06
relative to the arguments.
6.8.3.9-18 shows the value of a FOR statement control



Conformance Tests

Number of Tests Passed: 123

Number of Tests Fa il ed : 16

UoivJ1C j100
- PASCAL VAlIDIATION SUITE REPORT

files that contain files.

Authored by: Tests 6.6.3.1-5 and 6.6.3.4-2 failed because the current
version of this implementation prohibits passing standard
functions and procedures as parameters.

Test 6.6.5.3-1 failed to assign an already locked tag
field in a variant record, but the standard disallows
such an assignment! (Error in test?)

I.E. Johnson, E.N. Miya, S.K. Skedzieleweski

Pascal Processor Identification

Computer: Univac 1100/81

Processor: University of Wisconsin Pascal version 3.0 release A

Test Cond i tions
Test 6.6.5.4-1 failed to pack because of a subscript out
of rang e. MACC notif ied.

Testers: I.E. Johnson, E.N. Miya. Test 6.6.6.2-3 failed a nine-digit exp
Univac uses 8 digit floating point.

Test 6.6.6.5-2 failed test of ODD function (error with
negative numbers) .

comparison.

Date: April 198C

Validation Suite Version: 2.2

General Introduction to the UW Implementation

The UW Pascal compiler has been developed by Prof. Charles N.
Fischer. The first work was done using the P4 compiler from
Trondheim, then the NOSC Pascal compiler written by Mike Ball was
used, and now all development is done using the UW Pascal com-
pil e r .

Test 6.8.2.4-1 failed because non-local GOTO statements
are not allowed by this implementation.

Test 6.8.3.4-1 failed to compile the "dangling else"
statement, giving an erroneous syntax error.

Tests 6.9.4-1 and 6.9.4-4 failed do unrecoverable I/O er-
ror. Problem referred to MACC.

There are two UW Pascal compilers; one produces relocatable code
and has external compilation features, while the other is a
"load-and-go" compiler, which is cheaper for small programs.
Most tests were run on the "load-and-go" version. Both compilers
are I-pass and do local, but not global optimization. The UW
compiler is tenacious and will try to execute a program contain-
ing compile-time errors. This causes problems when running the
Validation Suite, since programs that are designed to fail at
compile time will appear to have executed.

Test 6.9.4-7 failed to write boolean correctly. UW
right-justifies each boolean in its field; the proposed
ISO standard requires left-justification.

Extensions

Number of Tests Run:

Details ~ Tests

Test 6.8.3.5-14 shows that an OTHERWISE clause has been
implemented in the case stetement.

Deviance Tests

Details of Failed Tests

Test 6.4.3.5-1 failed on the declaration of an external
file of pointers (only internal files of pointers are
pe rm i t t ed)

.

Tests 6.4.3.5-2, 6.4.3.5-3 and 6.9.1-1 failed due to an
operating system "feature" which returns extra blanks at
the end of a line. This problem affects EOlN detection.

Number of Deviations Correctly Handled: 77

Number of Deviations Incorrectly Handled: 14

Number of Tests Showing True Extensions: 2

Details of Extensions

Test 6.1.5-6 shows that a lower case e may be used in
real numbers.

Test 6.5.1-1 failed because the implementation prohibits

The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under NASA Contract NAS7-l00.



Test 6.1.7-11 shows that a null string is accepted by
this implementation.

Test 6.6.2-6 shows the implementation does not detect
that a function identifier has not been assigned a value
within the function. The function should be undefined.
The quality of the test could be improved by writing the
value of CIRCLERADIUS.

Test 6.6.5.2-2 again runs into the EOLN problem.

Test 6.6.5.2-6 shows that the implementation fails to
detect the change in value of a buffer variable when used
as a global variable while its dereferenced value is
passed as a value parameter. This sould not cause an er-
ror, and none was flagged. However, when the char was
changed to a var parameter no error was detected, either.

Details of Incorrect Deviations

Tests 6.2.2-4, 6.3-6, 6.4.1-3 show errors in name scope.
Global values of constants are used even though a local
definition follows; this should cause a compile-time er-
ror.

Tests 6.4.5-3, 6.4.5-5 and 6.4.5-13 show that the imple-
mentation considers types that resolve to the same type
to be "equivalent" and can be passed interchangeably to a
procedure.

Test 6.6.2-5 shows a function declaration without an as-
signment to the function identifier.

Test 6.8.3.9-4 the for-loop control variable can be modi-
fied by a procedure called within the loop. No error
found by implementation.

Tests 6.8.3.9-9, 6.8.3.9-13 and 6.~.3.9-14 show that a
non-local variable can be used as a for-loop control
variable.

Test 6.6.5.2-7 shows that

detect the change in a
pointer is in use in a with

the implementation notes.

the implementation fails to
file pointer while the file
stat emen to Th is is noted in

Test 6.6.5.3-5 shows the implementation failed to detect
a dispose error; but again, the parameter was passed by
value, not by reference! (Error in test)

Tests 6.6.5.3-7 and 6.6.5.3-9 show that the implementa-
tion failed to detect an error in the use of a pointer
variable that was allocated with explicit tag values.Test 6.9.4-9 shows that a negative field width parameter

in a write statement is accepted. It is mapped to zero.

Test 6.10-1 shows that the implementation substitutes the
default file OUTPUT in the program header. No error mes-
sage.

Test 6.10-4 shows that the implementation substitutes the
existence of the program statement. We know that the
compiler searched first but found source text (error
correction) .

Tests 6.6.6.3-2 and 6.6.6.3-3 show that trunc or round of
some real values. 2**36 does not cause a run time error
or warning. In those cases, the value returned was nega-
tive. Error reported to MACC.

Tests 6.7.2.2-6 and 6.7.2.2-7 show that the implementa-
tion failed to detect integer overflow.

