
.

.

.

.

." . Announcements

..
(I)

Number
a:::
~CD

24
....
....J

X
UJ

JANUARY 83

, -

PASCAL USERS GROUP

Pascal News
Communications about the Programming Language Pascal by Pascalers

Pascal Standards: Progress Report

Status Report on Version 3.0

WRITENUM - A Routine to Output Real Numbers

TREEPRINT - A Package to Print Trees on Character Printers

Three Proposals for Extending Pascal

o
('I')
N

"-
'0

U'I
C7I ",.- c... U'I
", 41 Cc ",u",:x:

3. 41 -I-C7I",
"U-

"U UJ .-.- .&:.
:>'Ou
", (Y).-
0"-3

,..,

*'.....

POLICY: PASCAL NEWS (Jan. 83)

. Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de-
signed to be non political, and as such, it is not an "entity" which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher, maintainer, implementor, distrib-
utor, or just plain fan. Memberships from libraries are also encouraged. See the ALL-PUR-
POSE COUPON for details.

. Pascal News is produced 3 or 4 times during a year; usually in March, June, September, and December.

. ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single-
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

. Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

. Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference announcements and reports,
new books and articles (including reviews), notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES - contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts for maintainers, implemen-
tors, distributors, and documentors of various implementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

-

,

Pascal News
Communications about the Programming Language Pascal b~ Pascalers

JANUARY 1983 Number 24

2 COMPILERS NOTES

APPLICATIONS
3 A Pascal Bibliography By Tony Hayes

PASCAL STANDARDS
20 Pascal Standards: Progress Report By Jim Miner
20 Status Report on Version 3.0 of the Pascal Test Suite By B.A. Wickmann

ANNOUNCEMENTS

23 Distribution of the Edison System
23 Pascal Chosen as Sil
23 Pascal: A Problem Solving Approach
24 Modula-2

ARTICLES
25 WRITENUM - A Routine to Output Real Numbers

By Doug Grover and Ned Freed
27 TREEPRINT - A Package to Print Trees on any Character Printer

By Ned Freed and Kevin Carosso
32 Three Proposals for Extending Pascal By R.D. Tennent
32 The Where-Clause: A Proposed Extension to Pascal By R.D. Tennent
34 Proposals for Improved Exception Handling in Pascal By R.D. Tennent
37 The Definition Block: A Proposed Extension to Pascal By R.D. Tennent

40 OPEN FORUM

42 IMPLENATION NOTES COUPON

45 SUBSCRIPTION COUPON

47 LICENSE APPLICATION

,

Hello
This is Pascal News and my name is Char-

lie Gaffney. Much has happened since I re-
ceived my March #22-23 Issue. I am the pub-
lisher of USUS News. USUS is the UCSD p-
System User Society. The p-system was de-
veloped to bring Pascal to micro computers.
Our USUS News was modeled on Pascal
News. We have a lot of information in USUS
but it was a chore to read because of bad orig-
inal and photo copy material used for printing.

I sought a typesetter and found we could
typeset and print for only 10% increase in
cost. This is a small premium cost to have a
readable newsletter. We typeset in August and
received many compliments so far.

I thought of our model Pascal News and
called Rick Shaw to explain our (USUS) im-
provement and ask if he needed help.

But Rick had his own story to tell. The
work at Pascal Users Group was not per-
formed by a group but by one man, Rick Shaw.
He was hard pressed to keep up with the busi-
ness of PUG.

An offer had been made by the "Journal
of Pascal & Ada" to take all pending articles
and publish them.

I made a counter offer to maintain PUG
as it is under new management. Rick thought
that was a nice idea, but the problems would
persist and PUG would fail either now or later.
After three phone calls Rick decided to let me
try.

The News will be typeset and I hope you
approve of our new appearance. The articles

2

you submit may be in any format because they
will now be typeset. It is possible to enlarge
the program listings if they are submitted in a
narrow format of 15.5 cm wide.

Business

I have decided to pay a small business to
update:

1. the member list
2. new and renew members
3. banking records
Membership costs have gone up but if

you pay for two years the third year is free.
Back issues have tied up a great deal of

money. We have articles and programs just
waiting for you. Buy a set. Buy a complete set.
Buy a set for your friends.

A little about me

I am an electrician, and I work for Chev-
rolet in Parma, Ohio. I have no college edu-
cation and no formal computer training. My
experience with computers involved the pur-
chase ofa Western Digital microengine, 16 bit
computer. The computer uses p-code as de-
fined by UCSD p-System and directly imple-
ments the code without an interpreter. Pascal
News and USUS News, and 25 text books,
have been my teachers. I thank them and each
of you.