Tests 6.1.8-5 and 6.6.3.1-4 appear to execute; this oc-
cured after the error corrector made the obvious changes.

Tests 6.8.3.9-5 and 6.8.3.9-6 show that the implementa-
tion does not invalidate the value of a for-loop control
variable after the execution of the for-loop. value of
the variable is equal to the last value in the loop.
These tests could be improved by writing the value of m.

Error Handling

Number of Errors Correctly Detected:
Implementation Defined

Number of Error Not Detected:

29

17
15Number of Tests Run:

Details of Errors Not Detected

Tests 6.2.1-7, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8 and
6.4.3.3-12 show that the use of an uninitialized variable
is not detected. Variant record fields are not invali-
dated when the tag changes. 6.4.3.3-12 incorrectly
printed "PASS. when it should have printed "ERROR NOT
DETECTED"

Number of Tests Incorrectly Handled: o

Details of Implementation Definitions

Test 6.4.2.2-7
(2**35-1) .

shows maxint equals 34359738367

Test 6.4.3.4-2 shows that a set of char is allowed.



Quality Measurement

Number of Tests Runs: 23

Number of Tests Incorrectly Handled: 2

Results of Tests--

Test 6.4.3.4-4 shows that 144 elements are allowed in a
set, and that all ordinals must be >= 0 and <= 143.

Tests 6.2.1-8,6.2.1-9 and 6.5.1-2 show that large
lists of declarations may be made in a block (Types, la-
bel s, and var) .

Test 6.6.6.1-1 shows that neither declared
functions and procedures (nor Assembler
passed as pa~ameters.

nor standard
routines) be Test 6.4.3.2-4

of "integer".
when the array
ror occurs.

attempts to declare an array index range
The declaration seems to be accepted, but

is accessed (All[maxint), an internal er-
Test 6.6.6.2-11 details a number of machine

tics such as

XMIN Smallest Positive Floating pt t

characteris-

1. 4693679E -39 Test 6.4.3.3-9 shows that the variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.1356 seconds
CPU time and 730 unpacked (36-bit) words on a Univac
1100/81.

XMAX Largest Positive Floating pt . 1. 7014118E+38

Tests 6.7.2.3-2 and 6.7.2.3-3 show that

sions are fully evaluated.

boolean ex pres-

Tests 6.8.2.2-1 and 6.8.2.2-2 show that expressions are
evaluated before variable selection in assignment state-
ments.

Test 6.6.1-7 shows that procedures may not be nested to a
depth greater than 7 due to implementation restriction.
An anomolous error message occurred when the fifteenth
procedure declaration was encountered; the message "Logi-
cal end of program reached before physical end" was is-
sued at that time, but a message at the end of the pro-
gram said "parse stack overflow".

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and
6.6.6.2-10 tested the sqrt, atan, exp, sin/cos, and In
functions. All tests ran, however, typical implmentation
answers (which use the Univac standard assembler
routines) were slightly smaller than Suite computed. Er-
ror typically occurred around the 8th digit (Univac
floating-point precision limit).

Test 6.9.4-5 shows that the output format for the ex-
ponent part of real number is 2 digits. Test 6.9.4-11
shows that the implementation defined default values are:

integers 12 characters
boolean 12 characters
reals : 12 characters

Test 6.10-2 shows that a rewrite to the standard file
output is not permitted.

Tests 6.11-1, 6.11-2, and 6.11-3 show that the alterna-
tive comment delimiter symbols have been implemented;
all other alternative symbols and notations have not been
implemented. In addition, it is interesting that the
compiler's error correction correctly substituted "[" for
"(." and ":=" for "'=" as well as a number of faulty sub-
stitutions.

Test 6.7.2.2-4 The inscrutable message "inconsistent
division into negative operands" appears. We think it
means that I MOD 2 is NOT equal to I I div 2 * 2.
Problem reported to MACC.

Test 6.8.3.5-2 shows that case constants must be in the
same range as the case-index.

Test 6.8.3.5-8 shows that a very large case statement is
not permissible (>=256 selections). A semantic stack
overflow occurred after 109 labels.

Test 6.8.3.5-18 shows the undefined state is the previous
state at the end of the for-loop. The range is checked.

Test 6.8.3.9-20 shows for-loops may be nested to a depth
of 6.

Test 6.8.3.10-7 shows with-loops may be nested to a depth
of 7.

Test 5.2.2-1 shows that the implementation was unable to
distinguish very long identifiers (27 characters). Test
6.1.3-3 shows that the implementation uses up to 20 char-
acters in distinguishing identifiers.

Test 6.1.8-4 shows that the implementation can detect the
presence of possible unclosed comments (with a warning).
Statements enclosed by such comments are not compiled. Test 6.9.4-10 shows that the output buffer is flushed at

the end of a program.



Test 6.9.4-14 shows that recursive I/O is permitted using

the same file.

Machine-dependent ImplementationsConcluding Comments

The general breakdown of errors is as follows:

8urrou hs 86700
.!/Q.

These problems are intimately tied to the EXEC 1100
ing system and its penchant to pad blanks on the

line. There is no plan to try to correct this
Does an external file of pointers make sense!

operat-
end of a
problem.

Changes in the standard
Jensen and Wirth (second edition) was used as the standard
for development of this compiler. Since there are
discrepencies between it and the ISO proposed standard,
several deviations occured. The compiler will be brought
into conformance on most of these errors when some standard
is adopted.

U N I\'l R SIT Y O~. SO lJT 11111\1 P TON

Faculty of Mathematical Studies

Restr ictions
Some restrictions will be kept, even after a standard is
adopted. GOTO's out of procedures will probably never be
implemented, but STOP and ABORT statements have been added
to the language to alleviate the problem.