Charlie

Compilers Notes


~~~~~~~~~
A Pascal Bibliography

By Tony Reyes
Blind Mobility Research Unit,

Department of Psychology,
University of Nottingham

England

Introduction

The Pascal Bibliography is a package of programs
written in standard Pascal and should therefore be eas-
ily transported. It enables users to store references and
to retrieve them either by AUTHOR name or by KEY-
WORD; or logical combinations of AUTHORS and
KEYWORDS. The bibliography is designed for human
use; it uses very explicit prompts.

Design Philosophy

The bibliography consists of a collection ofITEMS.
Each ITEM takes the form of:-

One line devoted to AUTHOR or ADDRESSEE
names.

Two lines devoted to TITLE or ADDRESS.
Two lines devoted to LOCATION.
DATE ITEM NUMBER.
Two lines devoted to KEYWORDS.

For example:-

HEYES A.D.,FERRIS A.J.,ORLOWSKI R.J.
COMPARISON BETWEEN TWO METHODS

OF RESPONSE FOR
AUDITORY LOCALISATION IN THE AZI-

MUTH PLANE.
J. ACOST. SOC. AMER., 58; 1336-1339

1975 260
DEAFNESS,LOCALISATION ,AUDITORY

DISPLAYS
STEREOPHONIC SOUNDS,KINAESTHESIS

If ITEMS are addresses the convention is to store
the address on the two lines of title.

For example:-

BLOGGS J.B.
Mr.J.B.Bloggs\ 13 Fishpond Rd.'}. Beeston,
Nottingham~NG7 2RD)" U.K.
Tel 0602-251234

1980 27
ADDRESS,CIRCULATION LIST,XMAS

CARD

Note the use of the backslash [\J to indicate the
start of a new line. Note also that additional information

Applications

such as the telephone number can be stored on the lo-
cation lines. Note, finally, the date has little meaning in
this context.

Items may be located by running the program "bibout".

Items may be APPENDED or CHANGED by running
the program "bibin".

Both programs are well supplied with prompts and are
very simple to use.

Since additions and changes require that the cur-
rent DICTIONARY be recompiled and this takes time,
the actual changes take place during the night. The in-
structions to implement the changes reside in a PEND-
ING TRAY until the night time run. The user will re-
main unaware of this slight restriction unless he tries
to locate an ITEM during the day on which the ITEM
was loaded.

Method of Use

The following assumed the use of the UNIX op-
erating system. Login with your user name, give your
password, respond to the first system prompt "%" with
"cd bib", ie. change directory to "bib". In answer to
the next system prompt, "%", you may select anyone
of the programs from within the package.

These are:-

a) "bibbin" to enter new items or to change
an ITEM.

b) "bibout" to search the bibliography for
an ITEM.

c) "outdict" to produce a hard copy of the
current DICTIONARY.

d) "cat scratch lpr" to output a hard copy of the
SCRATCH FILE.

NEW USERS SHOULD ASK IF THEY MAY
HAVE ACCESS TO AN ESTABLISHED BIB-
LIOGRAPHY AND THEN TRY USING "bi-
bout" TO LOCATE ITEMS OF INTEREST.

To logout respond to the system prompt "%" by typing
"control Z".

The Programs

a) "bibin"
The opening prompt allows the selection of one
of the following options:-

APPEND

3



The prompts should be sufficiently explicit, but
note:-

(1) Authors and keywords should be separated by
commas. Since they are used in the dictionary
they should not spill over the end of a line.
They can be any length but only the first 20
characters are significant.

(2) The terminal will probably be set to produce
lower case letters. The program will automat-
ically convert them to upper case. If you wish
to override this, begin each line of text with
a backslash [\] .

(3) The date must be a single integer e.g. 1980.
(4) If addresses are to be stored use the two title

lines, close pack but indicate new lines with
a backslash [\] .

(5) A personal local storage reference may be
kept on the second location line. It should be
enclosed in square brackets; e.g. [BM760]
means that a copy of this ITEM is in the BM
library, entry number 760.

CHANGE
Answer the prompts but please take note of the
following:-

1) You must know in advance the ITEM number
of the ITEMS you require to change.

2) You have to retrieve the ITEMS from the bib-
liography so CHANGE is relatively slow; be
patient. It saves time, if you are changing more
than one ITEM to make the changes in nu-
merical order of ITEM number.

3) You retrieve the ITEM to be changed from the
bibliography, the changed ITEM goes into the
PENDING TRAY. If you change the same
ITEM more than once in a single day only the
last version will survive.

SPECIAL FACILITY
This option moves the contents of the SCRATCH
file into the PENDING tray. It can be used for mov-
ing ITEMS from one bibliography to another. Since
SCRATCH is a text file, ITEMS may be changed
using an editor and then loaded back into the PEND-
ING tray. (Clever stuff!!).

b) "bibout"
The computer will count the ITEMS in the bibliog-
raphy and then offer the option of producing a
HARD COpy of the dictionary or doing a SEARCH
for ITEMS.

SEARCH
You may either search by NUMBER or, more
usually by using the DICTIONARY.
You may opt to send the results either to the TER-
MINAL or to the SCRATCH FILE for subse-
quent printing.
SEARCH by NUMBER
The search is terminated by asking to search for
item number zero [0].
A block of ITEMS may be searched for by asking
to search for item number minus one [- 1]. You
will then be asked for the lowest and the highest
item numbers of the block.
SEARCH by DICTIONARY
You will be asked for a word i.e. an AUTHOR

4

name or a KEYWORD. The computer will look
this up in the DICTIONARY and list the ITEM
numbers of all ITEMS containing this word in
their AUTHOR or KEYWORD string. If you are
doing a single word search answer the next prompt
will a full stop [.], and then the instruction to
LOOK UP. If, however, it is a multiple word
search give the next word. Once again the corre-
sponding ITEM number list will be printed out.
The answer to the prompt" AND, OR or NOT"
enables you to combine the current ITEM number
list with the previous ITEM number list. For
instance:-

AND Only numbers present in both lists are
retained.

OR All numbers from both lists are
retained.

NOT Numbers present in the current list are
deleted from the previous list.

A new current list is printed out showing the results
of the selection. The search sequence may be con-
tinued for any number of logical combinations of
words. At any time a search for the ITEMS in the
current list may be initiated by giving a full stop
[.]. After which you may either LOOK UP the se-
lected ITEMS or, if you have made a mistake in your
list combinations simply RESTART. There is one
special word, namely ***, this word will match all
the dictionary.

c) "outdict"
No prompts and no option, simply type "outdict"
in answer to the system prompt "%" to obtain a hard
copy of the current DICTIONARY.
Note, you must have first prepared a copy of the
DICTIONARY by running the appropriate HARD
COpy option of "bibout".

d) "opr scratch"
This program is run to obtain the printed output from
"bibout", provided the option had been chosen to
send the output to the SCRATCH FILE.
No prompts and no options, simply type "opr
scratch" in answer to the system prompt "%" to
obtain a hard copy of the contents of the SCRATCH
FILE.
N.B. If you would like to list the SCRATCH FILE
to the terminal to check the contents then run "cat
scratch'

,
.

Acknowledgements

I gratefully acknowledge the encouragement and
support I have received from Roger Henry and Chris
Blunsdon.

The bibliography was originally intended for use
by the members of the BLIND MOBILITY RE-
SEARCH UNIT it is however available to any mem-
bers of the Pascal Users Group. Would anyone wishing
to take up this offer please contact Tony Heyes to ar-
range medium of transportation.

NOTES FORIMPLEMENTORS

The following notes outline the steps the imple-

Applications



menter should take in order to establish a new bibli-
ography. After this groundwork, the user can use the
shell commands bibin, bibout, and out diet to build and
manipulate the bibliography.

1. The bibliography system requires 6 workfiles named
b I to b6. The recommended practice is for the user
to devote a directory to the bibliography, say 'user/
bib'. The workfiles can be created easily using the
cat command. E.g

cat> bIZ

File b3 requires a link named scratch. This can be
created by the command -

In b3 scratch

2. b6 is used as a temporary scratch file during the
overnight run. It grows to be as large as b 1. If there
is insufficient room on the user's disc b6 may be
coerced on to another disc.

3. The bib directory must contain the following shell
commands:-

bibin Bibin.out bi b2 b3 b4 b5
bibout Bibout.out bi b2 b3 b4 b5
bibupdate Bibupdate.out bi b2 b3 b4 b5 b6
outdict (lpr b4;rm b4; > b4)&

4. Finally, an entry must be made in the UNIX table
'crontab' so that bibupdate will be executed during
the night.

program )Bibin(input,output,bank,dict,scratch,dlist,PendingTray;
(* To ADD, CHANGE or REIIOVEitems,
1structions left in a PendingTray file 'pending',

~ctual changes made by running "Bibupdate.p" *)
(* written by Tony Heyes, Blind nobility Research Unit,
Department of Psychology, The University,
Nottingham, U.K. *)

label 10,

canst LineLn = 70;
RowLn = 20;
HiTag = 10000;
I!onDate= -1066;

type string = packed array [l..LineLnJ of char,
i teLl ::;: record

authors,titlel,title2,
placel,place2 : string;
date : integer;
keyl,key2 : string

end:
word = packed array [1..20J of char;
row array [1. .Ro\-/LnJ of integer;
<.Jic = record

nar:lc
numbers
cont

end;
Tagltc[\ = record

tag
entry

end:

\-lord;
[0\.,;

boolean

integer;
: iter:!

var eQpty,entry: item;
bank : file of item,
PendingTray,TenpPendingTray file of TagIteD;
dlist,scratch : text:
diet : file of uic;
TagEntry : Taglten;
ch,J\ppendOption,ChangeOption,f.lainOption,HelpOption,
SpecialOption : char; Ichge : boolean;

a,n,nn,count : integer:

procedure InlChar (var ch : char);
(* to read the first character of a word typed into the terminal *)
begin

ch := input";
while not {ch in ('A'..'Z','a'..'z')} do

Applications

begin (* skips along until first ch~racter found *)
get(input) ;
if eoln(input)
then

begin

writeln:
write (

'ERROR: character required ')
encJ;

ch := input-
end;
while not eoln(input) 60

get (input)
end, (* of InlChar *)

(* skips over rest of line *)

procedure Inllnt (var int : integer);
(* to read an integer and not cause a fatal error if a

character is giv~n *)
var ch : char:

a,OrdZero : integer:
NegFounu : boolean:

begin
repeat (* skips along until integer is found *)

get (input) ,

if eoln (input)
then

begin

writeln:
\Jrite( 'ERROR: digit required ')

en<J;
ch := input"

until ch in ['-1,'+','0'..'9'];
if Ch='_'

then
begin

NegFound := true;
get(input) ;
ch := input"

enc!
else

begin
NegFound := false;

if ch='+'
then

begin
get( input) ,

ch .- input'"

end
end;

a := 0;
OrdZero := ord('O');

repeat
a := 10*a+ord(ch)-OrdZero;
get (input) ;

ch := input"
until not (ch in ('0'..'9']);

while not eoln(input) do (* skips over rest of line *)
get (input) ;

if NegFound
then

int := -a
else

int := a
end; (* of Inllnt *)

procedure VDUinString(var str : string);

(* to input from terminal *)

var i,n : integer;

ch : char;

AIICaps : boolean;
begin

n := 0;
J\llCaps := true;
repeat

n := n+1;

read (ch) ;

if (n=l) and (ch=' ')
then

n := 0;
if (n=1) ano (ch='\')

then
begin (* defeat automatic

~llCapn := false;

n := 0
en<J;

if nOO
then

begin
if

shift with '\' *)

J\llCaps

then
if ch in [I a I. . 'z'

]

5

-----



then
ch := chr(ord(ch)-32),

str[n] .- ch
end

until eoln(input);
for i:=n+l to'LineLn do

str(i] :=
, I

end; (* of VDUinString *)

procedure ScratchInStr(var
(* inI)ut from file scratch
var n,i : integer:

ch : char:
begin

if

str
*)

str ing) ;

not eof(scratch)
then

begin
n := 0:
r epea t

read(scratch,ch);

until (ch=':') or (eof(scratch»;
while (not eoln(scratch» do

begin

read(scratch,ch);
n := 0+1;
stdnl := ch,

end;
if n+l<=LineLn

then
for i:=n+l to LineLn do

strfi] := I ';
end

ene, (* of ScratchInStr *)

function ScratHoldsItens : boolean;
(* to inspect the SCnllTCIIFILE anu check that ITEI1Sare complete *)
var count,Linell0 : integer;

faultFound,Heauing~rror."eground boolean;
procedure CheckLine;

v~r CharCount : integer,
LineTooLong,BadLine boolean;

begin
Line"o := Linetlo+ I;
CharCount := I;

D~dLine := false;
LineTooLong := false;
set (scratch);
while (noteoln(scratch) and (CharCount< LineLn + 9

) do
begin

get(scratch) ;
CharCount := CharCount + I,
if (CharCount = 9) anu (scratch" <> ',,) then

BadLine := true;

end;
if CharCount < 9 then BadLine := true;
while not eoln(scratch) do
begin

get(scratch) ;

if scratch" <> '

,
then LineTooLong := true

end;
if BadLine then

begin
FaultFound := true;

writeln(ILine',LinelIo4,' bac11ine ":" missing.')
end;

if LineTooLong then
begin

FaultFounu := true;

writeln('Line',Linel1o 4,' overflow.')
end

end; (* of CheckLine *)
tegin

Linello := 0;

HeadingError := false;
faultFound := false;
11egFound := false;

writeln;

writeln('SCnATCH FILE CHECK in progress.');

writeln;

while not eof(scratch) and not HeadingError do

begin
repeat

get (scratch);

if not eof(scratch) then

if eoln(scratch) then Linello := Linetlo+ 1
until (eof(scratch» or (scratch" = '-');
if scratch" = '-' then lIegFound := true,
Linello := Linetlo+ 1;
if eof(scratch) then

6

begin
if not NegFound then (* no ITEMS present *)

begin
lIeading~rror := true;

'lCiteln('SCRATCH does not contain ITEliS.')
end

end
else
begin
while not eoln(scratch) do get (scratch);
for count := 1 to 5 do CheckLine;

Linel10 := Linello + 1;

get (scratch) ,

while (not eoln(scratch» and
not (Gcratch'"in ['l'..'91]) do get(scrD.tch);

while (not eoln(scratch» anu
not (scratch" =

,
') ~o get (scratch) ;

while (not eoln(scratch» and

not (scratch" in ['1'..'9']) do get(scratch);
if eoln(scratch) then
begin (* two numbers not present *)

FaultFounu := true;
\>;eiteln( 'Line' ,Linel1o : 4,

two integers not found.')
end
else
while not eoln(scratch) 00 get (scratch);

for count := 1 to 2 do CheckLine;

end
end;

if FaultFound then

begin
\t/riteln;
writeln( 'Errors in SCP.IITCIIuse editor to correct,

then try again.');

writeln:
ScratHoldsItcns := false

enu
else if not HeadingError then ScratHoldsItems := true;

reset (scratch)
enu; (* of ScratDoldsltems *)

procedure empt; (* to empty an ITEI1*)
var NoChar : string;

a integer;
ch : char;

begin
lIoChar[ll.- ';
NoChar[2J:= ';
HoCharl31:= ';
for a:=4 to LineLn do

NoCharla] := '.';
with empty do

begin
authors
titIel
title2
placel
place2
date :=
keyl :=
key2 .-

end;
for a:=2 to 9 do

begin
case u of

2: ch
3: eh lei;

4: eh 1m';
5: eh := Ipi;

6: eh :=- It I;

7: eh := 'y';
8: eh := I I;

9: ch
eno; (* of case *)
ewpty.authors[a] .- ch

enG
end; C* of erLJpt *)

:= NoChar;
:= noChar;

:= lIoChar;

.- NoChar;
:= NoChar;
NonDa te ;

noChar;
UoChar

I.';

~rocedure OutRecord(entry : ite~; n
(* to write to the terminal *)
var a : integer;
lJegin

for aIEl to 7 do
writeCI I');

writeln;
with entry do

begin
writeln(authors);
writeln(titlel);
writeln(title2);

integer> ;

Applications



writeln(placel> :
writeln(place2) :
writeln(date:8,'
writeln(keyl> ;
writeln(key2)

end

end: (* of OutRecord *)

Item number :',0 :5):

procedure GetReference(n
(* to count through bank
begin

if

: integer);
to find an ITEN *)

n<count
then

begin
reset(bank):

count :-= 1
end;

I

while (count < n) and (not eof(bank» do
begin

count := count+l;
get (bank)

end;
if eof(bank)

then
begin

writeln;
writeln(' You have only got',count -1,' Itetls.');
writeln;
goto 10

end
else

OutRecord(bank",n)
end: (* of GetReference *)

procedure change(var entry: item: m integer):
(* to change the mth. ITEII*)
var line: integer;

Dl10ption, LincOption char;
str : string;

begin
""riteln;
writeln:
repcat

"rHe('Do you "ish to DELE1'Eor r:ODIFY ');
InlChar(DIIOption)

until Dl!Option in ('O','d','U','m'1;
if DllOption in ('D','d'J

then
begin

crapt;
entry empty

end
else

begin
writeln:
writeln('You may REPLACE a line,'):
writeln('move to the NEXT line,'):
writeln('or SKIP to the end of the item. 'I:
writeln;
line := 0;

repeat
line := line+l:

with entry do

case line of

1: str .m authors;

2: str titlel:
3: str title2:
4: str := placel:
5: str := place2:

6:
7: str := keyl:

8: str := key2

end; (* of case *)
if line06

then
begin

writeln:
writeln(str):
writeln(output);
repeat

write('REPLACE, NEXT line or SKIP to end 'I;
InlChar(LineOption)

until LineOption in ['R','r','tJ','n','S','s'):
writeln;
if LineOption in [IR',Ir')

then
begin
writeln('Type replacement line :'):
writeln:
VDUinString (strJ:
with entry do

Applications

case line of
1: authors := str:

2: titlel .- str;
3: title2 := str:
4: placel := str:

5: place2 .- str:
7: keyl := str:
8: key2 := str

cnd; (* of case *)
end

end
else

begin
uriteln('Date ',entry.date :4):
writeln;
r epea t

write('REPLACE, NEXT line or SKIP to end '):
InlChar(LineOption)

until LineOption in ('R','r','H',ln','S','s');
if LineOption in ['R','r']

then
begin
writeln('Type replacement date '):
write(': '):
InlInt(entry.date)

end;
end

until «line=8) or (LineOption in ['S','s']»:
end;

write1n;

writeln('Modified item reads '):
write1n;
OutRecord(entry,m) :

write1n;

end: (* of change *)

begin (* !lAINPTIOGPJlM *)
count := lIiTag;

n := 1;

reset(PendingTray) :

rewri te (TempPendingTray) :
while not eof(PendingTray) do

begin (* copy down existing contents of file
'PendingTray' *)

TempPendingTray" := PendingTray";
put (TempPendingTray);
get(PendingTray)

end;
re"rite(PendingTray) :

reset(TempPendingTray);

wbile not eof (Ter;,pPendingTray) co
begin (* copy back 'PendingTray' and count contents ')

PendingTray" := TCT,lpPendin<]Tray"';
put(PendingTr~y) ;
get(TempPendingTray) ;
n := n+l

end;
rewritc(TempPendingTray) ;

repeat
writeln;
repeat

\Hite('Doyou wish to I,PPEI!D, to CIIAIJGE, 'I;
"riteln( "to use the SPECIAL facility. ');
\'l[ite('or to FIUISIJ ');
InlChar <I1a;,nOption)

until rtainOption in ('A','a','C','e','S','s','r','f');

(* llainOption=S is a special facility,
used for loadin£ from 'seratel)'to 'PendingTray'*)

case llainOptionof
I
A'

,
'a': (* TO APPEND *)

begin
1tIriteln;

repeat
write('Do you need help

[YES or NO] '):
InlChar(HelpOption)

until HelpOptionin ('Y','y','N','nl);
if HelpOption in ['Y','y']

then
begin

writeln:
writeln( 'nOTES.'):
write('(a) Authors and keywords separated');
writeln(' by a eomma .,".');
write('(b) To remove the automatic conversion to '):
writeln('upper case letters'):
write(' begin a line of text with');
writeln(' a backslash "'".'):

7



write('(c) Date must be a single integer number');
writeln(' ego 1980.');
write('(d) If addresses are to be entered use the two');
writeln(' title lines;');
write(' close pack but indicate ne,,');
writeln(' lines with a backslash "'".');
write('(e) A personal local storage reference');
writeln(' may be kept on the 2nd. location line');
write(' but should be enclosed in square br~ckets;');
writeln(' for example: [EI1360].')

end;
r epea t

,.,[ iteln;
writelnC'ncf;' iter.l:- '>;
writeln;

for a:=l to 7 do

write(I I');
writeln;
with entry GO

begin
writeln( 'Line of author namen, or ~arneof addressee :' };

VDUinString(authors);
writelr.('First line of title or address :');
VDUinString (titlel);
writeln('Second line of title or address :');
VDUinString(title2);
writeln('First line of reference location ,');
VDUinString(placel) ;
writeln('Second line of reference location :1);
VDUinString(place2) ;
writeln('Date - just the year - :');

InlInt(t:ate);
writeln( 'First line of keY'lOrds : ');
VDUinString(keyl) ;

writeln('Sccond line of keywor~s :');
VlJUinString(key2);

end;
\If itcln;
outRccord(entry,n);

repeat

\-Jeiteln;
repeat

wr ite (
'Do you wish to make a change [YES or 1~0]

'
);

InlChar(ChangeOption)

until ChangeOption in ['YI,'yl,'NI,'n'];
if ChangeOption in ['Y','y')

then
change(entry,n)

until ChangeOption in ['N','n');
if entry.date <> NonDatc

then
begin
TagEntry.t~g := HiTag;

TagEntry.entry := entry;

PendingTray. := TagEntry;

put (PendingTray) ;

n := n+l

end
else

begin
Hriteln;

writeln('Itcl':1 vlithdrawn.');
"riteln

end;

,-,riteln;
repeat

writeC IDo you wisl!to apI~n~ Dore ite~s [YES or r~O] ');
InlChar (AppendOption)

until AppendOption in ['Y','yl,'II','n'];

until AppendOption in II 1:'
, In ']

end; (* of Append option *)

'C'
, I C I : (* TO CHI~nGr:: *)

begin;

writeln;
repeat

\oHite( 'Do you neccJhelp [YES or 1:0]
InlCh~r(HelpOpticn)

until lIelpOption in lIY','y','l1','nl];
if IlelpOption in l'yl,'yl]

then
Dcsin

');

writeln;
\Hitcln( 'You lIUS'l' knO\;l thc I'l'BI-j rnJl!DBp.s of the ITBriS you \.1i~h to

changc.' );

writela( IIf you do "not, leave this prograIii anci run "bibout" to
f inCi them. I );

\vriteln( 'ChQnges tio not take place iT:1uediately, they utay in tbe
PEr,DI!JG' );

writeln( Itray until the "ulJdatc" prograr,1 it; run.');

8

writeln( 'If an ITmr is change~ aore than once only the last
version Gurvives.1

cnd;
repeat

10: writeln;
chge := false;

writeln( 'Type 0 if no n'EI-!needs changing, otherwise
type');

write('theITEI.! number... ');
InlInt (nn);
if nn<O

then
begin

writeln;
writelnC 'No negative numbered ITEHS')
end;

if nn > 0

then
begin

\1Citeln;
GetReference(nn);
if not eof (bank)

then
begin
entry := bank"";
repeat
writeln;
repellt

wr ite
( IDo you wish to change this item [YES or 110) ');

InlCh.r(Ch~ngeOption)

until ChangeOption in l'Y','y','U','nl];
if ChllngeOption in ('Y' ,'y']
then

begin
change(entry,nn) ;

chge := true

cnd
until ChQngeOptionin llr~','n'];
TagEntry.tas := nn;
TagEntry.entry := entry;
if chge
then
begin
PendingTray. := TagEntry;
put (PelluingTray) ;

n := n+ 1

end
end

en(i;

\-o'riteln;
until nn = 0

end; (* of Ch~nge option *)

'S','SI: (* To Dove frOT;l text file Iscratch' to 'PendingTrayl *)
begin

\-leiteln;

write('This option moves the contents of the ');
writeln( 'SCR1.TCH file into the PENDING tray.');
write('It can be used to copy selected ITmrS from one');

writeln(' bibliography to another.');
\Hite( 'OR, it can be used to reinstate ITEIISI);

"ritelnC'which have been changed by the editor.');
writeln;
repeat
writeln;

write('Do you wish these items to be APPENDED, REINSTATED or
NO ACTIOn ');

InlCharCSpecialoption)

until SpecialOption in [lA', 'a', 'N' I 'n', 'R' I' [I];

if Special0ption in ['AI,'a','R','r']
then

begin
reset(scratch);
writeln;

C
*

now check that scratch holds ITm.tS in

the correct form *)

if (not eofCscratch» and

Scratlloldsltems
then
begin
while not eof(scratch) 00
begin
with entry do

begin
ScratchlnStrCauthors);
ScratchlnStr(titlel) ;
ScratchlnStr(title2);
ScratchlnStrCplacel) ;
ScratchlnStrCplace2);
readCscratch,date);

Applications



int := -a
else

int a
end; (* of InlInt *)

repeat
read(scratch,ch)

until ch = ':';
readln(scratch,TagEntry.tag)I

writeln(n,' Dated ',date,' Item number ',TagEntry.tag)1
ScratchInStr(keyl)I
ScratchInStr(key2) I
end;
if SpecialOption in ['A','a') then
TagEntry.tag :. HiTagl
TagEntry.entry := entrYI

PendingTray" := TagEntrYI
put (PendingTray) I

n := n+1;

if not eof(scratch)
then
get (scratch)

end;
rewrite(scratch)

end
end

end, (* of special option *)

'p'
, I£1: begin

writeln;
writeln( 'Number of ITEHS now in Pending

Tray
='

,n-l :5) I
writeln

end
end (* of case "MainOption" *)

until HainOption in ('F','f']
end. (* end of program Dibin.p *)

program Bibout(input,output,bank,dict,scratch,dlist,PendingTray) I
(* To call down items from the bibliography *)

(* written by Tony Heyes, Blind Hobility Research Unit,

Department of Psychology, The University,

Nottingham, U.K.. *)

lal>-' 10,

C0 LineLn= 701
RowLn =

20,

HiTag
= 100001

LinesPerPage = 64

VDULine~PerPage = 24,

type string=packed array (1..LineLn) of chaq
item = record

authors,titlel,title2,

placel,place2 : string;
date inteser;
keyl,kcy2 : string

end;
>lord= packed array (1..20] of char:
row array (1..!>o>lLn]of integer:
die = record

name word:
numbe IS I 0\01;
cont boolean

end:
link = ~DicLine;
DicLine = record

val
ne}:t

enu;

intege r;
link

var FileAssigned : boolean;
bank,PendingTray : file of item:
dlist,AdarcSGFile,scratch : text;
diet :.file of dic;
FirstLink,SecondLink,ThirCLink,ptl,here : linkl
low,high,n,HurnSoFar,
Linel1o,l\ddLineIJo,count,TopIteu,lJFrOr.1Dict,lJurnl1
device,FileStyle ,I!ainOpt,!1DOption,Logicr.ction

intege r;

chari

procedure InlChar (var ch : char),
(* to read the first character of a >lordtyped into the terminal *)
begin

'1 : =
input" I

,iIe not (ch in ['A"..'Z','a'..'z']) do
begin

(* skips alons until first character found *)
get(input) I
if eoln(input)

then
begin

Applications

writelnl
write('ERROR: character required ')

end:
ch := input-

end;

while not eoln(input) do (* skips over reat of line *)
get( input)

end: (* of InlChar *)

procedure InlInt (var f textl var int : integer):
(* to read an integer and not cauae a fatal error if a character

is given *)

Vi;;[ ch : char;

a,OrdZcro : integer;
I!cgFound : boolean;

uCS i r.

repeat (* skips along until integer iD four\~*)
get(f) :

if eoln(f)

then
lJegin

\'Ir iteln;

\'Jrite('EnnOP.:digit required
,)

end;
ch := f-

ur.tilch in ['_','+1,'0'..'9'];
if Ch='_'

tten
begin

l1eqround := true;
get (f)I
ch :

= f"
end

else
begin

tJegFound .- fo.lsc;
if ch='+'

then
lJegin

get (f)I
ch := f"

end
end;

a := 0;

OrcZero := ord('O'),

repeat
a := 10*a+ord(ch)-OrdZerol

get (f)I
ch := f-

until not (ch in ('0'..'9'),

while not eoln(f) do (* skips over rest of line *)

get<f)I
if NegFound

then

procedure SkipToEndOfPage(PageLines
var where

begin
while LineNo < PageLines do

begin
writeln(where)I

Line!Jo Linel1o+1
end;

LineNo := 0
end: (* of SkipToEndOfPage *)

integer;
text) I

procedure GetRef(n : integerI destination: char),

var a,CharCount,LinelnQuestion,NOfCo8uas,llordLength
line : string;
DoubleSpace,InDrackets,Keepl1extCap,
something,KeepAIICaps,woops : boolean I
ch,LastCh : charI

begin
if n<count

then
begin

reset(bank) I
count 1

end;
while (count < n) and (not eof(bank» do

begin
count := count+l;
get (bank)

end;
if eof (bank)

integc r;

9



then
begin

writeln;

writelnC' You h~ve only got' ,count -I,' Items.');
~Iriteln;
goto 10

end
else

with bank" do
begin

case destination of

'T' ,'t': (* Output to terminal *)
begin

if (VDULinesPerPage-LineNo< 9)
then
SkipToEndOfPage(VDULinesPerPage,output);

for a:-l to 7 do
write(' I');
writeln;
writeln(authors);

writeln(titlel) ;

writeln(title2);

\lriteln(placel) ;

writeln(place2);

writeln(date:8,' Item number :',n :5);
writeln(keyl);
writeln(key2) ;

LineNo := LineNo + 9
enOl C* of 'T' *)

'I',' i': (* Output to scratch file *)
begin

if LinesPerPage-LineNo < 9
then
SkipToEnaOfPage(LinesPerPage,scratch);

for a:=l to 7 do
write(scratch,' I');

writeln(scratch,' ') ;
writelnCscratch, 'l!arnes :t,authors);
writeln(scratch, 'Details:' ,title!);
\olritelnCscratch, t :t,title2);
writeln(scratch,' :' ,placc!);
writeln(scratch,, :',place2);

writelnCscratch,date:14,' Ite~ number:',n :5):
writeln(scratch, 'Keywords: I ,keyl);

writeln(scratch,' : I ,key2);

LineNo := LineNo + 9
end; (* of II' *)

'E' ,'e': (* Output to scratch file in envelope label format.
Only for addresses. *)

begir.
writeln(AddressFile);

AddLineHo := AddLineNo +1;

woops := true;
for LineInQuestion:=l to 2 do
begin
DoubleSpace := false;

LastCh := ':'; (* initail value *)
CharCount := 0;
writeln(AddressFile);
AddLinel10 := AddLineNo +1;
write(AddressFile,

'
') ;

if LineInQuestion=l
then
line : = titlel

else
line ti tle2;

while (CharCount<LineLn) and not DoubleSpace do
begin
CharCount := CharCount+l;

ch := line!CharCountJ;

if ch='\'
then

begin
woops :- false;
writeln(AddressFile);
AddLineNo :- AddLineNo +1;
write(AddressFile,' ')

end
else
write(AddressFile,ch);

DoubleSpace :- (ch-' ') and (LastCh-' ');
LastCh .= ch

end
end:

while (AddLinellomod 8) <> 0 do
begin
writeln(AddressFile);
AddLineNo := AddLineNo + 1

end:
if woops

then
begin

10

writeln;

writeln;
write('An attempt to output a reference');

writeln(' in address format.');

writeln;
writeln;

write( 'Addresses must be close-packed on the two' );
writeln(' title lines.');

writeln( 'Use the backs lash
"\" as line separator.' );

writeln;

rewrite(scratch) ;
FileAssigned :- false;

goto 10

end
end; (* of

'E'
*)

'R','r': (* Output in format for wordprocessor NROFF *)
begin (* firstly the author line *)

writeln(scratch,'.nr');
(* this is an NROFF macro *)

write(scratch,'\:');
(* bold lettering command *)

DoubleSpace := false;

KeepAIICaps :- false;

woops :_ false;
LastCh := ':'; (* initial value *)

CharCount := 0;

NOfCommas := 0;

if authors!l]='\'
then
begin
KeepAIICaps :- true;
CharCount :. CharCount+l
end;

while (CharCount<LineLn)
and not DoubleSpace do

. begin

CharCount :. CharCount+l;
ch :. authors!CharCount];
if ch- I, .
then
NOfCommas :. NOfCommas+l;

DoubleSpace := (ch-' ') and (LastCh.' ');
LastCh :. ch

end;
DoubleSpace := false;

LastCh p= ':';
CharCount := 0;

while (CharCount<LineLn) and not DoubleSpace do

begin
CharCount := CharCount+l;

ch := authors!CharCountJ;

if (ch in !'A'..'Z']) and (LastCh in !'A'..'Z'])
and not KeepAllCaps

then
write(scratch,chr«ord(ch)+32»)
else
if ch=','
then
begin
if NOfCommas=l
then
write(scratch,' & ')
else
write(scratch,', ');

NOfCommas := NOfCommas-l

end
else
write(scratch,ch);

DoubleSpace := (ch=' ') and (LastCh=' ');
LastCh := ch

end;
writeln(scratch,' (' ,date: 4,') \:');
for LineInQuestion :=1 to 4 do

begin (* title and place lines *)
KeepNextCap := true;

KeepAIICaps := false;
case LineInQuestion of

1: line := titlel;
2: begin

line : _. title2;
KeepNextCap := false
end;

3: line := placel;

4: begin

line := place2;

CharCount := 0;

InBrackets := false;

repeat
CharCount CharCount+l;

if line!CharCountJ.'!'

then

Applications



InBrackets := true;

if InBrackets

then
if line[CharCountl='1

'then
begin
line[CharCountl :=

,
';

InBrackets := false

end;
if InBrackets

then
line[CharCountl :=

'until CharCount=LineLn

end
ene; (* of case LinelnQuestion *)

CharCount := LineLn;

repeat
CharCount := CharCount-l

until (CharCount=l) or (line[CharCountIC>' ');
if CharCountCLineLn
then
line[CharCount+ll := 'I'; (* a silly character ·
(* placed at the end of the character stirns *)

WordLength := 0;

if CharCount>l

then
repeat
CharCount := CharCount-l;

if lineICharCountlc>'
,

then
begin
if line[CharCount] in I'A'..'Z']
then
110rdLength \"IordLength+l

end
else
begin
if not (wordLength in [2,31)
then
line[CharCount] := '-';
(* another silly char fills up spaces
before words which keep caps. *)

llordLength := 0

end
until CharCount=l;

CharCount := 0;

something := false;

if line
[
11

='
,

'then
begin
KeepAIICaps := true;

CharCount := CharCount+l

end;

ch :- ':', (* initial value *)
while (CharCount C LineLn) and

(line!CharCount+ll C> 'I') do
begin
CharCount := CharCount+l;

LastCh := chI

ch := line[CharCountl;

if not «LastCh in ['-,

"
'I) and

(ch in 1'.-','']»
then
begin
if (ch in ['A'..'Z']) and not Keep!lextCap
then
ch := chr«ord(ch)+32»;

if ch in ['
A' ..

'
z'

1

then
KeepllextCap := false;

if chef\-
then
woops := true; c* its an address *)

if ch='-'
then
begin
ch :=

, I;

if (LinelnQuestion in 13,41)
then
EeepllextCap := true

end;
if (ch in ['1'..'9'1)
then
Keep!lextCap := false;

if (chO' ') and (chc>'I')
then
something := true;

if something

then
write(scratch,ch)

end

Applications

end;
if something
then
writeln(scratch)

end;
if woops

then
begin
writeln;
writeln;
write('An attempt to output addresses in');
writeln(' reference format.');
writeln;
writeln;
rewrite(AddressFile);
FileAssigned := false;

goto 10
end

end (* of
'R'

*)
end (* of case destination *)

end
end; (* of GetRef *)

procedure ReWind(var ptr link);

var p,q,pt: link;
begin

p
:= ptr;

pt :
= nil;

while pOnil do

begin
new(q);
q~.val := pA.val;
q-.next := pt;
pt :=

q;

p
:= p-.next

end:
ptr := pt

end; (* of RelHnd *)

procedure GetDict(m : integer; var ptr link);

a : integer;
p : link;
OldEntry : dic;
more : boolean:

begin
if

var

m C HiTag
then

begin
reset (diet) ;
a := 1;
while aCm do

begin
OldEntry := dict-;
get(dict) ;

if OldEntry.cont=false

then
a := a+l

end:
writeln:
writeln(dict-.name);
ptr := nil;
repeat

for a:=l to RowLn do

if dict-.numberslaIC>O

then
begin

new(p);
p-.val := dict-.numbers[al;

pO.next := ptr;
ptr := p

end;
more :- dictA.cont:
get(dict) ;

until not more;
Rellind(ptr)

end
else

begin
ptr := nil;
for a:=Topltem down to 1 do

begin
new(p);
pO.val:=a;
p- .next := ptr;

ptr :
=

p

end
end

end; (* of GetDict *)

11



proceuure joinCvar 1'1 :link; 1'2 link; which char);

var continue boolean:
q.qp.ptl.pt2.pt3 : link;

begin
ptl := 1'1;
pt2 :=1'2;
continue := (ptl<>nil) and (pt2<>nil);
c~p:- nil:
case which of

IA','a': (* AnD *)
begin

while continue do
begin

if ptl..val>pt2..val
then

begin
pt3 .= ptl;
ptl := pt2;

pt2 := pt3
end;

if pt2..val>ptl..val
then

begin
ptl := ptl..next;

continue := ptl<>nil

end
else

if ptl..val=pt2..val

then
begin
newCq);
q..val := ptl..val;

q next :- qp:
qp :. q;
ptl :. ptl..next;
pt2 := pt2..next;

continue := Cptl<>nil) and

Cpt2<>nil)

end
end

end; C* of AIID*)
'0','0': (* OR *)

begin
begin

while continue do
begin

if ptl..val>pt2..val
then
begin

pt3 : = ptl;
ptl := pt2;

pt2 := pt3

end;
if ptl..val<pt2..val

then
begin
newCq);
q..val := ptl..val;
q.

.next := qp;

qp
:= q;

ptl := ptl..next;

continue := ptl<>nil

end
else
if ptl..val=pt2..val

then
begin
newCq);
q..val := ptl..val;

q..next := qp;

qp
:= q;

ptl :=
ptl. .next;

pt2 := pt2..next;

continue := Cptl<>nil) and

Cpt2<>nil)

end
end;

if ptl=nil

then
ptl := pt2;

while ptl<>nil do

begin
new(q) ;

q..val := ptl..val;

q..next :=
qp;

qp :. q;

ptl := ptl..next

end
end

end; C* of OR *)

12

'N', 'n': (* NOT *)
begin

while continue do
begin

if ptlA.val>pt2".val
then

begin
pt2 := pt2..next;
continue := pt2<>nil

end
else

if ptl..val<pt2..val

then
begin
new(q) ;

q..val := ptl..val;
q. .next := <iP;
qp

:= q;

ptl := ptl..next;

continue := ptl<>nil

end
else
if ptl..val=pt2..val

then
begin
ptl := ptl..next;

pt2 :- pt2..next;
continue := (ptl<>nil) and

Cpt2<>nil>

end
end;

while ptl<>nil do
begin

newCq);
q..val := ptl..val;
q.

.ne>:t := qp;

qp
:= q;

ptl :=
ptl. .next

end
end (* of NOT *)

end; (* of case *)

Rel'1indCqp) ;

1'1 := qp
end; C* of join *)

procedure OutList(ptr link; var aa in tege r) ;

var I': link;
begin

I':= ptr;
aa := 0;
writeln;
while p<>nil do

begin
aa
if

I'end;
writeln;
writeln

end; (* of

:= aa+1;
aa mod 13 - 0
then

writelnCp..val :5)
else

writeCp..val :5);
:=

p.
.next

OutList *)

procedure DictListCvar where

(* TO LIST DICTIONARY *)
text);

const NoOfLines = 64;
\10rdsPerLine= 4; (* Change constants to suit page size *)

C* See also line 700 *)

var

type list = array[1..384J of word;

nur.1,i
OldEntry
llordList :

begin
reset(dict);
rewrite(dlist) ;
i := 0;
while not eofCdict) do

begin
for num:=l to lIoOfLines*HordsPerLine do

begin
OldEntry := diet.;

while Cdict..cont=true)and(not eof(dict» do

getCdict) ;

if not eof(dict)

then

: integer;
dic;
list;

Applications



begin
IlordList(num) := OldEntry.name;
get(dict)

end
else

lIordList [num) ';
end;

for num: =1 to IJoOfLines do
writeln(where,WordList[num),WordList(NoOfLines+num),

WordList[2*NoOfLines+num],
WordList(3*NoOfLines+num)l;

(* Extent this list for more words per line *1
i i+NoOfLines*llordsPerLine

end;
writeln;
write('Dictionary written to file.');
writeln(' To obtain a hard copy run "outdict".'I;
(* 'outdict' simply prints out the file 'dlist'. *1

writeln
cnd; (* of DictList *)

~rocedure TwoCols (var F,G textl;

canst rows = 8;
Twicenows 16;
cols = 40;

type ChLink = "chstack;
chstack = record

ch : char;
next : ChLink

end;
lines = array(l..Twicer.owsJ of ChLink;

var pt,here: ChLink.
lin,StartLin : lines;
LineNo,Chartlo : integer;
ch : char.

l~rocedure reverse (var ptr ChLinkl;

var p,q,pt : ChLink;
begin

p := ptr;
pt := nil;
while p <> nil do

begin
n:w(ql;

"
q .ch := p .ch;
q'".next := pt;
pt := q;
p : = p". next

end;
ptr := pt

cnd; (* of reverse *1

tegin
reset (F) ;

if not eof (FI
then

begin
page(GI;
writeln;
writeln('Output in two column "Xerox" label format.'I;
writeln

end;
while not eof(FI do

begin
mark(herel;
for LineNo := 1 to 2*rows do

begin
StartLin(LineNo) := nil;
if not eof(F) then
while not eoln(F) do

begin
read (F ,chI ;
new(lin[LineNo)l;
lin(LineNo)".ch := chI
lin[LineNo)".next := StartLin(LineNo);
StartLin (LineNo) := !in [Linello)

end;
if not eof(F)

then
readln(FI;

reverse(StartLin[Linello) ;
end;

for Linel10 := 1 to rows do
begin

Charl<o := 0;
pt := StartLin(Linello);

Applications

while (pt <> nill and (Char!:o < cols) ao
begin

write(G,pt".chl;
pt := pt".next;
CharNo := CharNo + 1

end:
pt := StartLin(LineNo + rows];
if .pt <> nil

then
while CharNo < cols do

begin
write(G,' '>:
Charllo := CharNo +1

ent1;
while pt <> nil 00

begin
ch .- pt" .ch;
write(G,chl;
pt := pt".next

ena;
writeln(G)

end:
release(here);

end
end; (* of TwoCols *1

procedur e GetFromDict (var Firstllord,lIuml.lords integer) ;

var
ch,action,option : char;
n,ChCount,PointerNum,lIumberFound integer;
na~e,signame : word;
AllCaps : boolean;

begin
writeln;
AllCaps := true;

ChCount := 0;

write('Enterword required or (.) 'I;
repeat

read(ch)
until ch<>' ';
if ch='\'

then
begin

AllCaps := false;
read (chI

end;
if ch='.'

then
bcgin (* "action" *)

while not eoln(inputl do
get(input) .

repeat
writeln:

writeln( 'Do you wish to LOOK UP the selected string,
to r.EST1~Tthe' I;
write('selection or to QUIT the dictionary
InlChar (actionl

until action in ('L','l','R','r','Q','q']
end

else
begin (* word *)

action := 1\1';
repeat

ChCount := ChCount + 1;
if ChCoun t > 1

tl:en
read(ch);

if AllCaps and (ch in ('a'..'z')1
then

name (ChCountJ := chr(ord(ch)-321
else

name (ChCount) := ch
until eoln(input) or (ChCount 20);
if not eoln(input)

then
readln;

for n:=ChCount+l to 20 do
name [nJ : =

I>:

end:
if action in [ILI,'l')

then
FirstUord := -1

else
if

(* look up *1

action in ['R',I(']

then
FirstUord := -2 (* restart *)

else
if action in ('Q','q')

then
FirstUord := 0 (* quit *)

else

13



if name-='***

(* special word *)
then

begin

writeln;
writeln(

'***
ALL ITENS ***');

writeln;
repeat

write('Is this correct [YES or 1101
InlChar (option)

until option in [Iyl, Iy', Inl, 'nl];

if option in ['Y','y']
then
FirstWord := HiTag

else
GetFromDict (FirsU:ord, !/uml-/ords)

end
else

begin (* a real word *)

reset (diet) ;

NumberFound := 0;
PointerNum 0;
writeln;
signaIT.e := ';
while (name >= signame) and not eof(dict) do

begin
if name=signace
then
begin

"r
iteln (diet" .nac,e) ;

NumberFound := NumberFound+l

end;
while (dict".cont=true) do
getldict) ;
if (PointerNum > 0) and not eof(dict)

then
get (diet) ;

PointerNum := PointerNum+l;

for n:=l to ChCount do

signamelnl := dict".nameln];

for n:=ChCount+l to 20 do

signameln] ';
end;

writeln;

if NumberFound=O

then
begin

writeln( 'word not found in your dictionary; try again.' );
writeln;
GetFrornDict(FirstWord,NumWords)
end

else
begin
repeat
if NumberFoundE 1
then

write( 'Is this word correct [YES or NO] ....
else

write( 'hre hLL these words required [YES or NO) , );
InlChar (option)

until option in [IYI,ly',IU',ln'];
if option in ['Y','y']
then
begin
Firstl/ord := PointerNum-

NumberFound;
Numllords := l1umberFound

end
else
GetFrornDict(FirsU/ord,NUIJI-10rds)

end
end

end; (* of GetFrornDict *)

begin (* riAIII PROGRAH *)

rewrite(scratch);
re"rite(AddressFile);
reset(bank);
count := HiTag;
LineNo := 0;

AddLineNo := 0;

FileAssigned .- false;
\/riteln;
writeln( 'To retrieve ITEI-IS from the BIBLIOGRAPHY.');

(* TO SEARCH BY AUTHORS and KEn/ORDS*)
writeln;
reset (dlist);
if dlist" = ,",

then
InlInt(dlist,TopItem)

else

14

I);

begin
TopItem :E 0;
writeln('Counting, please wait.');
writeln;
writeln;
while not eof(bank) do

begin
TopItem := TopItem +1;

get (bank)

end;
rewrite(dlist) ;

writeln(dlist,'"',TopItem 5);