Southampton, S09 5N H. Telex 47661. Tel0703559122 ht

1979 November 6
Dear Bob,

Here is the latest information on the Pascal implementation
for the Burroughs B6700/7700 series, as developed at the
University of Tasmania. It still exists, and has been
distributed quite widely. A new manual has just been

produced which sets new standards of excellence for us,
and is available presumably to subscribers who have
paid our annual fee (to cover postage, etc).

Bugs
Several previously
validation suite.
corrections should
compilers.

unknown bugs were found by running the
Professor Fischer has been notified, and

be included in the next release of the

We have been working on the compiler to make it conform to
the draft Standard (a moving target at present), and I
believe the current version includes the procedural
parameter feature now that this seems to have stabilized.
It is pleasing to note that our attitude towards checks
is paying off, as shown when we recently uncovered three
different usages in the P4 compiler where undefined values
of variables were tested against well-defined values.
No doubt these bugs are now widely distributed through the
Pascal community!

One area that should be emphasized is the clarity of the diagnos-
tics produced by the compiler. All diagnostics are self-
explanatory, even to the extent of saying "NOT YOUR FAULT" when
an internal compiler error is detected. A complete scalar walk-
back is produced whenever a fatal error occurs. The compiler at-
tempts error correction and generally does a very good job of
getting the program into execution.

The relocatable compiler has extensive external compilation
features. A program compiled using these facilities receives the
same compile-time diagnostics as if it were compiled in one
piece.

Enquiries should not be addressed to me here (where I am
on leave), but rather to Pascal Support, Dept of Information
Science, University of Tasmania, Box 252C GPO, Hobart,
Tasmania 7001. Don't forget the airmail stamp.

Profnsors: 11.8. Grtrfilhs. S.A. Robertson (Pure Mathematics); P.T. l.Indsberl (Applied Mathemalics).

lW. Cr... (EnliJtetlinl Malhemltics); D.W. 8Inon (Computer Studies); T.M.F. Smilh (SIIIiSlics).



The University of Tasmania
Postal Address: Box 252C. G.P.O., Hobart, Tasmania, Australia 7001

Telephone: 230561. Cables'Tasun;' Telex: 58150 UNTAS

IN REPLY PLEASE QUOTe

FilE NO

IF TELEPHONING OR CALLING

ASK FOR 15th April,1980

Mr, R. Shaw,
Digital Equipment Corp.,
5775 Peachtree-Dunwoody Road,
Atlanta, Georgia.
U.S.A.

Dear Rick,

I have recently updated the B6700/7700 Pascal compiler to level 3.0.001.
This compiler conforms to the Working Draft Standard, as published in Pascal
News #14, fairly well. A copy of the updated Pascal Validation Suite Report
concerning this compiler is enclosed.

We are in the process of distributing this compiler to all those
installations which are currently using our Pascal system. The distribution
should be complete by the time you receive/publish this letter.

We are also producing an updated Pascal Reference Manual to reflect the
new comDiler. The manual has just ~one to the Drinters and we will distribute
copies to users of our Pascal System when it returns. Allow a month or so.

Enclosed is an updated checklist describing the new compiler.

Yours sincerely,

Roy A. Freak,

Information Science Department

CHECKLIST

Burroughs B6700/B7700 (Tasmania)

O. DATE/VERSION April 1980 Version 3.0.001

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER

R.A. Freak & A.H.J. Sale;

Pascal Support,
Department of Information Science,
University of Tasmania,
Box 252C, GPO.,
HOBART, Tasmania 7001
Australia.

phone (002) 230561 ext 435

2. MACHINE Burroughs Model III B6700, B7700

3. SYSTEM CONFIGURATION

BurroughsMCP version11.8 (andlaterversions).Minimalsystem

to operate is not known, but there is not likely to be any B6700

that small. Storage demands are low and little else is critical.

4. DISTRIBUTION

Usually supplied on a 9-track PE tape but other forms on both 7

and 9-track tapes are available. An annual fee of $Al00 is

charged to cover mailing (air mail), processing and maintenance.

5. DOCUMENTATION Available documentation:

R80-4: Pascal Reference Manual (similar to Burroughs Algol Manual)

A Pascal language card

A Pascal System card

Pascal Validation Suite Report for B6700/B7700 Pascal.

6. MAINTENANCE

To be maintained for teaching within the university as well as

larger aims. Reported bugs will be fixed as soon as possible,

with patch notices being sent to users. Duration of support not

yet determined; several other developments are pending. Each

installation is issued with a supply of FTR-forms similar to those

used by Burroughs for use in corresponding with us, and we will

attempt to do a professional job in maintaining the system.



Compiler which generates 36700/B7700 code files which are

directly executed by the B6700 MCP. Written ~B6700Algol with

two intrinsics written in Espol. Hand-coded using Pascal-P as

The compiler has been stable in code for some time, reflecting

its basic integrity. However, new features are added from time

to time, and notified to users as patches or as a new version

release. The department accepts FTR notices and will attempt

to fix those which warrant such attention. Some modifications

have taken place as a result of user feedback. The compiler

was especially designed not to generate dangerous code to the

MCP, and no system crashes have been attributed to it since the

first few months of testing, 3 years ago, and then only three.

9. RELIABILITY

Excellent. Since the early testing three years ago, no system

crashes have been attributed to Pascal. The compiler is now

in use at 28 sites throughout the world. It has been in use

since 76/10 at University of Tasmania. First released to out-

side sites in 77/4.

10. DEVELOPMENT METHOD

7. STANDARD

The compiler conforms fairly well to the Pascal Standard as

published in Pascal News #14. We intend to update the compiler

when a Pascal standard is accepted by ISO. The compiler performs

better than most during testing by the Pascal Validation Suite.

Briefly, the following restrictions and extensions apply:

Restrictions: Program heading; reserved word program is synom-

yrnouswith procedure; file parameters are ignored after program

heading.