writeln(dlist) ;

writeln(dlist) ;

writeln(dlist,'Your DICTIONARY must first be compiled by running');

writeln(dlist,' the HARD COpy option of "bibout".');

writeln(dlist) ;

writeln(dlist)

end;
wr iteln('The BIBLIOGRAPIIY cur rently holds ',TopItem,' ITEMS. ');
repeat

writeln;
I 0: repeat

jiriteln('Do you wish to obtain a HhRD COPY of the current dictionary,'l
write( 'to SEARCHfor items or to FINISH ') ;
InlChar <r:ainOpt)

until uainOpt in [IHI,'h','SI,'SI,'F-','f'];
wr iteln;
if RainOpt in ['II','h']

then
begin

DictList(dlist);
HainOpt := 'F'

end;
if r:ainOpt in I' s' ,'s']

tl:en
begin

repeat
\-lriteln;
writeln('Do you "ish to search by item NUHBER');
write( 'or by use of the DICTIONhRY ');
InlChar OIDOptlon)

until UDOption in [INI,ln','DI,ld'];
writeln;
repeat

writeln;

"rite( 'Output to TERliI!JALor to scratch FILE ');
InIChar(device)

until device in [IT', 't', IF', I fl, '5', 'Sl];
writeln;
if, Gevicc in ['T' ,'t']

then
FileStyle := 'T';

if (device in [IF','f','SI,ISI]) and not FileAssigned
then

repeat
"riteln('Is the desired output');
write('an ITEr-: list,');

"riteln(' "the full item being given" ');
write('a REFER~/CE list,');
writeln(' "only the reference part being given"
write('or an address list suitable');
write(' for ENVELOPE addressing ');
InlChar(FileStyle);
Filehssigned := true

until FileStyle in ['II,'i','R','r','E',le'];
if FileStyle in I'R','r')

then
begin

writeln(scratch,'.hy a'); (* NROFF commands *)

writeln(scratch,'.na');
writeln(scratch,'.sp 2');
writeln(scratch,'.de nr');

writeln(scratch,'.sp');
writeln(scratch,'.ne 6');
writeln(scratch,'.ti -5');
writeln(scratch,'..');
writeln(scratch,'.ne 10');
writeln(scratch,'\:References.\:');
writeln(scratch,'.sp 2');
writeln(scratch,'.in +5')

end;
writeln;
case I1DOptionof

'D', 'dl : begin
writeln( 'uords are lookco up in f);

writeln('the dictionary and a list of reference numbers' );
writeln( Icontaining the given word is shown on the terminal.' );
\'lritcln;
"rite( 'The special "word", [***] will match with all the "ords' );

Applications



writeln(' in the diction<:ry.');
writeln;

write('Logical co~bination of ');
writeln( 'author and keywords continue until you wish' );

W' 'In( 'to ter~inated the search.');
\-, 1n:
WL _cln( 'To terminate a search answer the prompt with a full

stop [.).' );

writeln:
repeat
\-1I i teln;
writeln('New sequence.');
writeln:
liumSoFar := 0;
mark(here);
GetFromDict WFro~Dict, NumH>;

if NFromDict > 0 (* a real word *)
then

begin
GetDict(!;Fro~Dict,FirstLink) ;
if NumH > 1

then
repeat

IIFromDict := NFrO~Dict + 1;
GetDict WFromDict, SecondLink) ;
join(FirstLink,SecondLink,'O');
NumH : = Numll - 1

until NumU = 1;
OutList(FirstLink,NumSoFar);
while NFromDict > 0 do

begin
GetFromDict (NFromDict,Num~1I ;
if NFrornDict > 0 (* a real word *)

then
begin

GetDict(NFromDict,SecondLink);
if Numl'l > 1

then
repeat

NFromDict := UFromDict + 1;
GetDict(NFromDict,ThirdLink) ;
join(SecondLink,ThirdLink,'O');
Numll := NumH - 1

until Numll = 1;
OutList(SecondLink,NumSoFar) ;
repeat

write
(

'AIID, OR or I:OT ? I );
InlChar(LogicAction)

until LogicAction in (IAI,la','O',

'0', 'U', 'n' J;

join(FirstLink,SecondLink,
LogicAction) ;

OutList(FirstLink,lIumSoFar)
end

cnd;
if (<t:umSoFar >

0) and WFromDict
then (* look up *)

beg in
\oIl iteln;

writeln('Se~rch in progress for',UuQSoFar :S, I ltecs');

\lritcln:
ptl := FirstLink;
while ptl<>nil do

besin
GetHef (ptl' . val, FUeSty Ie) ;
;otl := ptl' .ne>:t

cnd;
if FilcStyle in ['I','il,IR','r',

1
E', Ie' J

then
begin

''II iteln;
writeln( 'ITI:flS written to SCRlI'1'C1I FILE.' );

"Jriteln
end;

release(here)
encl:

end
until NFromDict=O (* quit *)

end;

'N', 'n' : begin (* TO SEMCI! BY NUllBER *)
writeln:
writeln('ITEHS may be called by number.');
W' 'In

(
'A whole block of ITE!.:S may be called;');

\ ('to do this answer this pro~pt with');
w~__eln(t minus one [-I].');
writeln;
writeln( 'To quit: answer

write('Number of

prompt with a zero (0). '
);

repeat
writeln;

ITEI.j to be referenced ') ;

Applications

-1»

InlInt(input,n);
writeln;
if n = -1

then
begin
writeln;
writeln('To output a block of

ITEllS. I);
wrHeln( 'Give the LOU ITE!l number ,then the IIIGII number.' );

write{ 'LOU number ');
InlIntlinput,low) ;
write('HIGII number ');
InlInt (input, high) ;
if <1ow=O) or (high=O)

then
begin (* an escape *)

low := 1;
high : = 0;
n := 0
cnG;

if low <= high
tben

begin
writeln;
writeln('Search in progres5');
writeln;
for n: =10'1 to high do

GetRef(n,FileStyle)
end

end
else

ifn>O
then

begin
\lriteln;
writeln('Search in progreDs.I);

"lr iteln;
GctF.ef(n,FileStyle)

end
until n=O

end
end (* of caseIIDOption *)

end
until l-IainOpt in ['F','f');
if FUeStyle in ['R','r')

t.hen
begin

writeln(scratch,'.in -5');
writeln;

writeln( 'The output file "scratch" contains the references and

the' );

writeln('instructions for the word processing program

I'nroff'l.');

writeln;

writeln( 'An atte~pt has been made to reintroduce lower case

letters.' );

writeln('To obtainyour output run "nroff scratch" ');
writeln;

writeln( 'If all is not well edit scratchand run' 'nroff
scratch" again.' )

'tlriteln;
writeln( 'Iihen all is correct get the hard copy output

by') ;
writeln('running "nroff scratch Ilpr". ');
writeln

end;
if FileStyle in ['E','e')

then
TwoCols(AddressFile,scratch) ;

writeln;
writeln;
writcln('FINISHED.');
writeln

end. (* of progr"," Bibout.p*)

program Bibupdate(input,output,bank,dict,scratch,
dlist,PendingTray,TempDank);

(* A non-interactive program which moves the contents of
'PendingTray' to the bibliography. Clever systems run this program
at night.

TempBank is made external becauseit grows to be as large as bank.
Diagnostics are written to 'scratchl.
I'lritten by 'rony Heyes, Blind !-Iobility Research Unit,
Department of Psychology, The University,
Nottingham, U.K.. *)

const LineLn= 70;
RowLn = 20;

15



he<:>p = 200;
HiTag = 10000;
stack = 50;
IJonDate -1066;

type string = packed array !l..LineLn] of char;
item = record

authors,titlel,title2,
placel,place2 : string;
date integer:
keyl,key2 : string

cnd;
word = p<:>cked array 11..201 of char;
row = array Il..RowLnl of integer;
TaglteD = record

tag: integer:
entry : iteD

ene!:
point = .CoreTagltcD;
CoreTaglteD = record

~agEntry Taglten;
next point

cnd:
riie record

name
nUr:1uerc

cont
cn(l;

link .dentry;
dentry = record

dline
next

word;
[0\-1;

boolean

dic;
link

cnd;

var bank,TeDpDank,addition: file of item;
LastOne : item;
PendingTray,correction : file of Tagltem;
first,here,p,pt,newp : link;
efirst,now,ept,e,enewp : point;
dlist,scratch : text;
TempDict,dict : file of dic;
GotFromCore,dlistOK,InitialBuild,continue,move,same

n,Topltcm,rn,corr,reps,add,Old~otal : integer;
boolean;

procedure Fro~Core;

VaC p : link;
bc<]in

writeln(scratch,' Fromcorel);
re\'lrite (dict);
GotFromCore := true;
p := first;
>lhile p<>nil do

beg in
dictA := p".dline;
put (dict) ;
p := 1'" .next

end
cnd; (* of Fr0nCore*)

i:rocedure build(entry : iteI.~;n : integcr);
(* TO BUILD THL DIC1'IOIJARY *)

str : ste inS!;
ne>lCntry,OldCntry : dic;
l,lct,linc,i : illtcger:
si:tJ!1e,space ,Alrcac1yl!ao, tlore.Pound, Lastt:orc.;

begin
for line:=l to 3 do

begin
case line 0f

1: str :=
2: str :=

3: str,

boolean;

entry. authors;

entry. keyl;

entry.key2
cnd;
1 := 0;
let := 0;

if not ((str!l]='')anc](strl2J=''»
then

repeat (* not empty line *)

let := let+l;

Lastllord:= « (strlletJ
='

') and
(strllet+ll='

or (let=LineLn-l»;

llordFound := (str [let]
='

,') or Lastllorcl);
if not IlordFound

then
begin

1 := 1+1;

if (1=1) and (str[letl=' ') then

1 := 0

16

else
begin
if 1<21 then

!lewEntry. name I11 := str £letl

end
end

else
begin

for i:=l+l to 20 do
!lewEntry.namelil :=

,
';

(* fill up >lith spaces *)

if InitialBuild

then
begin (* first entry *)
RewEntry.numbersllJ := n;

for i:=2 to P.owLndo
!lewEntry.numbersliJ := 0;

!lewCntry.cont := false;
ne,"p) ;
p..dline := !lewEntry;
p" .next := nil;
first := p;

1 := 0;
InitialBuild .- false
end

else
begin
OldEn try := first".dline;
pt := first;

(* .,ovept past all words before the ne>lentry *)
while (pt".next<>nil) and

(IJe>lCntry.narue>=pt".next".dline.name) do
pt := (Jt".next;

OldCntry := pt".dline;

Game : = OldEntry. naf.1e=llc\llEntry. name;
space := OldCntry.numbersIRowLnJ=O;

Alreadynad := false;

if sal.lethen
begin

i : = P.o\-/Lni
>lhile OldCntry.numbersliJ

= 0 do

i := i-I;
if OldCntry.numbers[i] = n then

Alreadynad := true
cnd;

if not AlreadyHad then
begin (* if keyword has author name only
lone diclif (same and (not space»
then
begin

(* new entry already in dict but no space in the string *)
OldEntry.cont := true;

pt..dline := OldEntry
end;

if same and space

then
begin

(* new entry already in dict AIJD space in the number string *)

i := 0;
repeat

i : = i+l

until OldEntry.nurnbers[iJ=O;

OldEntry.numberslil := n;

pt..dline := OldEntry

end
else
begin

dictionary OR a repeat of an old >lord *)

KewEntry.numbersllJ := n;

!lewCntry.cont := false;

fpr i:=2 to P.owLn do
UewEntry.nurnbers[i] := 0;

ne," ne>lp);

ne\lp".cJline := l:e>lEntry;

if r:e>lEntry.narne<first" .dline.n<:>",e
then
begin (* ne\!head of the list *)

new~A.next := first;
first ne\>l[Ji

end

(* a new >lord for the

'»

enu
until Last\:orc]

c loGe
begin (* slot entry into list *)
ne>lp..next := pt..next;

pt".next := nel-lp
end

end
end; (* of Alreadynad *)

1 := 0
end

Applications



end
en,,; (* of build *)

procedure r.lcrge;
(* to merge dict in core uith existing dict on file *)

continue : boolean;
j,jj : integer;
New[;ntry : die;

begin
writeln(scratch,'
rewrite(TempDict) ;
reset (dict> ;

(* copy to scratch with additions *)
pt := first;
continue := (not eof(dict» and (pt".next<>nil);
while continue do

begin
if

var

l--ierge') ;

dict".name<pt".dline,name
then

begin
TempDict" := dict";
put (TempDict) ;
get(dict) ;
continue := not eof(dict)

end;
if dict".name>pt",dline.name

then
begin

TempDict" := pt".dline;
put (TempDict) ;
pt := pt" .next;
continue := pt<>nil

end;
if dict".name=pt".dline.name

then
begin

dictA.cont := true;
TempDictA := dictA;
put (TempDict) ;
get(dict) ;
continue := not eof(dict)

end
end;

'hile not eof (dict> do
begin

TempDict" := dict";
put (Ter,lpDict> ;
<jet (dict)

end;
while ptOnil do

begin
Te~pDict" := pt".dline;
put (Ter.lpDict) ;
pt .- pt".next

end;

rewrite(dict);
reset(TempDict) ;

(* copy back to dict and squeeze *)
while not eOf(TempDict) 00

begin
New[;ntry := TempDict";
if (NewEntry.numbers[RowLnJ>O) or (NewEntry.cont=false)

then
begin

dict" := NewEntry;
put (dict) ;
get(TempDict)

end
else

begin
get(TempDict);
if not eof(TempDict)

then
begin

for j:=2 to RowLn do
if NewEntry.numbers[jJ=O

then
begin

NewEntry.numbers[jJ := TempDict".numbers[lJ;
for jj:=l to RO\lLn-l do

TempDict".numbers[jjJ := TempDict".numbers[jj+lI
TempDict".numbers[RowLnJ := 0
end;

if TempDict".numbers[lJ=O
then

begin
r:ewEntry.cont := false;
get(TempDict);
dict" := tlewEntry;

Applications

put (dict)
end

else
begin

dict" := NewEntry;
put(dict)

er.d
end

end
end;

rewrite (TempDict)
end; (* of merge *)

Degin (* HJlIlJ PROGRJlH *)
reset(PendingTray) ;
reset(bank);
dlistOE := false;
rewrite(scratch) ;
writeln(scratch) ;
writeln(scratch,'No new additions.

,) ;

writeln(scratch) ;

GotFromCorc := false;
carr := 0;
reps : = 0;
add : = 0;
Topltem : = 0;

reset (dlist);
if dlist" = I-I then dlistOK := true;
if eof(PendingTray)

then
begin

if not dlistOK then
while not eof(bank) do

begin
Topltem := Topltem + 1;
get(bank)

end
end
else
begin

(* divide PendingTray into corrections and additions *)
rewr ite (cor rection) ;
rewrite(additions) ;
rewrite (dict) ;
rewrite(scratch) ;
dlistOE := false;
while not eof(PendingTray) do

if PendingTray".tag<UiTag
then

begin
write(correction,PendingTray") ;
corr := corr+l;
get(PendingTray)

end
else

begin
write(addition,pendingTray".entry) ;
add := add+l;
get(PendingTray)

end;
reset(correction);
\vriteln(scratch,'Corrections ',corr :5,' Additions' ,ildd:S);

while not eof(correctionJ do
begin

(* order correction into core in batches of 'stack' *)
uritcln(scratch,'To deal with corrections');
t,ark (no\,]) ;
n : = 1;
neu(e);
eA.TagEntry := correctionA;
eA.next := nil;
efirst := c;
get(co[rection);
while (noteof(correctionJ)and (n<stackJdo

begin
n := n+l;
ne\'1Cenc\'lp) ;
enewp".TagEntry := correction";
if correction".tag<efirst".TagEntry.tag

then
begin (* new head of list *J

encwpA.next := efirst;
cfirst cnc\'Tp

end
else

begin
(* move pointer ept to correct place, slot in new item *J

ept := efirst;

while (ept".next<>nil) and

(correction".tag>=ept",next".Tag[;ntry.tag)

17



(* replace with later
this way *)

do
ept := ept..next:

if correction..tag=ept..TagEntry.tag

then
cpt..TagEntry := correction.

correction, this is why ite~s are sorted in

else
begin
enewp..next := cpt.,next:

ept..next := enewp

end
end;

get (correction)

end: (* n=stBck or eof(correction) *)
writeCscratch,'Corrections processed in I>;
writeln(scratch, 'this batch ',n :5);

(* first batch of iteQs from 'correction'now in core and ordered *)

(* now reud bank to TernpDankmaking changesfrom core.
Iter.lsare labelled for later extraction by I.,akinsthe

date = !!onDatc.

Replacer.lent itCr.1S are passed to join additions. *)
write(scratch,'Copy bank to TempBank '):
rewrite(TempDank) ;
reset(bank) :
OldTotal := 0:
ept := efirst:
while not eof(bank) ~o

begin
Old~otal := Old~otal+l:

if (ept<>nil) and (ept..TagEntry.tag=OldTotal)
then (* \Iehave found one to correct *)

begin
if ept.,TagEntry,entry,date<>"OnDate
then (* ie. it is not empty *)
begin

(* Replacement item \lrittento addition file *)
write(addition,ept..TagEntry.entry) :
reps := reps+l

enG:
bank.,date := nonDate;
write(TempBank,bank.):
getCbank) :

(* flaking the date = "onDate "ill remove the ite", \lhen

the last batch of corrections are processed *)
ept := ept..next:

end
else

begin
write(TempBank,bank.):

get(bank)

end
end;

release(no,,):

writeln(scratch,' O.K.'):

(* read TempBank back to bank *)
write(scratch,'Copy TempBank to bank '):

rewrite(bank):
reset(TempBank):
while not eof(TempBank) do

if eof(correction) and (TempBank..date=!:onDate)
then

getCTempDank) (* rCDoves corrected items *)
else

begin
\lrite (bank ,TelopBank.) :

getCTeI.lpDank) :
end: (* of reading back to bank *)

\.;rltelnCscratch,I 0.1(.');

re\>l[ i te (TeT.1pBank)
enu; (* return for f.lare corrections *)

rcwritc(corrcction) ;
rCGct(addition);
\lhilenot eo[(ad0ition) do

begin
(* or~er ~dditionsaiphabcticililyinto core in batc11es of 'stack'

\:ritcln(ncratcll,'To~e~l witt!~dditions.');
if reps>O

then
writeln(scratch,'TheGcinclude ',rcpL :5,,

replaccI:\cnts.');
r.,~lrk (no\-/) ;

n := I:
new(e) ;
c.,TagEntry.entry
c ncxt := nil;
efirst := e;
get (addition) :

addition"';

18

while not eof(addition) and (n<stack) do
begin

n := n+l;
nel/(enewp):
ene"p".TagEntry.entry := addition.;
@ove := «enewp..TagEntry.entry.authors

> efirst. .TayEntry,entry,authors) or

«enewp..TagEntry.entry.authors

= efirst..TagEntry.entry.authors) and

(enewp..TagEntry.entry.date

> efirst..TagEntry.entry.date»):
if not t10ve

then (* new head of list *)
begin
enewp next := efirst;
efirst := enewp
end

else
begin

(* move pointer ept to correct place, slot in new item *)

ept := efirst:
while (ept..next<>nil) and

«addition..authors

> ept..next..TagEntry.entry,authors) OL
«addition.,authors

= ept..next..TagCntry.entry.authors) and
(addition"',.da te
> ept..next..TagEntry.entry.date») do

ept := cptA.next;
enewpA.next := cptA.next~
ept..next := ene"p
end;

get (addition)

end: (* n=stack or cof(addition) *)
~riteln(scratch,'Additions processed in this batch ',n :5);

(* now read bank to TempBank caking additions from core *)
write(scratch, 'Copy bank to TempBank '):
reset(bank) ;
rewrite (TcQpBank);
ept := efirst;
continue := (not cof(bank» and (ept<>nil):
while continue do
begin

if «bank.,authors < ept..TagEntry.entry.authr or
«bunk..authors = ept..TaSEntry.cntry.authc and
(bank..date < cpt..TagEntry.entry.date»)
then

begin
write(Te~pBank,bankA);
getCl.>ank) :
continue .- not eof(bank)
cnd

else
begin
write(TempDank,ept..TagEntry.cntry) :

cpt := eptA.ncxt~
continue := ept<>nil

end
end: (* of the merging of the core and the file *)

while not eof(bank) do
begin

"rite(TempBank,bank.) :
ge t (bank)

end;
while ept<>nil do

begin
write(Te@pBank,ept..TagEntry.entry) :

ept := ept..next

end;
LastOne := bank.:

(* assigned to give LastOne a starting value *1
writeln(scratch,' O.K.');

*)

(* nOw copy back to bank *)
write(scratch,'Copy TempBank to bank '):
reset(TempBank):
reIHite(bank) :
release (now) :

"hile not eof (TempBank) do
begin

saT.le:= «TempBank. .authors=LastOne.authors)
and (TempBank..titlel=LastOne,titlel)
and (TempBank..title2=LastOne,title"
and (TempBank..date=LastOne.date»:

if not same
then
"rite(bank,TempBank.): (* rejects duplicates *)

LastOne := TempBank.:

get<TempBank)

end;

Applications



writeln(scratch,' O.K.');
rewrite (TempBank)

end; (* return for Gore additions *)
end; (* of dependence on PendingTray *)

then
FromCore

else
merge;

release(here);
mark(here);
InitialBuild := true;

rn := 0
end

(* TO BUILD TilE DIC'l'IO!1l.RY *)
reset(bank);

reset «::ict);
re\/rite(addition) ;
rewrite(PendingTr~y);

if eof (diet)
then

uegin

n := 0;

InitialBuild := true;
r:::= 0;

.,ark(here) ;

writeln(scratch,'To build dictionary');
while not eof(bank) do

begin
II := 0+1;
r:\ := r.l+l;

build(bank" ,n);
get (bank);
if m=heap

then
begin

if not GotFromCore

if not GotFromCore
then

FrornCore
else

merge;
release (here);

end;
if n > 0 then TopIteu := n;
if not dlistOK then
uegin

rewr i te (dlist) ;

writeln(dlist,'- ',TopIteu : 5);
writeln(dlist) ;
write(dlitlt,'lJIC'l'IOIIARYmust be compiled by running ');
writeln(dlitlt,'the HhRD COPY option of "bibout' '.');
writeln(dlist);

en<.i
en,.. (* of pro<]ramDibupdate.p *)

Applications 19



~ y~ (J'~ y~ (J'~ y~ (J'~ y~ (J'~ y~ (J'~ y~ g

Pascal Standards: Progress Report
By Jim Miner

1982-06-10

ISO Standard

The technical work on the ISO standard is com-
plete. The final six-month vote on the first Draft Inter-
national Standard (DIS 7185) closes later this year; we
expect the standard to be approved. DIS 7185 is iden-
tical to the new British Standard approved by the Brit-
ish Standards Institution (BSI) on 1981-09-15, together
with a French translation produced by AFNOR and
French Pascalers. The English version should be avail-
able from your national standards organization (e.g.,
AFNOR, ANSI, BSI, DIN), although when I called
ANSI in June 1982 they had not yet received it from
BSI. In any case, the document "BS 6192: 1982"
(price: £ 18) can be ordered from British Standards In-
stitution, 2 Part Street, London W1A 2BS, United
Kingdom (Telephone 01-629-9000; Telex 266933). Or,
you can wait for the next edition of A Practical Intro-
duction to Pascal by Ian Wilson and Tony Addyman.
Tony tells me that it is due out later this year and that
it will include the BSI standard in a second section. The
French standard, "NFZ 65.300" (price unknown), can
be ordered from Association Francaise de N ormalisa-
tion, Tour Europe, Cedex 7, 92080 Paris La Defense,
France.

U.S. Standards

The public comment period on the draft proposed
American National Standard (dpANS) is over, and
X3J9 is preparing its responses to comments received.
As expected, X3J9 refuses to include conformant array
parameters in the first ANSI standard. Except for this,
the draft appears to be very similar in content to the
ISO draft.

The IEEE, on 1981-09-17, adopted an early version
of the ANSI draft. This has several technical deficien-

cies and differences from the ANSI and ISO/BSI doc-
uments, and therefore will almost certainly change.

Validation Suite

Several persons have submitted comments on the
new Validation Suite (version 3.0) to Arthur Sale and
Brian Wichmann. A few errors in the Suite were un-
covered, and Brian has issued the "Status Report"
printed below. Also included are some useful (unpub-
lished) appendices to the BSI standard that Brian sent
along.

Future Standards

With the current round of standards achieving ap-
proval, several committees are deciding what exten-
sions to include in subsequent standards. Both the
French and the U.S. committees are quite interested in
pursuing extensions. The (ISO) Working Group 4 at-
tempted at its meeting in October 1981 to define pro-
cedures for international coordination, but no agree-
ment has been reached. This is unfortunate because
lack of coordination, but no agreement has been
reached. This is unfortunate because lack of coordi-
nation now may mean that international standardiza-
tion of extensions will be based more on political than
technical considerations. This reminds me of Niklaus
Wirth's characterization of formal standardization as
"time-consuming and politics-infested."

I hope to print in future issues of Pascal News
some of the extensions being considered by the U.S.
committee (JPC). And I hope that members of other
national bodies will do the same. Perhaps in this way
you, the users of Pascal, will have a real chance to try
out and comment on these proposals before they appear
in a standard.

Status Report on Version 3.0 of the
Pascal Test Suite

By B.A. Wichmann
82-4-1

The test suite was issued on the 8th January 1982.
As a result, a large number of comments have been re-
ceived. We hope to issue a new version in about four
months: Arthur Sale is handling the additions while I
am amending the existing tests.

Report on 3.0

At NPL, we keep a record of all agreed comments.
Each one is classified (somewhat arbitrarily) as a Bug,

20

Defect, Typo or Remark. The current count is 25 bugs
(20 of which are of a less serious nature), 27 defects, 20
typos and 10 remarks. Please write in with your com-
ments since it is an invaluable aid in improving the
suite.

Rather than give a detailed report on each test for
which improvements will be made, the list for which
test output should be ignored is: 6.4.3.3-5, 6.5.1-1,
6.6.6.1-1,6.6.6.5-1,6.9.3.5.1-1 and (for safety) all of

Pascal Standards



Page no. Test no. line no. error
92 6.1.8-3 11 "A" missing in

"DEVIATES"
290 6. 1 .9-6 19 t;; should be commercial

at sign
297 6.7.2.3-4 "A" missing in

"IMPLEMENTATION"
299 6.8.2.3-2 5-16 lines missing,

see below for text
Index section 6.8.3.10 is misplaced.

section 6.6.3.7. Most of the other reports reflect inac-
curacies in the comment describing the test or the pos-
sibility of one error masking another. Currently, com-
plete testing is awkward due to the absence of compilers
which adhere completely to the Standard.

Listing Errors

The listing sent to WG4 members and those that
obtain the suite from NPL should note the following
errors:

The missing text on

5 {V3.0: New test.
6
7
8
9
10
11
12
13
14
15
16

Page 299:
}

program t6p8p2p3d2(output);
var

string: packed array[1..3] of char;

i : integer;
function sideeffect(c : char) : integer;

begin
string[i] := c;
i:=i+1;
sideeffect := i

end;

The new version

The major changes will be as follows:
a) removal of bugs/defects/typos;

b) use of local files rather than program parame-
ters in 54 tests;

c) seven programs changed to remove the use of
type real (which is unnecessary);

d) complete rewrite of the conformant array tests
(which were to an earlier version of the standard);

e) alteration of initial comments to permit their use
in a package for automatic production of a test report;

f) the inclusion of "pretests" for each error han-
dling test to guard against the failure of an error han-
dling test for the wrong reason;

g) additional tests where these are necessary, es-
pecially non-text file handling.

The Standard

This was published by BSI in February. It can be
obtained from national standards bodies, and BSI can
quote special rates for orders in quantity.

Two Appendices

Enclosed is a copy of two appendices which can
usefully be added to the Standard. Also enclosed is a

Pascal Standards

list of section numbers from which each error listed in
Appendix D originates.

Index to errors listed in Appendix D

Error number 1 - Section 6.5.3.2
Error number 2 - Section 6.5.3.3
Error number 3 - Section 6.5.4
Error number 4 - Section 6.5.4
Error number 5 - Section 6.5.4
Error number 6 - Section 6.5.5
Error number 7 - Section 6.6.3.2
Error number .8 - Section 6.6.3.2
Error number 9 - Section 6.6.5.2
Error number 10 - Section 6.6.5.2
Error number 11 - Section 6.6.5.2
Error number 12 - Section 6.6.5.2
Error number 13 - Section 6.6.5.2
Error number 14 - Section 6.6.5.2
Error number 15 - Section 6.6.5.2
Error number 16 - Section 6.6.5.2
Error number 17 - Section 6.6.5.2
Error number 18 - Section 6.6.5.2
Error number 19 - Section 6.6.5.3
Error number 20 - Section 6.6.5.3
Error number 21 - Section 6.6.5.3
Error number 22 - Section 6.6.5.3
Error number 23 - Section 6.6.5.3
Error number 24 - Section 6.6.5.3
Error number 25 - Section 6.6.5.3
Error number 26 - Section 6.6.5.4
Error number 27 - Section 6.6.5.4
Error number 28 - Section 6.6.5.4
Error number 29 - Section 6.6.5.4
Error number 30 - Section 6.6.5.4
Error number 31 - Section 6.6.5.4
Error number 32 - Section 6.6.6.2
Error number 33 - Section 6.6.6.2
Error number 34 - Section 6.6.6.2
Error number 35 - Section 6.6.6.3
Error number 36 - Section 6.6.6.3
Error number 37 - Section 6.6.6.4
Error number 38 - Section 6.6.6.4
Error number 39 - Section 6.6.6.4
Error number 40 - Section 6.6.6.5
Error number 41 - Section 6.6.6.5
Error number 42 - Section 6.6.6.5
Error number 43 - Section 6.7.1
Error number 44 - Section 6.7.2.2
Error number 45 - Section 6.7.2.2
Error number 46 - Section 6.7.2.2
Error number 47 - Section 6.7.2.2
Error number 48 - Section 6.7.3
Error number 49 - Section 6.4.6
Error number 50 - Section 6.4.6
Error number 51 - Section 6.8.3.5
Error number 52 - Section 6.8.3.9
Error number 53 - Section 6.8.3.9
Error number 54 - Section 6.9.1
Error number 55 - Section 6.9.1
Error number 56 - Section 6.9.1
Error number 57 - Section 6.9.1
Error number 58 - Section 6.9.3.1
Error number 59 - Section 6.6.3.8

21

--



Appendix E to BS 6192

The BSI/ISO standard for Pascal includes an ap-
pendix D listing all the errors mentioned in the main
document. This is very convenient for our work on
compiler validation since a complying processor is re-
quired to state what action is taken for each of these
errors. Therefore, we are producing a similar appendix
for the implementation-defined features of Pascal. Ap-
pendix D does not indicate the section in the main text
for each error listed. This is indicated in this appendix
by means of section numbers in comment brackets.

Implementation-Defined

E.O A complying processor is required to provide a
definition of all the implementation-defined features of
the language. To facilitate the production of this defi-
nition, all the implementation-defined aspects in clause
6 are described again in this appendix {5.1 (d)}

E.1 The value of each char-type corresponding to each
allowed string-character. {6.1. 7}

E.2 The subset of the real numbers denoted as speci-
fied by signed-real. {6.4.2.2 (b)}

E.3 The values of char-type. {6.4.2.2 (d)}

E.4 The ordinal numbers of each value of char-type.
{6.4.2.2 (d)}

E.5 The point at which the file operations rewrite, put,
reset and get are performed. {6.6.5.2}

E.6 The value ofmaxint. {6.7.2.2}

E.7 The accuracy ofthe approximation ofthe real op-
erations and functions to the mathematical result.
{6.7.2.2}

E.8 The default value of TotalWidth for integer type.
{6.9.3.1}

E.9 The default value of TotalWidth for real-type.
{6.9.3.1}

E.10 The default value of TotalWidth for Boolean-
type. {6.9.3.1}

E.11 The value of ExpDigits. {6.9.3.4.1}

E.12 The value of the exponent character ('e' or 'E').
{6.9.3.4.1}

E.13 The case of each character of 'True' and 'False'
for output. {6.9.3.5}

22

E.14 The effect of the procedure page. {6.9.5}

E.15 The binding of a file-type program parameter.
{6.10}

Appendix F to BS 6192

The BSI/ISO standard for Pascal includes an ap-
pendix D listing all the erros mentioned in the main doc-
ument. This is very convenient for our work on com-
piler validation since a complying processor is required
to state what action is taken for each of these errors.
Therefore, we are producing a similar appendix for the
implementation-dependent features of Pascal. Appen-
dix D does not indicate the section in the main text for
each error listed. This is indicated in this appendix by
means of section numbers in comment brackets.

Implementation-Dependent

F.O A complying processor is required to provide doc-
umentation concerning the implementation-dependent
features of the language. To facilitate the production of
such documentation, all the implementation-dependent
aspects specified in clause 6 are described again in this
appendix. {5.1 (i and f)}

F.1 The order of evaluation of the index-expressions
of an indexed variable. {6.5.3.2}

F.2 The order of evaluation of expressions of a mem-
ber-designator. {6. 7 .1}

F.3 The order of evaluation of the member-designators
of a set constructor. {6.7.1}

P.4 The order of evaluation of the operands of a dyadic
operator. {6.7.2.1}

F.5 The order of evaluation, accessing and binding of
the actual parameters of a function-designator. {6. 7. 3}

F.6 The order of accessing the variable and evaluating
the expression of an assignment statement. {6.8.2.2}

F.7 The order of evaluation, accessing and binding of
the actual-parameters of a procedure-statement.
{6.8.2.3}

F.8 The effect of inspecting a textfile to which the page
procedure was applied during generation. {6.9.5}

F.9 The binding of the variables denoted by the pro-
gram parameters to entities external to the program.
{ 6.10}

Pascal Standards



DISTRIBUTION OF THE EDISON SYSTEM

The Edison system is a portable software system
that supports the development of programs written in
the programming language Edison - a Pascal-like lan-
guage that supports program modularity and concur-
rent execution on micoprocessors.

The Edison system includes an operating system,
an Edison compiler, a screen editor, a text formatter,
a print program, and a PDP 11 assembler written in the
Edison language.

These programs can all be edited and recompiled
on a PDP 11/23 microcomputer with 28 K words of
memory, a VT 100 terminal, and a dual drive for 8-inch
floppy disks.

The Edison compiler generates portable code which
is interpreted by an assembly language kernel of 1800
words. The software can be moved to other 16-bit mi-
crocomputers with similar peripherals by rewriting the
kernel.

The software is simple enough to be studied in de-
tail at all levels of programming. It is described in a
book entitled "Programming a Personal Computer"
which includes the Edison language report and the pro-
gram text of the kernel, the operating system, and the
compiler.

For more information on the availability of the
Edison system and the book, please write to:

Per Brinch Hansen
University of Southern California

Computer Science Department
University Park

Los Angeles, Calif. 90007

PASCAL CHOSEN AS SIL

The Languages group has completed its study and
has recommended PASCAL as the Cray Research Sys-
tems Implementation Language (SIL). The SIL will be
used to code the new Cray FORTRAN compiler and
will likely be used for other Cray software products.
The study investigated a number of languages, includ-
ing PASCAL, C, FORTRAN (both CFT and CIVIC),
and some other user-developed languages.

The first part of the study, completed in August,
was a paper stating general requirements and assessing
the suitability of the candidate languages. The choices
were narrowed to two - PASCAL and C. FORTRAN
did not have features considered necessary for systems
programming. The other user-developed languages
would encounter programmer resistance and raised
maintenance concerns.

The second part of the study, recently completed,
compared C and PASCAL. Code was written in both
and compiled with existing compilers. PASCAL was
chosen over C for three main reasons:

. Code generation: Existing and planned PAS-
CAL compilers were designed for the CRAY-l; C was
not. Major changes would be required to improve the
C code generator to an acceptable level.

. Availability: PASCAL is available now on the
AMDAHL and the CRA Y-1 and a preliminary version

Announcements

of the University of Manchester compiler should be
ready by the middle of 1982. C is running at Bell Labs,
but licensing and cost have not been worked out.

. Language Proliferation: Most sites use (or would
use) PASCAL; C does not have this demand. There is
considerable field resistance to forcing sites to bring up
another language processor merely to assemble the
system.

If you have questions or are interested in copies of
the SIL reports, please call Field Liaison/Support.

PASCAL: A PROBLEM SOLVING APPROACH

The computer language PASCAL was invented in
1971 by Niklaus Wirth to teach programming as a sys-
tematic discipline. Although not quite as widespread as
the BASIC language, PASCAL has been adapted for
use on most computers. PASCAL is easy to learn and
use to detect common programming mistakes.

The new version of PASCAL, UCSD PASCAL@,
has been developed for the Apple, TRS-80, LSI-ll, and
other microcomputers. Its power and ease of use have
made it one of the most popular languages among the
computer cognoscenti. Now this important computer
language is available to all programmers in a new book
by Elliot B. Koffman, PASCAL: A PROBLEM SOLV-
ING APPROACH (Addison-Wesley; $14.95 trade pa-
perback). Unlike most computer programming books,
which simply teach the programming syntax, PASCAL:
A PROBLEM SOLVING APPROACH emphasizes the
structured, step-by-step design of computer programs.
Both beginning programmers and those experienced in
other languages such as BASIC will learn good pro-
gramming techniques, good problem solving skills, the
principles of "GOTO-free" or structured program-
ming, and UCSD PASCAL.

An extensive market research survey conducted
by Addison-Wesley has shown that UCSD PASCAL is
quickly becoming one of the most popular microcom-
puter languages. With this book any programmer can
learn to make full use of this powerful language. Some
important features of PASCAL: A PROBELM SOLV-
ING APPROACH by Elliot B. Koffman include:

. Appeals to both beginning and experienced
programmers

. Stresses business oriented programs

. Complete coverage of all features of standard
and UCSD PASCAL, including arrays, strings,
sets, sequential and random access files

. Program style displays discuss important issues
of programming style .

. Display boxes summarize the syntactic form of
each new language feature introduced. Self-check exercises with selected answers in-
tegrated with the text

. Chapter summaries and discussions of common
programming errors. Additional programming problems at the end of
each chapter

. Appendices include: the differences between
standard and UCSD PASCAL, special identi-
fiers and operators of PASCAL, using UCSD
PASCAL, snytax diagrams of PASCAL
statements

23



ABOUT THE AUTOR

Elliot B. Koffman is a Professor of Computer and
Information Sciences at Temple University, Philadel-
phia. Dr. Koffman has organized and taught numerous
seminars on computer language education across the
nation. Dr. Koffman received his Bachelor's and Mas-
ter's degrees from the Massachusetts Institute of Tech-
nology and earned his Ph.D. from Case Institute of
Technology in 1967.

With Dr. Frank L. Friedman, Associate Professor
of Computer and Information Sciences at Temple Uni-
versity, Dr. Koffman has co-authored three other com-
puter language books: PROBLEM SOLVING AND
STRUCTURED PROGRAMMING IN FORTRAN
(Addision-Wesley, 1979), PROBLEM SOLVING AND
STRUCTURED PROGRAMMING IN BASIC (Addi-
son-Wesley, 1979), and PROBLEM SOLVING AND
STRUCTURED PROGRAMMING IN PASCAL (Ad-
dison-Wesley, 1980). These three titles have sold over
300,000 copies combined.

MODULA - 2

Modula-2 (M2) (like Pascal and MODULA) was
developed at the ETH-Zurich under direction of Nik-
laus Wirth (Institut fur Informatik).

1980: Fieldtest of M2
1981: Release ofM2
1981: Production use of M2

M2 is a general purpose (system) programming language.
. Structured, modular, portable, readable, efficient,
machine independent, flexible language.

FEATURES:

Modern syntax,
Module-structure,
Separate compilation,
Full type checking at compiling time,
Automatic version control and compatibility check,
Recursion,
Signed and unsigned integers,
Dynamic arrays (strings),
Procedures as variables or types,
Real-time (interrupts, DMA, processes, priorities, sig-

nals . . .)
Type transfer functions,
CPU and device register access,
Direct operating system calls,
Optimized machine code generation,
Multiprogramming: low-level facilities for specification

of quasi-concurrent processes,
Dynamic creation of processes,
Fast interprocess communication and control with or

without scheduler interactions,
Overlays,
Interactive linker,
Stand-alone programs,
Cross-reference generator,
Run time tests: array index bound, case index test,

stack, heap,
Source code level debugger (procedure trace, process

window, data window, source text window, core

24

window),
all features of Pascal (block structure, type concept),

except those that can be expressed in M2 itself,
and more.

Unsupported Features:
Gotos/labels,
Device or file input/output,
(Input/output) data conversion,
Heap (storage) - management,
Any process scheduling concept,
Mathematical/trisonometric functions,
Sets greater than the specific wordsize.

Currently supported (micro)processors:
. All PDP-l1/LSI-ll with or without EIS/FIS/FPUI
MMU options. M 68000
. M 6809
. Lilith
. All other processors with advanced architecture via
the portable M-Code compiler
Currently supported operating systems:
. RTlISJ, RTlIFB (V4.0, V3B)
. Unix

Release of Modula-2 compilers

The design of the programming language Modula-
2, started in 1977, was followed by implementation ef-
forts of various compilers. A version designed for PDP-
11 computer and its RTll operating system was re-
leased in summer 1980. The following compilers were
released on April 1, 1981. They will be distributed under
licensing agreement with the purpose of protecting the
language from arbitrary changes and extensions.

Operating Compiler
Computer System Code source

PDP(LSI)-11 RT-ll PDP-ll Modula-2
PDP(LSI)-ll UNIX PDP-ll Modula-2
CDC-Cyber PDP-ll Pascal6000
CDC-Cyber M6809 Pascal6000
CDC-Cyber M68000 Pascal6000
- Any - - Any - M-Code Modula-2

The compilers were designed at the Institut fur In-
formatik of ETH, the Computation Center of ETH and
the Australian Atomic Energy Commission. The com-
pilers are distributed on Mag-Tape only.

The fee for each compiler is Sfr. 350 (A$ 150 for
M2UNIX). The intention in distributing compilers for
Modula-2 is to provide a modern tool for programming
and thereby to advance the state of software engineer-
ing. The above fee must not be regarded as a price for
the compiler, but rather as a handling charge and cov-
erage of documentation, tape, package and postage.

If you wish to receive a compiler, request a license
agreement:
Institut fur Informatik
ETH-Zentrum
CH-8092 Zurick
or for the UNIX implementation:
Departement of Computer Science attn. Dr. J. Tobias
University of New South Wales P. O. Box 1
Kensington, N.S.W. 2033 Australia

Announcements



WRITENUM - A routine to output real numbers
By Doug Grover & Ned Freed

Harvey Mudd College
Claremont, Calif. 91711

Comments: Enclosed please find two articles for
publication in P.N. The first, WRITENUM, is a new
article. The second, TREEPRINT, is a re-draft of an
article submitted last year. One change and one bug
fix have been made.

A common problem encountered when writing
utilities in standard Pascal is output of real numbers.
Frequently it is desireable to output reals to a string and