Extensions: otherwise in case statement. Various reserved words,

character set transliterations. Burroughs comment facility.

File attributes in declaration. Format declarations and record

oriented i/o available. Extensive Burroughs-compatible compiler

options (Pascal control comment option mode not implemented).

Ability to link in externally compiled subprograms.

a guide/model. All other paths offered much more difficulty due

to special nature of machine/system. Person-month details not

kept, but project proceeds in fits and starts as teaching and

other activities intervene. Project has been undertaken largely

by two people: Professor A.H.J. Sale and R.A. Freak with some

support from T.S. McDermott.

11. LIBRARY SUPPORT

With release 3.0.001 of the Pascal compiler, the system has the

ability to link in externally compiled subprograms written in

another language. There is no facility available for separately

compiling Pascal subprograms (not standard) so the only method

of binding involves a Pascal host and a subprogram written in

another language. The system contains an extended set of pre-

defined mathematical functions.

8. MEASUREMENT

Compiles about 20% slower than Fortran or Algol, but in about

2/3 theirspace(fortestprogramsabout4-5K wordson average

instead of 8-10K). Elapsed compilation times similar, though

Pascal slower. Speed should be improved by eventual tuning.

Executes at the same speed as Fortran and Algol (code is similar

and optimal) and takes generally longer elapsed residence time

primarily due to MCP intervention to create new segments for

record structures (not present in Fortran/Algol). Elapsed

residence time about 20% greater than equivalent Algol.



COC 6000 (Zu~ch__M;nnesoto) 1. All right, title, and interest in VAX-II Pascal/Unix are the
property of Digital Equip~ent Corporation (DEC).

Pascal CoordInator
I..i11'-'er,Ity Comput ing Centre: fm
Un 1'-'enIIty of Sydney

Sydne'~, N,S,j,J, 2006 AJstralia

Phone: 61-02-292 3491

2. Requestors for VAX-II Pascal/Unix must have a license for the VMS
version of VAX-II Pascal from DEC. An object code license is
required for the VAX-II Pascal/Unix object code, a source code
license for the VAX-II Pascal/Unix source code.

Tony Gerber IS fInIshing his studies and passed the responsIbilities on

to Br ian Powswe 1 L

3. The VAX-II Pascal/Unix system will be distributed for a
of US $ 50.00, payable to the University of
Distribution will be on magnetic tape provided by UW.
your request, together with a check or purchase order,

copy charge
Washington.
Please send

to

The new distributer for Pascal-6000 for East Asia and AJstralia IS now:

DEC LSI-:JL ($QfIech)

Department of Computer Science
University of Washington
Mail Stop FR-35
Seattle, WA 98195

Further information can be obtained by contacting

The UCSD vers Ion of Pascal is avai labIe from SofTech for $350 (,ncludes
operatIng system, compiler, editor, etc.). A FORTRAN that compiles to
P-code is also available. For more information and processors that are

supported. contact:

Professor Hellrout Golde (206) 543-9264

SofTech Mlcrosystems
9494 Black MountaIn Road
San Diego, CalifornIa 92126

4. Requestors must sign the sublicense agreement attached to this
announcement and return it to UW with the order. Please use the
proper site identification so that the VMS license can be
verified.

5. UW welcomes comments, suggestions and bug reports from users.
Although no regular maintenance will be provided by either DEC or
UW, a best effort will be made by UW to correct bugs for subsequent
releases of VAX-II Pascal/Unix. Any updated versions will require
an additional copy fee.

I-
<£
C

C'

OEC_VAX 11/780 of
DEC
are

The VAX-II Pascal/Unix compiler does not implement all features
VAX-II Pascal. However, the VAX-II Pascal manuals available from
are sufficient to use VAX-II Pascal/Unix. The following features
not currently supported by VAX-II Pascal/Unix:

UNIVERSITY OF WASHINGTON
DEPARTMENT OF COMPUTER SCIENCE

1. Value initialization.

2. %Include directive.

VAX-II Pascal Compiler for the UNIX/32V Operating System
3. Calls to VMS library routines and system services. However,

to the C library and Unix services are available.
calls

The Pascal compiler for the Digital Equipment VAX-II computer,
VAX-II Pascal, has recently been modified to execute under the
UNIX/32V operating system, version 1. The compiler, VAX-II
Pascal/Unix will be distributed by the University of Washington,
Department ~f Computer Science (UW), on a sublicense basis, subject to
the following conditions.

4. The VMS debugger, and hence the DEBUG option. However,
use the Unix absolute interactive debugger, adb(l).

users may

5. The library functions/procedures DATE, TIME, and CLOCK.

6. Standard functions/procedures as procedure parameters.



IBM Seri~$/ lLMossey UJ

IBM Series/I Pascal

In addition. a few restrictions are imposed under
Pascal/Unix. as follows:

VAX-II

I. Since procedure linking is done by the Unix
names on nesting level I (main program
procedure names must differ in their first
names should not contain the character '$'.

loader, all procedure
level) and all external
7 characters. These

Pascal has been implemented at Massey UniversitYJ Palmerston North, New Zea1and
for the IBM Series/I.

Hardware Requirements

2. The command language interface is different to conform with Unix. Ability to support a 64K byte user partition using the R.P.S. operating system.

3. Only standard Unix sequential files are supported.
statement is limited to the form

Hence the OPEN
}~jor Restrictions

OPEN«file variable>.<unix file name>.<file history» 1. Files may not be declared. Four standard files are made
available. These may be used as input or output files
or (non standardly) as direct I/O files.The specifications of <record access mode>. <record type>, and

<carriage control> are ignored. Also, FORTRAN type carriage
control is not available. The VMS procedure FIND has not been
implemented.