not to a file. Some Pascal implementations allow I/O to
strings but this is a nonstandard feature. In addition,
the standard output produced by WRITE and WRITE-
LN is not flexible enough for many user applications.

For good readability, it is not enough to simply
print out a number in scientific notation. First of all, it
should be possible to constrain the modulus of the ex-
ponent to multiples of an integer. For example, the
many calculators implement a mode called "engineer-
ing" notation where all exponents must be multiples of
three. This is handy when converting output to SI units.
For additional flexibility, we require that any multiple
may be selected. An additional feature of modulus ex-
ponents is that for a given modulus N, up to N digits
will appear in front of the decimal point. This makes
values very readable when they appear in tabular form
(more so than when they just appear in the correct
columns).

Second, certain numbers should be handled in a
special fashion. Numbers in the range [0.1, 1.0) should
appear in the form O.xxxxxx, instead of obeying the
rules for modular exponents. This increases readability
greatly. Numbers with more zeros after the decimal
point should be converted to exponential form - it be-
comes difficult for the reader to keep track of where the
point is.

Third, if a real can be printed as an integer, expo-
nential format should be avoided. The point where in-
teger format stops and exponential format takes over
should be an adjustable parameter, as it may differ from
application to application.

Finally, a facility for rounding numbers to a re-
quired number of digits should be provided. This facil-
ity should even extend to 0 digit accuracy, where only
the magnitude is printed. The determination of whether
a number is an integer should be based on the rounded
result.

It is our beliefthat the usual concerns of columnar
output are secondary to these considerations. If exact
columns are necessary, they can be added as an after-
thought. Left and right justification are trivial once the
number is converted to a string of characters.

It is difficult to write a routine to satisfy these cri-
teria in standard Pascal. A standard method of initially
shifting and rounding the number to the desired accu-
racy fails because the Pascal ROUND function returns
an integer which can cause machine overflow. While

Articles

this can be overcome by initially truncating leading dig-
its, the entire process of rounding introduces errors in
the least significant bits of the mantissa. It is necessary
to first convert the number into a string of digits, and
then round the string. The string is then further manip-
ulated to remove leading and trailing zeroes and place
the decimal point in the proper position.

Another problem occurs with the initial determi-
nation of the exponent. Using the integer part of the
common logarithm can fail since most machine imple-
mentations of LN are not accurate enough. The prob-
lem occurs when a number, neglecting its exponent, is
close to 10 (e.g. 9999999.0). This can cause the number
to be normalized to the wrong range.

We present a routine, WRITENUM, which we be-
lieve solves all these problems. It is vaguely based on
a similar routine presented in Jensen and Wirth. It is
entirely written in standard Pascal, with only two im-
plementation dependent constants, the maximum num-
ber of digits allowed in a real and the natural log of 10.
The log can be coded as an operation and the maximum
number of digits can be set to 100 or so if portability is
a problem.

WRITENUM uses an external function (STRING-
ADD) to perform its output. This method can be changed
to straightforward string operations or even direct out-
put statements via WRITE. In the listing, WRITENUM
is imbedded in a small test program designed to dem-
onstrate its features.
program test (input,output);

( .
A driver and test routine for the WRITENUM real number output routine
.J

type
real type : real;

var
a : realtype; (I sample number ')
b : integer; (I desired digits of accuracy')
c : integer; (' desired exponent modulus ')
d : integer; (I desired digits in integers ')

procedure strlngadd (I sample routine to handle output of WRITENUM ')
(x : char);

begin write (x); end;

(*
WRITENUM - a routine to output real numbers in
exponential format.

Written by Doug Grover and Ned Freed, I-Feb-82

This routine takes a real number and outputs it in ex-
ponential format as a stream of ASCII characters. The
number of significant digits may be set as desired and
WRITENUM will round the output to that degree of
accuracy. In addition, the modulus of the exponent may
be set. This means that the exponent field may be con-
strained to be an integer multiple of any number. So-
called "engineering" format (modulus 3) and "scien-

25



tific" format (modulus 1) may both be generated. The
exponent field is output only for non-zero exponents.
Determination if a number will fit into a integer field
occurs after the number is rounded. For the special case
of a number in the range [0.1, 1.0), the numbers are
output in the more natural O.XXXXXXformat. For the
special case of an integer mantissa and a non-zero ex-
ponent, the numbers are output in the more natural
xxxxxx.OExxx format.

Note: 1) The value for the modulus can force up to that
value of digits in front of the decimal point.

2) The precision of the output has a upper limit
on the number of digits that can be output.
This limit is selectable as a constant in the
procedure.

*)

procedure writenum
(x resltype;
n integer;
r integer;
i integer);

CI outputs a number ')
(I the number to process for output ')
(I the number of digits of accuracy')
(I the modulus of the exponent ')
(I the number of digits for integer output ')

eonst
digitmex
zero
one

ten
Inoften

20; (0

0.0; (0

1. 0; (0

10.0; (0

2.30258209299-0_6; (0

, of allowed digits 0)maxImum
zero ')
one ')
ten 0)
natural log of ten 0)

var
p integer; (0 decimal point position 0)
e integer; (I exponent ')
x1 integer; CI counting veriable ')

digit: array [0. .digitmex] of integer; (0 digits in number 0)

function tenor (I compute 10 r81sed to 8 power ')
(e : integer) realtype;

var
1 integer; (' bit counter ')
t realtype; (I result ')

begin (0 tenof 0)

i : = 0;
t : = 1;
while e > 63 do begin

t : = t 0 1. OE32;
e::e-32;
end;

repeat
if odd(e) then

o t._ t 0

1 t.
_

t 0
2 t._ t 0

3 t._ t 0
_ t._ t 0

5 t._ t 0
end:

e:=ediv2;
i := succ (1);

until e =
0;

tenor := t;
end; (I tenor ')

case i of
1. OE 1;
1. OE2;
1. OE_;

1. OE8;
1.0E16;
1. OE32;

begin
(0 fix
if n >
if r >
if i >

(. writenum .)

n, r, and i to be in range .)
digitmax then n ._ digitmax
digitmax then r := digitmax
digitmax then i := digitmax

(. special case x
= 0 .)

if x = zero then stringadd ('0')
else begin

if x < zero then begin
stringadd ('-');
x : = -x;
end;

(. determine exponent and adjust number .)
e := trunc On (x) I lnoft.n);
if e > 0 then x := x I tenof (e)
else := x · tenof (-e);
If x one then begin

e :- pred (e);
x : = x *

ten;
end;

(* put digits In array *)
dlgitre] e;
xl : = J;

26

while xJ < n do hegln
diqitrxJ] := trunc (x);
x := Cx- dlgitrxJ])

*
ten;

xl:= succ (xl);
end;

(* round the array representation of number *)
digit In] := round Ix);
while (n >

P) and (dlgltfn)
= JP) do begin

n := pred (n);
dlglt[n] := succ (dlgitrnl);
end;

(* eliminate trailing zeroes *)
while (n > P) and (dlglt[n) = e) do n := rred (n);

C* handle rounding of all digits (all 9's) *)
If n = A then hegln

n :- I;
dlglt[n] := 1;
e := succ (EI');
eond;

C* determine If Integer output
If In <= succ (e» and (e < 1)

p
:= succ Ceo);

e := A;
enn

Is possible *)
then begin

else begin

C* allow ~.x form~t - a special case *)
If e = -J then bealn

e := P;
p := P;
strlngadd ('P');
strlngadd ('.');
end

(* fix decimal point for modulus exponent *)
else bE"oin

p : = e mod r;
If (e < A) and (p

<> P) then p
:= r +

p;

e :- e - p;
p := succ

(p);
end;

end;

(* output digits from array *)
xJ : = J;

while n <
p do begin

n := succ (n):
digit[n] :. 0;
end:

repeat
stringadd ( chr (digit[x1] + ord('O'»);
x1 := succ (x1);

until x1 > p;

if P < n then begin
stringadd ('.');
repeat
stringadd( chr (digit[x1] + ord('O'»);
x1 := succ (x1):
until x1 > n:

end;

(. output exponent .)

if e <} 0 then begin(. output optional '.0' for integer mantissa .)

if P >= n then begin
stringadd ('.');
stringadd ('0');
end;(. output exponent flag and sign .)

stringadd (IE'):
if e < 0 then begin

stringadd( '-');
e .- -e;end;

(. put exponent into array.)

x1 := 0:
repe'st
x1 := succ (x1);
digit[x1] := e mod 10;
e:=ediv10;

until e ;: 0;

(. output exponent magnitude from array.)

repeat
string8dd (

chr (digit[x1] + ord ('0'»);
x1 := pred (x1);

until x1 =
0;

end;
end;

end; (. writenum .)

begin (0 test 0)

repeat
writeln

('Input I, accurate digits, exponent modulus, integer digl~s
readln (a,b,c,d);
write ('Number is - [I):

writenum (a,b,c,d);
writeln (']');

until fllse;
end. (0 test 0)

Articles



TREEPRINT - A Package to Print Trees
on any Character Printer

By Ned Freed & Kevin Carosso
Mathematics Department

Harvey Mudd College
Claremont, Calif. 91711

One of the problems facing a programmer who
deals with complex linked data structures in Pascal is
the inability to display such a structure in a graphical
form. Usually it is too much to ask a system debugging
tool to even understand records and pointers, let alone
display a structure using them in the way it would ap-
pear in a good textbook. Likewise very few operating
systems have a package of routines to display struc-
tures automatically. Pascal has a tremendous advantage
over many languages in its ability to support definable
types and structures. If the environment is incapable
of dealing with these features, they become far less
useful.

This lack became apparent to us in the process of
writing an algebraic expression parser which produced
internal N-ary trees. There was no way at the time un-
der our operating system debugger (VAX/VMS) to get
at the data structure we were generating. When the rou-
tines produced an incorrect tree we had no way of find-
ing the specific error.

Our frustration led to the development of TREE-
PRINT. Starting with the algorithm of Jean Vaucher
[1], we designed a general-purpose tool capable of dis-
playing any N-ary tree on any character output device.
The trees are displayed in a pleasant visual form and in
the manner in which they would appear if drawn by
hand. We feel that TREEPRINT is of general use -
hence its presentation here.

The structure of TREEPRINT is that of an inde-
pendent collection of subroutines that any program can
call. Unfortunately standard Pascal does not support
this form, while our Pascal environment does. How-
ever, building TREEPRINT directly into a program
should present no difficulty.

TREEPRINT requires no knowledge of the format
ofthe data structure it is printing. It has even been used
to print a tabular linked structure within a FORTRAN
program! In order to allow this, two procedures are
passed in the call to TREEPRINT. One is used to
"walk" the tree, the other to print identifying labels for
a given node. Other parameters are values such as the
size of the nodes, the width of the page, etc. One ofthe
advantages of this calling mechanism is that a single
version of TREEPRINT can be used to display wildly
different structures, even when they are within the
same program.

One of the major features of TREEPRINT is its
ability to span pages. A tree that is too wide to fit on
one page is printed out in "stripes" which are taped
together edge-to-edge after printing. In addition trees
may optionally be printed either upside-down or re-
versed from left-to-right.

Articles

The method used by TREEPRINT is detailed in
Vaucher's work [1]. In its current implementation ad-
ditional support for N-ary structures has been added,
as well as full connecting-arc printing and the reversal
features. Basically, TREEPRINT walks the input tree
and constructs an analogous structure of its own which
indicates the positions of every node. The new struc-
ture is linked along the left edge and across the page
from left-to-right. Once this structure is completed,
TREEPRINT walks the new structures and prints it out
in order. Once printout is finished, the generated struc-
ture is DISPOSE'd of.

Recursive structure are handled in TREEPRINT
by checking each node with its ancestors. If it appears
somewhere else in the diagram, no lower nodes are
printed. This prevents fatal infinite loops that might
otherwise occur.

The only problem in TREE PRINT at present is a
feature ofthe POSITION routine which centers a node
above its sons. This tends to make the trees generated
wider than necessary. This is largely a matter of taste
- some minor changes would remove this.

The listing of TREEPRINT which follows should
serve to document the method of calling the routine.
The functions of the user-supplied procedures are also
detailed.

References
[1] Vaucher, Jean, "Pretty-Printing of Trees." Soft-

ware-Practice and Experience, Vol. 10, pp. 553-561
(1980).

[2] Myers, Brad, Displaying Data Structures for In-
teractive Debugging, Palo Alto: Xerox PARC CSL-
80-7 (1980).

[3] Sweet, Richard, Empirical Estimates of Program
Entropy, Appendix B - "Implementation descrip-
tion", Palo Alto: Xerox PARC CSL-78-3 (1978).

module TREEPRINT (input,output);

(*
TREEPRINT - A routine to print N-ary trees on

any character printer. This routine takes as input
an arbitrary N-ary tree, some interface routines,
and assorted printer parameters and writes a pic-
torial representation of that tree to a file. The tree
is nicely formatted and is divided into vertical
stripes that can be taped together after printing.
Options exist to print the tree backwards or upside
down if desired.

The algorithm for TREEPRINT originally ap-
peared in "Pretty-Printing of Trees", by Jean G.

27



Vaucher, Software-Practice and Experience, Vol.
10, 553-561 (1980). The algorithm used here has
been modified to support N -ary tree structures and
to have more sophisticated printer format control.
Aside from a common method of constructing an
ancillary data structure and some variable names,
they are now very dissimiliar.

TREEPRINT was written by Ned Freed and Kevin
Carosso, 5-Feb-81. It may be freely distributed,
copied and modified provided that this note and the
above reference are included. TREE PRINT may
not be distributed for any fee other than cost of
duplication.

Revision history:

I-Sep-81 Fixed a problem in the output step
that caused simple structures
printed upside down to lose some
connections./nf

Added code to check for recursive
references and stop Position so
that Treeprint does not hang in an
infinite loop. Inf

I-Dec-81

INPUT - The call to TREEPRINT is:
TREEPRINT (TREE,TREEFILE,PAGESIZE,

VERTKEYLENGTH,
HORIKEYLENGTH,
PRINTKEY,
LOWERNODE)

where the parameters are:

TREE - The root of the tree to be printed. The
nodes of the tree are of arbitrary type, as
TREEPRINT does not read them itself but
calls procedure LOWERNODE to do so.
In a modular environment this should pres-
ent no problems. If TREEPRINT is to be
installed directly in a program TREE will
have to be changed to agree in type with
the actual tree's nodes.

TREEFILE - A file variable of type text. The
tree is written into this file.

PAGESIZE - The size ofthe page on output rep-
resented as an integer count of the number
of available columns. The maximum page
size is 512. Any size greater than 512 will
be changed to 512.

LOWERNODE - A user procedure TREE-
PRINT calls to walk the user's tree. The
format for the call is described below along
with the functions LOWERNODE must
perform.

PRINTKEY - A user procedure TREEPRINT
calls to print out a single line of a keyword
description of some node in the user's tree.
The description may be multi-line and of
any width. The call format is described
below.

VERTKEYLENGTH - The number of lines of
a description printed by PRINTKEY. This
must be a constant over all nodes. If

28

VERTKEYLENGTH is negative, its ab-
solute value is used as the key length and
the whole tree is inverted on the vertical
axis.

HORIKEYLENGTH - The number of charac-
ters in a single line of a description printed
by PRINTKEY. This must be a constant.
If negative the absolute value of HORI-
KEYLENGTH is used and the whole tree
is inverted from left to right.

CALLS TO USER PROCEDURES - The calls to
user-supplied procedures have the following format
and function:

PRINTKEY
(LINENUMBER,LINELENGTH,NODE)
LINENUMBER - The line of the node descrip-

tion to print. This varies from 1 to VERT-
KEYLENGTH. Since TREEPRINT op-
erates on a line-at-a-time basis
PRINTKEY must be able to break up th~
output in a similar fashion.

LINE LENGTH - The length of the line.
PRINTKEY must output this many char-
acters to TREEFILE - no more, no less.

NODE - The node of the user's tree to derive
information from.

LOWERNODE (NODE,SONNUMBER)
SONNUMBER - The sub-node to return. A gen-

eral N-ary tree will have N of them.
NODE - The node of the user's tree to derive

the information from.
LOWERNODE, on return should equal NIL if

that node does not exist, NODE if the
SONNUMBER is illegal, and otherwise a
valid sub-node. The condition that LOW-
ERN ODE returns NODE when N is ex-
ceeded must be strictly adhered to, as
TREEPRINT uses this to know where to
stop. LOWERNODE is used to hide the
interface between TREEPRINT and the
user's tree so that no format details of the
tree need to resident in TREE PRINT.

OUTPUT - All output is directed to TREEFILE.
There are no error conditions or messages.

*)

(* The declaration of the user's node type. If type
checking is a problem this should be changed to
match the type for the actual nodes in a tree. *)

type
nodeptr

=
~lnteger;

procedure treeprint (tree: nodeptr; var treefIle : text;
pagesizet vertkeylengthl horikeylength
integer; procedure prlntkey; function
lowernode : nodeptr);

type

ref11nk = -link'
link = record

I

next: refllnk;
pnode : nodeptr;
pos : integer;

Articles



lstem
ustem

booleen;
boolean;

end;

refhead = Ahead;
head = record

next: refhead;
first: reflink;

end;

var
maxposition, minposition, width, w, charp : integer;
startposition, beginposition, endposition : integer;
pagewidth, p, i, j, stemlength, vertnodelength : integer;
endloop : boolean;
line: packedarray [1,,512]of char;
L, oldL : reflink;
lines,-slines, H. D : refhead;

procedure cout (c : char);

(* Cout places a character in the line buffer'at the
current character position. The pointer charp is
incremented by this action to reflect the change. *)

begin Co Cout OJ
charp := charp + 1;
line[charp] := c'

end; (* Cout *)

procedure cdump;

(* Cdump dumps all characters that have accumulated in
the line buffer. No characters are omitted and no
cr-lf is appended.*)

begin Co Cdump 0)

if charp > 0 then for charp := 1 to charp do
write Ctreefile,line[charp]);

charp := 0;
end; (* Cdump *)

procedure ctrim;

(* Ctrim dumps all characters that have accumulated in
the line buffer with trailing spaces removed. A
~RITELN is used to end the line, 0)

begin Co Ctrim 0)

while Ccharp > 0) and Cline[charp] =
. ') do

charp := charp - 1;
if charp > 0 then for charp := 1 to charp do

write (treefile,line[charp]);
charp := 0;

writeln Ctreefile);
end: (* Ctrim *)

function checkref (N: nodeptr: currentref : reflink)
: boolean;

(* Checkrefis a functionwhich checkswhethera pointer
into the user's data structure has already been used
somewhere else in the tree. If so. Position should not
examine lower nodes for this pointer -- they have
already been taken care of elsewhere. This will prevent
certain types of recursive references from getting
Position into an infinite loop. This does, however.
requirea lot of time. *)

var
H : refhead:
L : reflink;
goon : boolean:

begin Co Checkref0)

H := lines:
goon := true;
while CH <> nil) and goon do
begin

L := H",first;