2. Some standard functions are not implemented in particular
the mathematical functions SIN, COS etc. However, selected
functions may easily be implemented if required.

Beyond these restrictions. every effort has been made to make the
two compilers compatible. There are some minor differences in
expressions using library procedures and in input-output conversionst
due to different algorithms.

3. Limited to 16 bit sets, although some built in routines to
handle 48 bit sets are available.

Structure

The compiler is based on the P4 portable Pascal compiler written by:

Authors: Urs Ammann, Kesav Nori and Christian Jacobi

Address: Institut fuer Informatik
Eidg. Technische Hochschule
Ch-8096
Zuerich.

H.wl~ttPackard now dlstrlbut~sa ~rsion of Pascal for
syst~m. For details, contact a sales office.

theIr 1000

It runs in two passes, (production of the P4 code and conversion of the P4 code
to Series/I code), and employs several storage overlays (not overlays as implemented
in R.P.S.). All of the compiler. except the special environment (small assembler
program) in which it runs, is written in Pascal. It can compile the main body of
the first pass (3700+ lines of Pascal) in about ten minutes.

Availability

The compiling system will be made available to any non-profit organisation. for the
cost of the distribution, from:

Computer Centre
Massey University
Palmerston North
New Zealand.



Support

Although no support for the system can be provided by the Computer Centre, rough
implementation notes and advice are available from the author:

N. S. James

Computing Centre
University of Otago
P.O. Box 56
Dunedin
New Zealand.

lb January JYRn

8LJ70 (SionyBrookJ

From the release note accompanying Release 3.0

Release 3.0 of the Stony Brook Pascal/370 compiler completes
the implementatIon of Pascal files (for the production versIon), as well

as correct Ing a few errors reported in Release 2. All further
maintenance wIll be relative to Release 3.0, so it should be installed
immediately. If you have presently a Release 2 or Release 1
distrIIbutlon tape, please return it to:

Ms. PatrIcIa Merson

Department of Computer Sc ience

SUNY at Stony Brook
Stony Brook, New York 11794

Falcl4detaIled internaldocumentationfor Pass 2 and Pass 3 of
the Stony Br~okcomplIer is now availableon request from Ms. ~~rson.
If you plan to performany modificationsof the complIer Itself, you
should obtaIn these documents. Pass 1 internaldocumentatIonhas not
yet been produced.

"
( Machine-dependentdetaIls concerning internal versus external flIes
follows.)

IBM ~ IBM PASGAL/VS

Pascal/VS is a compiler for a superset of the proposed ISO standard
Pascal language, operating under OS/VSl, OS/VS2, and VM/CMS. The compil-
er was designed with the objective of producing reliable and efficient
code for production applications. Pascal/VS is an Extended Support IUP
(Installed User Program), program number 5796-PNQ.

The following information was supplied by David Pickens, IBM Corporation.

VERSION/DATE

Release 1.0, June 1980

DISTRIBUTOR and MAINTAINER

IBM Corporation

IMPLEMENTORS

Pascal/VS was implemented by J. David Pickens and Larry B. Weber at
the IBM Santa Teresa Laboratory in San Jose, California. Others
worked on the project for short periods of time. The comments and
suggestions of internal users throughout IBM have had a significant
influence in shaping the final product.

MACHINE and SYSTEM CONFIGURATION

Pascal/VS runs on System/370 including all models of the 370, 303x
and 43xx computers providing one of the following operating system
environments:

f-er
C
c

VM/CMS

OS/VS2 (MVS) TSO

OS/VS2 (MVS) Batch

OS/VSl Batch

Under CMS, Pascal/VS requires a virtual machine of 768K to compile a
program. Execution of a compiled program can be performed in a 256K
CMS machine.

The compiler requires a 5l2K region for compilation under OS/VS2 and
OS/VSl. A compiled and link-edited program can execute in a l28K
region.

DISTRIBUTION

The compiler and documentation may be ordered through a local IBM
data processing branch office.



The basic material of the order consists of one copy each of the
PascaljVS Language Reference Manual (SH20-6l68) and the PascaljVS
Programmer's Guide (SH20-6l62). The machine-readable material con-
sists of source code, program load modules, and catalogued proce-
dures. When ordering the basic material, specify one of the
following numbers

However, IBM does not guarantee service results or represent or war-
rant that all errors will be corrected.

Anyon-site program service or assistance will be provided at a
charge.

Specify
Number
9029
9031

Track
Density
9j1600
9j6250

Description
Mag tape
Mag tape

Userj
Volume
Requirements
NonejDTR
NonejDTR

IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, California 95150
Attn: Larry B. Weber

M48jD25
Telephone: (408) 463-3159 or
Tieline: 8-543-3159

Documentation concerning errors in the compiler may be submitted to:

Monthly charges for this licensed Installed User Program will not be
waived. The designated machine type is Systemj370.

Type
5796

Program Numberj AAS
PNQ

Monthly Charge

$235.00 (in the USA) Marketing Sponsor

Monthly charges shown above are provided for information and are
subject to change in accordance with the terms of the Agreement for
IBM Licensed Programs (Z120-2800).

IBM Corporation
DPD, Western Region
3424 Wilshire Boulevard
Los Angeles, California 90010
Attn: Keith J. Warltier
Telephone: (213) 736-4645 or
Tieline: 8-285-4645

DOCUMENTATION

The PascaljVS documentation consists of:

Document Name
PascaljVS Language Reference (164pp)
PascaljVSProgrammer'sGuide (144pp)
PascaljVSReferenceSummary (16pp)
PascaljVS Availability Notice

Order Number
SH20-6l68
SH20-6l62
GX20-2365
G320-6387

Price
$14.50
$12.50

no charge
no charge

STANDARD

PascaljVS supports the currently proposed International Standards
Organization (ISO) standard and includes many important extensions.
Among the extensions are:

The Reference manual describes the PascaljVS language. The Program-
mer's Guide describes how to use the compiler in the OSjVS1, OSjVS2
and VMjCMS environments.

Entry and external procedures to provide separate compilation

"Include" facility to provide a means for inserting source from
a library into a program

The documentation may be ordered through your local IBM branch
office. Varying length character strings, string concatenation, and

string handling functions
MAINTENANCE

Static variables
IBM will service this product through one central location known as
Central Service. The "ASSERT" statement

Central Service will be provided until otherwise notified. Users
will be given a minimum of six months notice prior to the discontin-
uance of Central Service.

"LEAVE" and "CONTINUE" statements for more flexible loop control

"OTHERWISE" clause on the CASE statement

During the Central Service period, IBM, through the program
sponsor(s) will, without additional charge, respond to an error in
the current unaltered release of the compiler by issuing known error
correction information to the customer reporting the problem and/or
issuing corrected code or notice of availability of corrected code.

Subranges permitted as CASE statement "labels"

Integer, real, and character constants may be expressed in
hexadecimal



Various predeclared system-interface routines such as HALT,
CLOCK, DATETIME, RETCODE, etc.

Weber was used; it was a one pass compiler written in PL/l (believe
it or not!).

Under VM/CMS the compiler will compile a typical program of 1000
lines at the approximate rates shown below:

The first bootstrap was completed in June, 1979. Since that time,
the compiler has been tested, enhanced, and modified to conform to
the proposed ISO standard.

MEASUREMENTS

LIBRARY SUPPORT
Host System

370/158
370/168
3033

Rate of compilation
10,000 lines per minute
20,000 II II If

40,000

Pascal/VS supports separate compilation of routines and uses stand-
ard as linkage conventions. A Pascal/VS program may call routines

written in FORTRAN, COBOL, and Assembler language.

If the compiler listing is suppressed, the performance improves by
20 to 25 per cent.

DEBUGGER SUPPORT

Pascal/VS supports an interactive symbolic debugger which permits:
RELIABILITY

break points to be set
Prior to external release, the compiler was distributed to over 60
test sites within IBM. The first internal shipment of the compiler
was in July of 1979. All errors reported prior to the release of
the compiler have been corrected.

statement by statement walk-through of a procedure

DEVELOPMENT METHOD

variables to be displayed by name and in a form which correspond
to their type (pointers, field qualifiers and subscripts are
allowed).

The compiler consists of two passes which run as two separate pro-
grams. The first pass is based on an extensively modified version
of the Pascal P4 compiler (authored by Urs Ammann, Kesav Nori, and
Christian Jacobi). The P4 compiler was re-targetted to produce
V-code instead of P-code as an intermediate language. V-code is an
enhanced version of P-code that was designed by Richard L. Sites and
Daniel R. Perkins (Universal P-code Definition, U.C. San Diego,
UCSD/CS-79/037, 1979). The compiler employs the error recovery
algorithm described in A Concurrent Pascal Compiler for
Minicomputers by Alfred C. Hartmann (Springer-Verlag,1977).

The second pass of the compiler translates the U-code directly into
an as object deck. The translator performs local common subex-
pression elimination, local register optimization, dead store
removal, removal of redundant checking code, removal of cascading
jumps, and various peep-hole optimizations.

All but 5% of the execution library is written in Pascal/VS; the
remainder is in assembler language. I/O and heap management is done
by calls to Pascal procedures.

The compiler, written in Pascal/VS, is shipped with all run time
checking enabled. The compiler eliminates unnecessary range checks
by keeping track of the lower and upper bounds of expressions
involving subrange variables. The checking code in the compiler
costs only 7 to 10% in performance.

The development of Pascal/VS began in January, 1979. To bootstrap
the compiler, an experimental Pascal compiler developed by Larry



Bt3033 ~
Motorola 68001Q)toosofO

evo8 P.L). 8t)o.. 51

sO f t ~::::~:J~;~ ;v~
&y&t;e1T& 19021861-2202

If'f'L£I'£NTATI~ Cf£CKlIST

0. ~
Thank you for your inquiry about DYNASOFT PASCAL. I hope that
this will answer most of your questions and help you decide if

it will be a useful addition to your system.

DYNASOFT PASCAL was designed to make a practical subset of the

PASCAL language available to the users of relatively small
cassette-based 6800 and 6809 computers. Both versions occupy
slightly less than 8K bytes and require at least 12K of

continuous RAM beginning at $0020 to edit and compile programs

of reasonable size. The compiler will compile itself in 32K,
although the source code is not included in the package.

The 6800 vi~sion was designed for the SWTPC 6800 computer with
the SWTBUG monitor, but it can be adapted to run with most

other monitors with minor patching. The 6809 version is
completely self-contained with its own imbedded device drivers,

and is independent of any particular monitor. Both versions
include the compiler, p-code interpreter, and a line oriented

text editor, and are priced at $35.00. They are supplied on
a Kansas City Standard cassette in Motorola "Sl" format at 300
baud, and come with a 32 page user's manual.

1. Imolementor/Maintainer/Distributer
TaiUJanChan9
Metropolitan Life Insurance Co.
20-Y
1 Mad ison Avenue

New York, New York 10010
(212) 578-7079

2. Machlne/ Sustem confiquration 3033 \/M/CMS

3. Distr ibution
Taiwan Chan9
Metropolitan Life Insurance Co.
20-Y
1 Mad ison Avenue

New York, New York 10010
CMStape, 1600 bpi

4. Documentat ion
ImpIementat ion 9u ide, convers ion 9u i de

5. Maintenance
Stony&-ook 's OS Pasca I Leve I II I is not
converted yet.

The 6800 version is also available in ROM, intended for use
with the SWTBUGtmmonitor on the SWTPC 1~-A2 processor board.
It occupies the 8K block at $COOO and is supplied in four
TMS2516 EPROM's. The price is $300.00. We do not keep a
stock of blank ROM's, so p lease allow 8 weeks for processing.