while CL <> nil) and goon do
begin

if CL <> currentref) and CL",pnode
goon := false;

L := LA.next;
end;
H := H next:

end:
checkref := goon;

end; (* Checkref *)

N) then

function position (N : nodeptr; var H
: reflink;

refhead; pos integer)

Co Position is a recursive function that positions all the
nodes of the tree on the print page, In doing so, it
constructsan auxiliarydate structurethat is connected
by line number along the edge and position from left to
right, In addition, it stores some of the original tree
connections for arc printing. *)

Articles

var
over, lastover, nodecount
Nlower : nodeptr;
L, left, right: reflink;

need right : boolean;

integer;

begin Co Position 0)

if N = nil then Co Be defensive about illegal nodes, 0)

position: = n11
else
begin (* Create new node in our tree. *)

new CL);
po sit ion . _ L;

L pnode ._ N;

L ustem ._ false;
if H = n11 then
begin (* A new line has been reach~d. *)

new (H);

H next .- nil;

L next ._ nil;
end
else
begin Co Shift position if conflicting, 0)

L next := HA.first;
if H",firstA,pos < pos +

pos := H first pos

then
2;

end:
H .first := L;
nodecount := 0;
if checkref CN,L) then
begin

over : = 1;

repeat (* Count the number of lower nodes. *)
Nlower := lowernode (N,over):
if CCNlower <> N) and CNlower <> nil» then

nodecount := nodecount + 1:
over := over + 1;

until Nlower = N:
end:
if nodecount > a then
begin (* There are lower nodes, loop to position. *)

L lstem := true;
lastover := nodecount - 1;
nodecount : = over;
over : = - lastover;
need right := true;
repeat (i Recursively evaluate lower positions. *)

repeat Co Find one that is non-nil, 0)
if nodecount > 0 then

Nlower ._ lowernode (N,nodecount)
else

Nlower ._ N;
nodecount := nodecount - 1;

until Nlower <> nil;
if Nlower <> N then
begin

1eft :=
position (Nlower, H next. pos + over);

if need right then
begin

right := left;
needright := false;

end
else left ustem := true;
over := over + 2;

end;
until (over> lastover) or (nodecount <= 0);
pos := CleftA.pos + rightA,pos) div 2;

end
else

L~.lstem := false;
if pos > maxposition then maxposition := pos
else

if pos < minposition then minposition := POSt
L pos ._ pOSt

end; Co if N = nil 0)

end; (* Position *)

begin Co Treeprint 0)

(* Initialize various variables. *)

11nes := n11;
minposition ._ 0;
maxposition ._ 0:
charp := 0;

(* Do various width and length calculations. *)

if pagesize > 512 then pagesize := 512:
width := abs Chorikeylength) + 4;
stem length := abs Cvertkeylength) + 1;
vertnodelength := 3 0 abs Cvertkeylength) + 4;
if Cwidth mod 2)

= 0 then width := width + 1;
pagewidth := pagesize div width;

(* Construct our data structure and compute positions. *)

oldL := position (tree,lines,O);

(* If the horizontal reverse option is selected, reverse

29



every node on every line of the date structure. It Is
also necessary to switch around the state. of the USTEM
flags that tell who connects above 8 given node. I)

if horikeylength 0 then
begin

H := lines;
while H <> nil do
begin

HA.firstA.pos := maxposition
_

HA.firstA.pos + minposition;
if HA.fir.tA.ustem then
begin

H~.flrst~.ustem := false;
endloop ._ true;

end
else

endloop := false;
L := nil;
while HA.firstA.next <> nil do
begin

H~.first~.nextA.pos := maxposition
H~.first~.nextA.pos + minposition;

if HA.firstA.nextA.ustem theo
begin

if not endloop then
begin

HA.first~.next~.ustem ._ false;
endloop := true;

end;
end
else

if endloop then
begin

H~.first~.next~.ustem ._ true;
endloop := false;

end:
oldL := HA.first~.next:
H~.first~.next := L:
L := HA.first;
HA.first := oldL;

end;
HA.fir.tA.next := L;
H := H~.next;

end;
end;

(I If the vertical reverse option Is selected, reverse the
entire tree on the vertical .xis by flipping .11 the
head nodes along the edge. Arc reversal Is handled In
the actual arc generation routines. They will scan the
previous line of info instead of the current one. I)

slines := lines;
if vertkeylength < 0 then
begin

H := nil;
while line.A.next <> nil do
begin

D := lines~.next;
lines~.next := H;
H := lines;
lines := D;

end;
lines~.next:= H;

end;

(I Break up entire width into pages and loop over each. I)

startposltion := mlnposltion;
while startposition (= maxposition do
begin

page (treefile);
H := lines;
while H <> nil do
begin (0 Loop over all line. po..ible. 0)

oldL := HA.fir.t;
repeat (I Find a node on current strip. I)

endloop := true;
if oldL <> nil then

if oldLA.po. < .tartpo.ition then
begin (0 Reject this node. 0)

oldL := oldLA.next;
endloop := false;

end;
until endloop;
for i := 1 to vertnodelength do
begin (I Loop for each print line in a node. I)

L := oldL;
p

:= .tartposition;
while (p < .tartpo.ition + p.gewidth) and

(L <> nil) do
begin (I Scan for nodes we need to draw. I)

if LA.po. =
p then

begin (I Found node at currentposition.I)
if (i <= stemlength) then
begin (0 Draw upper .tem part of node. 0)

for w := 1 to (width div 2) do
cout (I ');

if «vertkeylength < 0) and LA.lstem)

30

or «vertkeylength >=
0) and

(H <> sline.» then cout (fO')
else cout (' ');
for w := 1 to (width div 2) do

cout (' ');
end
else
if (vertnodelength - i) < stemlength then
begin (I Draw lower stem part of node. I)

for w := 1 to (width div 2) do
cout (' ');

if «vertkeylength >=
0) and LA.lstem)

or «vertkeylength < 0) and
(H <> slines» then cout ('0')

else cout (' ');
for w := 1 to (width div 2) do

cout (' I);

end
else
if (i >= .temlength + 2)

and (i <= .temlength0 2) then
begin (0 Print node identifier. 0)

cout ('I');
cout (' ');
cdump;
printkey (i - .temlength -

1,
ab. (horikeylength), LA.pnode);

cout (' ');
cout ('I');

end
else

for w := 1 to width do cout ('I'):
L ._ L~.next;

end
else

for w := 1 to width do cout (' I);

P := P + 1;
end;
ctrim;

end; (I for I)

(I Select the proper lIne to obtain arc info from. I)

if vertkeylength >= 0 then
begin

if HA.next <> nil
then L ._ HA.nextA.fir.t
else L := nil;

end
else L := H~.first;

p
:= startposition;

while (p < .tartpo.ition pagewidth) and (L <> nil) do
begin

endposition := L~.pos;
beginpo.ition := LA.po.;
if LA.u.tem then

while (LA.next <> nil) and LA.u.tem do
begin

L := L~.next;
endposition ._ LA.pos;

end;
L := L~.next;
if (beginposition < startposition + pagewidth)

and (endposition >= .tartposition) then
begin (0 Found an arc we .hould draw. 0)

while p < beginpo.ition do
begin (0 Space over to proper po.ition.0)

for w := 1 to width do cout (' I);

P := P + 1;
end;
if beginpo.ition = endposition then
begin (0 Ca.e of one node directly below. 0)

for w:= 1 to (width d1v 2) do cout (' ');
if (H <> .line.) or (vertkeylength >= 0)

then cout('I')
else cout(' '.);

for w := 1 to (width div 2) do cout (' ');
p : =

p
+ 1;

end
else
begin (0 Normal multi-.egment are, then. 0)

if p
=

beginposition then
begin (0 Begin with a half .egment. 0)

for w := 1 to (width div 2) do

cout (' I);

for w := (width div 2) to width-1 do
cout ('I');

.
_ p

1;p
end;
while (p < endpo.ition) and(p < .tartpo.ition + pagewidth) do
begin (0 Connectto the end .egment.0)

for w:= 1 to width do cout (fl');
p : =

p
+ 1;

end;
if p < .tartpo.ition + pagewidth then
begin (0 Draw end segment of the arc. 0)

for w := (width div 2) to width-1 do

cout ('I');

Articles



for w := , to (width dlv 2) do
cout (t ');

p : =
p

+
,.

end;
end;

end;
end;
ctrim;

(0 Start up on n.w page of mat.rial. 0)

(0 All output i. fini.h.d. It i. now time to clo.. out our .xtra
dati structure. .)

while lin.. <> nil do
b.gin (0 Coll.ct a line of .tuff .nd di.po... 0)

H := lines next;
while lin fir.t <> nil do
begin (0 Kill a node. 0)

L := lines first next;
di.po.e (lin fir.t);
lines first := L;

end;
di.po.e (11ne.);
lines ._ H;

end;

(8 We have now finished an entire line of tree. .)
H

end;

._ H next;
(0 while H<>nil 0)

.tartpo.ition := .tartpo.ition + p8g.width;
end; (8 while startposition <= maxposition .)

.nd; (0 Treeprint 0)

.nd. (0 Of module TREE PRINT 0)

Articles 31



Three Proposals for Extending Pascal
By R.D. Tennent

Computing and Information Science
Queen's University

Kingston, Canada, K7L3N6

These three proposals have been submitted to the
American Pascal Extensions Task Group and to the
Canadian Pascal Working Group for consideration as
extensions to ISO Pascal. The three proposals deal with
separate issues and could be combined without
difficulty.

The terminology and syntactic notation are those
of the ISO Pascal standard. References are given only
for the examples. References for and further explana-
tion of the concepts may be found in the autor's Prin-
ciples of Programming Languages, Prentice-Hall In-
ternational, London (1981).

The Where-Clause: A Proposed
Extension to Pascal

By R.D. Tennent
Computing and Information Science

Queen's University
Kingston, Canada, K7L3N6

613-547-2645

1. Introduction

A common and justified criticism of Pascal is that
large programs are difficult to read. This is in part be-
cause the block bodies in a program must occur in a
"bottom-up" order. The main program body (i.e., the
highest-level code) appears at the very end of the pro-
gram. In general, high-level code always follows the
code for the lower-level procedures that it uses. The
first code encountered in reading a program is that for
a procedure at the lowest level of abstraction.

A further difficulty is that type, constant and var-
iable declarations in a block can be separated from their
uses by the code for procedure definitions in that block
and code for all lower-level contained blocks. In large
programs, the definition of an identifier can be tens of
pages away from the code in which it is used.

2. The Where-Clause

The defects described above can be corrected in
a very straightforward way: allow a procedure-and-
function-declaration-part to follow the statement-se-
quence of the statement-part of a block. This is termed
a where-clause.
block = label-declaration-part

constant-definition-part

t ype-definition-part

variable-declaration-part

proced ure-and- function-declarat ion-part

statement-part

statement-part "begin"

statement-sequence

[where-clause]

32

"end"

where-clause = .where" procedure-and-function-declaration-part

The procedure-and-function-declaration-part of a
where-clause is to be interpreted exactly as if it were
placed immediately following the usual procedure-and-
function-declaration-part of the enclosing block, ex-
cept that the rule of forward-declaration before use is
enforced. More formally, if Dl and D2 are definitions
and S is a statement-sequence, then a block ofthe form

Dl
begin

S

where

shall be equivalent to

Dl
procedureI; beginSend;

D2
begin I end

where I is any identifier not used in the original block.

Example 1 Partition sort, after Wirth's I'.lgorithms

Structures = Programs, program 2.10.

+ Data

procedure QuickSort;

procedure Sort(left,right: index); forward;

(sorts I'.[left..right]
)

begin {QuickSort}

Articles



Sort (l,n)

where

procedure Sort{ (left ,right : index)};

var i,j : index;

procedure partition; forward;

(Partition computes i>j and permutes "'[left..right] so

that "'[j+l..i-l] = x, "'[left..i-l] ~x~"'[j+l..right]]
begin {Sort}

Partition;

if left<j then Sort(left.j);

if i<right then Sort (i.right)

where

procedure Partition;

var x: item;

procedure Exchange(var p,q: item); forward;

{Exchange swaps the values in p and q}

begin {Partition}

i := left; j:= right;

x :=...[(left + right) div2];

repeat

while "'[i] <x do i := i+l;

while "'[j] >x do j := j-l;
if i~j then

begin

Exchange("'[i] [j]);

i := i+l;
j := j-l

end
until i> j

where

procedure Exchange{ (var p,q: item)};

var w: item;
begin w:= p; p:= q; q := wend (Exchange);

end (Partition);

end (Sort);

end {QuickSort};

Example pLIO compiler, after Wirth's "'lgorithms + Data Structures

= Programs, program 5.6.

program PLO(input. output);

label 99;

const ...{global constants}...;
type ...{global types}...;

var ...{global variables}...;

procedure Error(n: integer); forward;

procedure Getsym; forward;

procedure Block(lev.tx: integer; fsys: symset); forward

procedure Interpret; forward;

begin {Main Program}

...{initialization of global variables}...

Getsym;

Block(O .0, [period] +declbeg sys+statbeg sys);

if sym t period then Error(9);

Articles

if err=O then Ir\fe'tpret else write('ERRORS IN pLIO PROGRAM');

99: '!rit..ln

where

pl'ocedure Error( (n : integer) I;

begin writeln(' ****', ' ':cc-l. "', n:2) end (Error);

procedure Getsym;

var i,j,k: integer;

pl'ocedure Getch; forward;

begin {Getsym}

while ch ='
,

do Getch;

...{rest of Getsym}...

where

pl'ocedure Getch;

begin {eetch} ... end (Getch);

end (Getsym);

pl'ocedure Block{ (lev .tx : integer; fsys: symset) I;

...{declarations for Block}...;

begin {Block}

...{code for Block}...

where

...{definitions of procedures used in Block}...

end (Block);

procedure Interpret;

...{declarations for Interpret} ...;

begin {Interpret}

...{code for Interpret}...

where

...{definitions of procedures used in Interpret}...

end (Interpret);

end {Main Program}.

3. Implementation

The where-clause may be implemented in essen-
tially the same way that forward declarations in stand-
ard Pascal are implemented. The possibility of placing
procedure definitions after their uses exists in many
other languages, including FORTRAN, PLiI and Ada.
The idea of the where-clause is due to P.J. Landin.

4. Summary

The proposed where-clause would provide two
significant improvements in program readability. Firstly,
it would allow a programmer to organize nested pro-
cedures in a top-down way that is often more natural
to read than the bottom-up organization currently pos-
sible in Pascal. Secondly, it would allow declarations
of identifiers and their uses to be much closer together
than is currently possible. These advantages become
more and more apparent and significant as program size
and structural complexity increase.

The only costs associated with this proposal are
that it would be necessary to add a new reserved word
("where") and to increase very slightly compiler size
in order to parse the new clause.

33



Proposals for Improved Exception-Handling
in Pascal

By R.D. Tennent
Computing and Information Science

Queen's University
Kingston, Canada, K7L3N6

613-547-2645

1. Introduction

A test that indicates that an alternative computa-
tional approach must be followed and that cannot be
efficiently or conviently tested before starting the com-
putation containing the test is known as an exceptional
condition. The alternative computation is known as the
exception-handler. An example of an exceptional con-
dition is overflow of a primitive numerical operation.
Usually it is impractical to test for overflow before at-
tempting the operation, but if an overflow occurs, an
alternative computational path must be followed. An
exception is not necessarily an "error".

The facilities for exception-handling in standard
Pascal are not quite adequate. We shall describe what
is currently possible, and propose relatively modest
extensions to improve exception-handling for (i) pro-
grammer-defined procedures, (ii) language-defined
("required") procedures, and (iii) primitive operations.

2. Programmer-Defined Procedures

The scheme in Example 1 illustrates the most ap-
propriate method available in standard Pascal for ex-
ception-handling. The advantages of the scheme are as
follows.
(i) Code for exception-handling is separate from the
code for the unexceptional cases.
(ii) It is possible to pass information to an exception
handler by using the parameter-list of the procedure.
(iii) Although gotos are used, both the jumps and their
destinations are at the ends of blocks only.
(iv) It is possible to invoke exception handlers defined
in any enclosing block.

Example 1 Usi ng proced ures

exception-handling.

statementsand goto

label 999;

procedure ExceptionHandler( ...);

begin

...{computation for exceptional cases} ...;

goto 999

end;

begin {computation for unexceptional cases}

...if...{test for exceptional condition}..

then ExceptionHandler(...);

999: end

34

If an exceptional condition must be tested in a
called procedure that is defined outside the block in
which the exception-handler is defined, then the ex-
ception-handler may be passed to it as a procedural
parameter, as in Example 2.
Example 2 Using an exception-handling parameter.

procedure External (...; procedure Error ( ...J);

begin

...if... {test for error!...
then Error ( ...);

end;

label 999;

procedure ExceptionHandler(...);

begin

... {computation for exceptional cases} ...;

goto 999

end;

begin {computation for unexceptional cases}

External ( ExceptionHandler);

999: end

for

We conclude that well-structured exception-han-
dling in programmer-defined procedures is possible in
standard Pascal. However, the current language does
not provide specialized constructs to encourage this
approach. It would be desirable to avoid use of label
declarations, goto statements and numeric labels. This
is the same design philosophy that led to the inclusion
of the if-then-else, case, while, repeat and for control
structures in Pascal.

We propose to extend Pascal by providing exits,
which are similar to conventional procedures, but al-
ways "return" to the end ofthe block in which they are
defined (rather than to their calls). Example 3 shows
how the exception-handling schemes of Examples 1
and 2 can be expressed using exits. Exits may be im-
plemented in the same way that the combination of non-
local jumps and procedures is in Pascal, except that a
dynamic "return-link" is not needed. The concept of
block-exiting procedures is due to P.I. Landin.

procedure-and-function-declaration-part

( ( procedure-declaration

function-declaration

I exit-declaration) It;"

Articles



exit-declaration = exit-heading ";" [block]

exit-heading = "exit" identifier [formal-parameter-listJ

formal-parameter-section >
value-parameter-specification

vari abl e-par ameter- spec i fica t ion

procedural-parameter-specification

functional-parameter-specification

exi t-parameter-speci fication

exit-parameter-specification = eXit-heading

simple-statement empty-statement

assig nment-statement

procedure-statement

exit-statement

goto-statement

actual-parameter

exit-statement = exit-identifier [actual-parameter-listJ

expression I variable-access
procedure-identifier

function-identifier

exit-identifier

Example 3 using exits for exception-handling.

Pl"ocedure External(...; exit Error(...»;
begin

...if... [test for error}...
then Error(...);

end;

exit ExceptionHandler(...);

begin

...{computation for exceptional cases}...;

end;

begin {computation for unexceptional cases}

...if... {test for exceptional condition}..
then ExceptionHandler( ...);

...External( ExceptionHandler);

end

Example Sift, after Wirth's Algorithms + Data

Programs. program 2.7.

Pl"ocedure Sift(l.r: index);

var i,j:index;x:item;

exit Sifted;

begin a[iJ := x end {Sifted!;

begin [Sift}

i:= 1; j:= 2*i; x:= a[i];

while j~r do

begin

if j<r then

if a[j] >a[j+lJ then j := j+1;

if x~a[jJ then Sifted;

Articles

Structures

a[iJ := a[jJ; i:= j; j:= 2*i

end;

a[iJ := x
end {Sift!;

Example 5 PLIO compiler. after Wirth's Algorithms + Data Structures

= Programs. prog ram 5.6.

program PLO(input. output);

exit Incomplete;

begin writeln('PROGRAM INCCMPLETE.') end [Incomplete};

exi t TooLong;

begin writeln('PROGRAM TOO LONG.') end {TooLong};

...if eof(input) then Incomplete;

...if cx>cxmax then TooLong;

begin (main program)

end.

Example 6 Hash table look-up. after Knuth's .Structured

programming with go to statements. . Computing
Surveys. 6. pp. 261-301. Example3a.

var i: l..m;

exit Insert;

begin

A[iJ := x; 8[iJ := 1; count:= count+1;
if count=m then HashTableFull

end II nsert!;

begin

i := hash (x);

while A[ iJ JI x do

begin

if A[i] =0 then Insert;

if i>l then i := i-I else i:= m;

end;
8[i] :=8[iJ+1

end

3. Required Procedures

Exception-handling is not an issue for most of the