All orders should include $3.00 for postage and handling.
Payment can be made by postal money order, check, or VISA
account in either Canadian or U.S. funds.

6.~
Converted from Stony&-ook's OS Pascal

7. Measurements

8. Reliabilit\j
MIT okay, local okay

9. Deve 10Dment method
XPL implementat ion

Thank you again for your interest.

10. Libraru SUDDort
CMSmacros Allan G. Jost, Ph.D.

"~.
C>IT



DYNASOFr PASCAL SUMMARY, RELEASE 1. 0

DATA TYPES:

INTEGER (16 bit)
CHAR (8 bit)
BOOLEAN
ARRAY (one dimensional)

scalar (user defined)
subrange
pointer

ARITIlMETIC AND LOGICAL OPERATORS:

+ *
DIV MOD AND OR NOT

RELATIONAL OPERATORS:

<> < > <= >=

LANGUAGE FEATURES:

CONST CASE-OF-OTHERWISE
TYPE FOR-TO/DOWNTO-DO
VAR REPEAT-UNTIL
PROCEDURE WHILE-DO
FUNCTION READ
IF-TIlEN-ELSE WRITE
BEGIN-END WRITELN
Machine-language subroutines with parameters
80 character identifiers (first 4 unique)
Absolute memory addressing using pointers
LINK to other programs
Full recursion

PREDEFINED PROCEDURES AND FUNCTIONS:

ODD SHL SHR FIND HALT LINK MOVL MOVR SETP

SUPERVISOR COMMANDS:

Load, Save, Edit, Compile, Go, Move, Quit

EDITOR COMMANDS:

New, Top, Bottom, Up, Down, Find, Print, Insert,
Kill, Replace, Quit

Uotor T.H . _._
Technische Hogeschool . . Eindhoven

-ro And.)' Mickel,

editor ar "Po..rCA/ N~w.r

Den Dolech 2

Postbus513
5600 MB Eindhoven

Telefoon (040) 47 9111

Telex 51163

Uw kenmerk Qns kenmerk Ooorkiesnummer

Onderwerp

E..dO$€.d YOu. fi..d. cJ.eddi.sf..s of two "Pa..R:a.1 i pIe ~V\bcd:iolllr ~

Made 0", 1-10borol0. icroco pt<..l;us: <:1.1'\H6&00 Gl...a Gl" XC 61boo...

w"'ick i,,- b\.L expul ~ VLrs\oV\ or bk H6&>oo.

I~ Kbgoo "lM.fl~~"'ta.i:io.., I.tts dr.et;tdy b..es..V\j.., oper~iOVl tor

etbolA.i: 2 y.ea.rs Mol "lAd c:I l"'j
{!Ai5 peria::! t.1.uz. syJi€rM proved

~ bz. .excr.bllely reliable o.w:I .9i;",ble. Ihis .J'j!l:.e'M.',..- iV\~W\cd!y how'"
Cl.S~~ 1'OHHf s'j~~"'" ('P<>'5c>J 01'1 Hotorolo. icr-ocoIM.p...J::u4"':'f""'~"'t-).
1he co""f"Le.r :)&.era1.eJ Gl I<IVII:/of 'P.code w/M.d,,'J.S 9...AQ di{f.er~t

fa"" U£ 'P-CDdR..s of t~ p~ble. 'Pq.-co""'f',lu CllAd -it UCSD-ccde.

lh.L co piLer i.r ...at
"'-

'P-co r-,{£r der<.vo.b.v.e b<.d: is WTiti..e-. f,.""",
.S'c.rc>.~c\,.,1'ke cod2 3~r<'tLeci b'j tk.2. co"'"'ftW- if 'V\'W-p~te.cl v.td;!..O><t
t~ UAW""",e CL of

":'"
Opl:' lV2T, a. ~i...ker or suck. il,e jV\l:errr.eter is

3.5 K'b)/CeJ o{ Mac!.; code cw.d low.
c0":::filR.r 11"6 KbyttJ of 'P-code

'D.er4'ldi,,'3 00'\ -t~ v=\lefl"':j of fileJ OV\ tlopf'j ci<sk tke co"'F [~ti.r'"
upw '10 b.cl;~ 4-00 c;wJ 600 liiA£J r-r "", ie,

'T~ l~VA.je w..,.~~d co..J.~J ~ propo.w:t :I'O 'P<:I.sea.l.~~

?--' Cl St.lb.scl. "R... OVlly r.estiict\<J1" '1$: +;\.o..s IMM.St
""'

d2c\M'~ , ~
olAte.rblocl: oo'\l';l (.fi.le p~tus of procILd.wt..r ~ f cb'O\.\S c>f..e

0T ~ p'..rs~lok). Ih.e. ~si"",.r ,..,c.jw:lz:
Q libro.ry .tCtcilitj

("'" .J"oWC£.le.;.el)

- jv\f.ufo.ci"j w\t~ o..s..r.2.M.io~l4wJ ",,"'!:}.e roc.di~



PAGE 122



Prc*otYf" of 1:4. t-1{,g"co

,sf'I2£d, yd D<..:c...J;..c {i"",,"-

riA"'''''';~ oJ:.

re GUocW:

EPOS

G~"'er""...l
SbL3 GL

tk xc (,gcoo i.r G1.

!t.<.tl; tk fro j=bzr1

'9w:J to Db;:-Io.

eroS'S - co ~i(...!:i(7k tilMe. 010 a /1/;.800 is

t.U cO""filoJ:iGLo. -l.ilM.t.s or: IJ.CSD - '"P",.rca.l 0111 LSI-H

twiCJ1.
"""

lo~

""""{
L So.ole Caris(QAn

~i.dh"J"""

bO

(T!.~ NcliA..u(",,,,c;/~)

H 6&'001101:.orolo..r0"'9IttI~ ~wi~ Buz. s~

0'"
LSI-t~ ~ '2 -i':; .

of 1:l.R. U.CS'D - i p(e""'e Wiav.s

c;o'""'pilvd;.ioVtev.e"' ~ ,. -ti e.s-.

~~..f5. ..rO(M"~u..brcviu
'"" 'PClS'-'<J

I;~ to G..J'sx.-Jd.:j ~ .o...J;.ioM.S

( s..~ the checklist in issu~ .17 und~r Int~l 8080/OO8S (I1I!taT~ch) )

CheckliJ'~ Motorola.. xc 6gooo

This compil~r runs und~r CP/M and is a Pascal-P d~sc~ndant. Th~ pric~
is $350.

EPDS
G£ner~Q.1 c(e C<=V'd",......

5b2.3 GL Ei~l.,ove.o.,

Digital Mark~ting
2670 Ch~rr!l Lan~
Walnut Cr~~k, CA 994596

COO\.~ s~.d - Po.S'C"-1 Cl..f Cl J b~ wit.{,. i.L..e bGepb'O""

tko..t re ls.e.. files cu-e IIIOt yet i ple e ted



liJ9-9_Z-:-80J_IRS=80 __(eeowe's~oftWOle)
nonprofit

computer information exchange,
.
Inc. (PEOPLE'S PASCAL, add 1)

BOX 158. SAN LUIS REV CA 92068 (714) 757-4849

But Pascal I has a translator for creating Z-80 native-code programs, and Pascal

IT does not. In Pascal IT, all user programs must be interpreted each time they

are executed. Pascal II is still said to be four to eight times faster than Level IT

Basic.

Bill McLalughlin. editor, pres., trcas.
John Ingram, executive vice president
Dorcas Edge,vice president. secretary

TRS-80 COMPIJTING
TRS-80 RIJLI.f:TIN

(TRS-80 is Tandy Corp. trademark)

December 26, 1979

PRESS RE LEASE:

Pascal I is only for 16K systems. Pascal IT is for either 16K or 32K systems.
Pascal I has UCSD-like turtle graphics. Pascal I requires line numbers in the user
program, and Pascal IT does not.

Dealer inquiri<!s are invited. Computerists wishing to buy direct should
include 5016for each tape ordered, and California residents should add 6 per cent

tax ($.90 and $1. 38, respectively, on Pascal I and llI. Computer Information

Exchange is at Box 158, San Luis Rey CA 92068.

TINY PASCAL COMPILER JUST $15

People's Software at nonprofit Computer Information Exchange is selling a
tiny Pascal compiler for $15.

Written in Basic, People's Pascal I runs on any 16K TRS-80 Level IT

system. Compilers let computerists write fast, efficient machine code while

working with a higher-level language. Pascal is the structured language everyone

is talking about-and studying in college.

The People's Pascal I program development system comes on a tape with
14 programs, and 18 llxl7" pages of documentation. Programs include editor/

compiler, interpreter, translator, run-time system and two demonstration

programs.

People's Pascal I compiler produces P codes, which the translator
converts to Z-80 code, the TRS-80 native language. The user is given the option

of optimizing for either speed or memory efficiency. Programs written via

People's Pascal I run three times faster than those in Level IT Basic-graphics is
eight times faster.

To produce object programs, the computerist must use the People's

Pascal I programs, plus Tandy T-Bug. Use of Tandy editor/assembler is optional.

The People's Pascal I program development system, with editor/compiler

and interpreter written in Basic, and its multiple parts, is not the ultimate in speed

and simplicity of cuse.

People's Pascal IT, at $23, is easier to use and faster operating. It is all

one machine-language program. Programs written in Pascal IT do not execute quite

as fast as those in Pascal I because the system does not produce Z-80 object
programs of the user's source program.

Besides People's Pascal I and IT, People's Pascal has three public-
domain program tapes :in Level IT, and two in Level I, at $7.50 each (plus 50 cents

postage-handling, CA residents add 45 cents tax). The public domain tapes have

as many as 77 programs on them.

Both Pascal I and IT compile
systems work in an interpretive

user programs into P-codes. Both
mode, interpreting P-codes into Z-80 codes.

(more)



IMPLEMENTATION NOTES ONE PURPOSE COUPON

o. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

2. MACH IN E/SYSTE M CON FIGU RATIO N (*Any known limits on the configuration or support software required, e.g.
operating system. *)

3. DISTRIBUTION (* Who to ask, how if comes, in what options, and at what price. *)

4. DOCUMENTATION (* What is available and where. *)

5. MAINTENANCE (* Is it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How. *)

7. MEASUREMENTS (* Of its speed or space. *)

8. RELIABILITY (* Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

10. LIBRARY SUPPORT (* Any other support for compil.rin the form of linkages to other languages, source libraries, etc. *)

----------



POLICY: PASCAL USERS GROUP (15-Sep-BO)

Purpose: The Pascal User's Group (PUG) promotes the use of the programming
language Pascal as well as the ideas behind Pascal through the
vehicle of Pascal News. PUG is intentionally designed to be non
political, and as such, it is not an "entityl1 which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our guiding principle; there are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are also encouraged. See the
ALL-PURPOSE COUPON for details.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

I

Pascal has met these goals and is being used successfully for:

* teaching programming concepts
* developing reliable "productionn software
* implementing software efficiently on today's machines
* writing portable software

Pascal implementations exist for more than 105 different computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and Theren
section of Pascal News.

The programming language, Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently
have more than 3500 active members in more than 41 countries. this year Pascal
News is averaging more than 100 pages per issue.

1J

o
--.
n

'<