"required" procedures and functions in Pascal. Any
possible failure condition can easily be tested before
calling them. The only required procedure for which
this is not true is Read(f,x) when f is a text file and x is
an arithmetic variable. If there is a syntactic error in
reading a signed-integer or signed-number from the file,
the Pascal standard specifies that the execution is in
error, and most implementations handle this by abort-
ing program execution. This is a serious design error
because it is essential that user-oriented software be
able to recover gracefully from trivial input errors.

We propose adding the following required procedures to Pascal:

procedure ReadInteger(var f: text; var i: integer;

exit IllegalSyntax);

procedure ReadReal(var f: text; var r: real;

exit Illeg alSyntax);

35



(An alternative approach would be to add a single re-
quired procedure ReadNumber(f,x,IllegaISyntax)
whose second parameter may be either integer or real.)
It is not impossible to define procedures similar to these
in Pascal, but, for real numbers at least, the code is too
formidable and machine-dependent for this to be a
practical solution. See program 1.3 in Wirth's ALgo-
rithms + Data Structures = Programs. It is also pos-
sible to use Read to do the conversion after first check-
ing the syntax of the input, using a temporary file as a
buffer for the characters that are checked. But on most
implementations the overhead of file creation would
make this approach too inefficient.

Example 7 Handling exceptions when reading numbers.

procedure ReadSpeed(var s: speed; exit Failure);

var count: 0..4; (Retry up to four times; then call Failure.1

exit TryAgain;

begin

if count=4 then Failure; count := count+l;

writeln(output, 'Incorrect syntax for signed-number. Try again.');.

ReadReal(input, s, TryAgain)

end (TryAgainJ;

begin (ReadSpeedl

count := 0;

writeln (output , 'Enter the speed as a signed-number.');

ReadReal (input, s, TryAgain)

end (ReadSpeed);

4. Primitive Operations

Floating-point overflow and underflow are the only
failure conditions for primitive operations that cannot
reasonably be tested before applying the operations. As
in the preceding section, it would be possible to add
required functions with exception-handling parame-
ters, such as

product(x,y,ovflow, unflow)

But such functions would be so much less convenient
to use than the usual infix operators that this solution
is impractical.

We propose adopting the following rule: an over-
flow or underflow shall result in calling an exit called
'Ovflow' or a procedure called 'Unflow', respectively.
If, in the case of an underflowing operation, Unflow
allows control to return, then the result of the operation
is taken to be zero. If the overflowing or underflowing
operation does not occur in the scope of a programmer-

36

defined Ovflow or Unflow exception-handler, then the
effect shall be equivalent to calling

exit Ovflow;
begin {Aborts program execution} end;

or

procedure Unflow;
begin {null} end;

respectively. The symbols 'Ovflow' and 'Unflow' shall
be reserved in the sense that they are allowed only as
the identifier of a (parameterless) exit-heading or pro-
cedure-heading, respectively, or as a corresponding ac-
tual-parameter. Note that defining Ovflow or Unflow
affects only operations in the scope of the definition,
and not necessarily in procedures called in that scope.

Example 8 Handling overflow and underflow.

procedure P{...; exit OVflow);

procedure Unflow;

begin writeln{'Underflow in procedure P') end;

begin

...(Overflow here invokes parameter OVflow.

Underflow here prints a message but computation

continues using a result of zero.I...

end (pI;

5. Summary

Three proposals have been made to improve ex-
ception-handling in Pascal.
(i) The exit concept has been proposed to permit well-
structured exception-handling without the use of labels
and gotos.
(ii) Additional required procedures for reading num-
bers from text files have been proposed to permit re-
covery from syntax errors in input files.

(iii) Conventions for handling numerical overflow and
underflow have been proposed to permit recovery from
machine traps while still allowing use of infix notation
for arithmetic operations.

These relatively modest extensions would seem to be
both necessary and sufficient to provide adequate ex-
ception-handling in Pascal. The very complex and
poorly-designed exception-handling facilities in lan-
guages such as PLiI and Ada are neither necessary nor
desirable, and should not be imitated in Pascal.

Articles



The Definition Block: A Proposed
Extension to Pascal

By R.D. Tennent
Computing and Information Science

Queen's University
Kingston, Canada, K7L3N6

613-547-2645

1. Introduction

It is widely recognized that the block structuring
facilities currently available in Pascal are inadequate to
allow secure abstraction from data representations.
Some rather complex proposals for extending Pascal
have been made and several newer languages have ad-
dressed this issue.

The present proposal is notable for its compatibil-
ity with the concepts of Pascal. Rather than introducing
new concepts having possibly complex interactions
with the existing language, the facilities proposed are
just straightforward generalizations of the block, re-
cord and procedure structures already present in the
language.

It will be convenient to assume the existence of a
variable initialization facility; however, its design does
not significantly affect this proposal. We start with the
following syntax; the only new feature is an initializa-
tion-part.

block definitions-part

statement-part

definitions-part= definitions

definitions = label-declaratIon-part

constant-definition-part

type-definition-part

variable-declaration-part

initialization-part

procedure-and-function-declaration-part

initialization-part ["ini tial" block ";"]

Example 1 A block with an initialization part.

type natnum
= O..maxint;

var

count:array[index]of natnum;

totalcount:natnum;

initial

var i: index;
begin

for i:= 0 to n do count[i] := 0;

totalcount := 0

end [Initial\;

procedure Tabulate (x:index);

begin

if x>n then error(x);

count[x] := count[x] +1

totalcount := totalcount + 1

Articles

end {Totalcount};

function Frequency(x: index): real;

begin

if x> n then error(x);

Frequency:= count [x]/totalcount

end {Frequency};

begin

...Tabulate(w) ...Frequency(w)...

end;

The definitions-part of the block in Example 1 de-
fines the representation of a histogram. This is correctly
accessed in the statement-part of the block by using
procedure Tabulate and function Frequency. However,
identifiers 'count' and 'totalcount' are also accessible
in the body of the block, and this is undesirable. But
Pascal does not allow identifier visibility to be con-
trolled as required (except by using procedural param-
eters in a rather complex and unreadable way).

2. The Definition Block

The concept used in Pascal to control visibility of
identifiers is the block. Identifiers defined in the defi-
nitions-part of a block can only be used within that
block. The present proposal is based on the observation
that it is not essential to the block concept that the bod-
ies of blocks be statements. For example, in several
programming languages block bodies are expressions.
We propose to add to Pascal a form of block whose
body consists of definitions and may be used wherever
a conventional set of definitions is usable:

definitions = label-declaration-part

consta nt-def inition-part

type-definition-part

variable-declaration-part

initialization-part

proce d ure-and- funct ion-dec laration-pa rt

definition-block

definition-block = "private" pl"ivate-definitions-part

"within" public-definitions-part

private-defInitions-part= definitions

public-defInitions-part = definitions

Example 2 A definition-block.

private

type natnlMl= O..maxint;

var

37



count: array[index] of natnln;

totalcount: natnln;

initial

var i: index;

begin

for i := 0 to n do count[i] := 0;

totalcount := 0

end {initial!;

within

!,£ocedure Tabulate(x: index);

begin

if x>n then error(x);

count [x] : =count [x] + 1

totalcount := totalcount + 1

end {Totalcount!;

function Frequency(x: index): real;

begin

if x> n then error (x) ;

Frequency:= count [x]/totalcount

end {Frequency!;

If the definition-block in Example 2 were used as
the definitions-part of a conventional block, then iden-
tifiers 'Tabulate' and 'Frequency' would be accessible
as usual in the statement-part, whereas identifiers 'nat-
num', 'count' and 'totalcount' could be used only
within the definition-block itself. Definition-blocks thus
provide control over identifier visibility for definitions
in essentially the same way that conventional blocks do
for statements. It is simpler, more readable and more
convenient than other approaches to scope control,
such as lists of "exported" identifiers or "tags" on in-
dividual definitions. The concept of the definition-block
is due to P.J. Landin.

The implementation of definition blocks is very
simple. A compiler must ensure that the definitions of
the private part are not visible outside of the definition-
block, but are visible in the public part. The externally-
visible effects of the definition-block are those of the
public part alone. However, at run-time, the activation
record created by elaborating the private part must be
retained with the activation record for the public part.
This is because procedures defined in the public part
may refer to variables declared in the private part.

3. Generalized Records

Although the definition-block is the basis of this
proposal, it is of rather limited utility by itself. Two sim-
ple generalizations of Pascal concepts will allow cre-
ation and naming of multiple instances of activation
records from definitions, and parameterization of
definitions.

The most convenient way of providing multiple in-
stances in Pascal is to take advantage of the similarity
between activation records (created by elaborating def-
initions) and values of record-types. We propose gen-
eralizing record-types as follows:

record-type = "record" (field-list Idefinitions) "end"

The use of definitions in place of a conventional field-
list allows records to have components that are con-
stants, types and procedures, as well as variables. Most
importantly, if the definitions part of a record-type is a
definition-block, there can be variable components that
38

are private but are indirectly accessible via public pro-
cedure components.
Example 3 A block thatusesa generalized record type.

var MaleWeights,FemaleWeights:

record

!'£ivate
type natnln = O..maxint;
var

count: array[index]of natnln;

totalcount:natnln;

initial

within

!,£ocedure Tabulate(x: index);

function Frequency(x: index): real;

end;

begin

...Male Weights. Tabulate (mw)...Male Weights.Frequency(mw) ...

...wi th Femaleweights do

begin... Tabulate(fw) ...Frequency(f,,) ...end...

end;

In Example 3, two histograms are created by de-
claring variables MaleWeights and FemaleWeights, us-
ing a record-type containing the definition-block of Ex-
ample 2 instead of a field-list. Each variable is allocated
a separate storage area for its variable components
within the activation record for the block. It is also pos-
sible to define a name for the new type in the usual way.

Example 4 Naming a generalized record-type.

type WeightHistogram = record

pi"ivate

within

end;

var MaleWeights, FemaleWeights: WeightHistogram;

procedure Print WeightFrequencies(var wh: Weight Histogram) ;

...wh.Frequency(w) ...

begin

...Print Weight Frequencies(Male Weights) ...

...Print Weight Frequencies (Female Weights) ...
end

In Example 4, the type-identifier has been used to
specify the type of a formal var parameter. Value pa-
rameters (and assignment) of generalized record-types
would be possible but are not recommended (cf. file-
types in standard Pascal).

4. Classes
It is desirable to be able to parameterize definitions

or to create more than one new-type from the same set
of definitions. For these purposes we propose adding
a form of "procedure" whose definition body and calls
are generalized record-types. These are termed classes,
after the similar concept in SIMULA.

definitions =
label-declaration-part

constant-definition-part

class-definition-part

Articles



t ype-defini tion-part

varia ble- declaration-part

initialization-part

proced ure-and- function-dec1ar a tion-part

definition-block

class-definition-part = { class-definition ";"
}

class-definition = class-heading. ";" "record" definitions "end"

class-heading = "class" identifier [formal-parameter-list}

record-type "record" (field-list I definitions) "end"
class-identifier [actual-parameter-list]

Example 5 Definition and use of a class.

class Histogram(n: index; procedure error(x: index»;

record

private

type natnum O..maxint;

var

Articles

initial

within

procedure Tabulate(x: index);

function Frequency(x: index): real;

end {Histogram};

var

MaleWeight, FemaleWeight: Histogram(nw,weightError);

MaleHeight, FemaleHeight: Histogram(nh ,Height Error);

begin ... end;

When a class is called, the actual parameters are
evaluated, the formal-parameters are bound, and a new
type is created. The definitions in the body are elabo-
rated when the type is used in a variable declaration.

5. Summary

Flexible, convenient and easily-implemented fa-
cilities to control identifier visibility in definitions and
abstract from data representations can be added to Pas-
cal simply by generalizing the blocks, records and pro-
cedures already present in the language.

39



Dear Mr. Cichelli,
I am enclosing a check for $5.00 to cover costs for

the mailing of issues 20 and 21, which I have not
received.

I suspect it is the fault of our local post office
which has failed to deliver several other pieces of mail
recently, and has returned them to the sender.

If $5.00 is insufficient for two issues, please let me
know, as I value PN quite highly. I consider it a model,
along with Dr. Dobbs, against which to measure other
computer-related publications. In particular, I am ap-
preciative of a journal which does not condescend or
pa~ro~ize its r~~de~s. There. is ~ sense of dignity and
sCientific humlhty 10 the edltonal approach which is
apparently contagious, affecting those who write to
you, and those who publish articles.

I would very much like to have the software tools
available on magnetic tape, and would support a price
in the 100 dollar range. Currently, I have access to an
IBM 370, and can accept either EBCDIC or ASCII in-
put tapes in a wide variety of BPI values, labeled or
unlabeled. I suspect that any format you set up will in-
clude an acceptable version for this application.

I am currently employed by CTB/McGraw-Hill in
Monterey, Calif., where I have recently instituted a
software tools special interest group, whose purpose is
tc!exami~e the daily operations of the company, whether
directly 10 DP or not, and to design, develop and test
a set of software tools for practical use by any division
?f the co~pan.y. Though these tools will likely be orig-
mallY wntten 10 PL/I, Fortran or Cobol, (our principal
languages), there is sufficient interest in the projects
that we may see a number ofthem re-written in Pascal.
I will.try to keep you informed of our progress, and to
submit any tested tools for your consideration.

Thanks again for a wonderful publication.
Charles FrankIe

607 2nd St.
Pacific Grove CA 93950

Dear Rick,

I want to complain about an item in Pascal News
#22-23 on page 38, which I think should not have been
published. This is a function in the Applications section
named OPTIONS which is an altered version of a func-
tion I wrote named OPTION used to return control-
statement option settings.

My objections are as follows:
1. The code is copyright University of Minnesota,

but no one asked our permission to publish it.
2. The code is for the CDC-6000 Pascal implemen-

tation only - it is of insignificant interest to the
Pascal community at large.

3. The code is published without any explanation
of how it relates in time and space to anything
else in the universe!

4. The code is a perfect example of bad Pascal pro-
gramming (my own) which I not only find em-
barrassing, but also goes against the philosophy
of the Applications section, which is to publish
only good examples.

5. The code is in the wrong character set. It is in

40

un-reconverted CDC 63 SCIENTIFIC which
prints - for pointers and t for quotes (the cor-
.rect characters would be .,. and;: respectively.

Spike Leonard of Sandia National Laboratories
(a!l AT&T subsidiary) at Livermore, California, sub-
mlt!ed the ext.ended version to accept 1-10-character
option names lDstead of I-character option names and
to r~turn equivalenc.ed parameter values (in CDC op-
eratmg-system termmology). Unfortunately my name
is more prominent than his in the comments and should
be the other way around. I regret that Spike didn't send
us here in Minnesota this extended version for inclusion
into the CDC-6000 Pascal compiler system that we
maintain. The first time I ever saw the code was in Pas-
cal News #22-23! Also, I realize I am listed as co-editor
of the Applications section, but Richard Cichelli the
other co-editor has actually done nearly all of the ~ork
on the section since Pascal News #16.

I called Spike and had a good talk with him and
of course he was trying to help the Pascal cause. 'I en-
close the original code so that readers can discern
Spike's contribution. Perhaps this all goes to show me
that I ~houldn't have written bad code to begin with!

Rick, I want to congratulate you on the fine job you
have done in keeping Pascal News alive during the last
2.diffi~ult years in t~e face ?f many obstacles: your full-
time Job, the ever-mcreasmg number of subscribers
the dwindling amount of volunteer help, the lack of sup~
port of your organization, and the difficulties caused by
the collapse of PUG(Europe) in the UK, which is only
now being resolved. I could not have done as well as
you have done if I had continued as editor - as you
know, I was on the verge of collapse.

In issues # 17-23 which you have edited, the sub-
~tan.tive information about applications, compiler val-
IdatIOn sUIte reports, correspondence from subscri-
bers, and drafts of the ISO Pascal Standard continues.
I think that's important, and I realize that you haven't
been able to keep up detailed information on news tid-
bits as you would have liked to do.

I wish you good luck in finding a successor. Like
I wrote in my farewell, Pascal News may not last past
1982.

Sincerely,
Andy

(""

"
"
"
"")

OPTION- RETURN CONTROL STATEMENT OPTION SETTING.
COPYRIG~T (C) UNIVERSITY OF MINNESOTA - 1978.
A. B. MICKEL. 77/06/02.

SEE T~E PASCLIB WRITEUP ,'OREXTERNAL DOCUMENTATION.

FUNCTION OPTlON(NAME: IJIAR; VAR S: SETTING): BOOLEAN;

CONST
CSADDRESS= 70B ("CONTROLSTATEMENTADDRESS");

TYPE
CSIMAGEP = RECORD CASE BOOLEAN OF

FALSE: (A: INTEGER);
TRUE: (P: "LOWCORE)
END;

LOWCORE. PACKED ARRAY[I..8D] OF C~AR;

VAR
CSIMAGE: CSIMAGEP;
1: INTEGER ("INDEX IN CSIMAGE");
FOUND: BOOLEAN;

BEGIN ("OPTION")
FOUND := FALSE;

Open Forum



S.SWITCH:- FALSE; S.SIZE:- 0;
CSlAAGE.A :- CSADDRESS;
I :- 1 (*SKIP PlWGRAM NA.'�E AND PARAMETERS.*);

WHILE CSlAAGE.P'[I) IN [.A Z.. .0 9.,
' 'J

00
I :- I + I;

IF NOT (CSlAAGE.P'[IJ IN [')'. '.'
j) THEN

I :- I + 1 (*SKIP SLASH IF HRST DELIMITER.*);
WHILE NOT (CSlAAGE.P"[I] IN ['/'. ')'. '.'J) DO

I :- I + I;

IF CSlHAGE.P"[IJ - '/' THEN (*CRACK OPTIONS.*)
REPEAT I :- I + I;

IF CSlHAGE.P'[IJ - NA.'�E TItEN
BEGIN FOUND :- TRUE;
I :- I + I;
S .SWITCH :- CSlHAGE .P" [IJ IN [' +'. .

-', '-' J ;

IF S.SWITCH THEN S.ONOFF :-CSlHAGE.P"[IJ
ELSE

WHILE CSlAAGE.P"[IJ IN ['0'.,'9'J 00
BEGIN S.SIZE :- S.SIZE

*
10

+ ORD(CSlHAGE.P'[Ij) - ORDCO');
I :- I + I
END

END
ELSE WHILENOT (CSlHAGE.r[Ij IN ['... ')'. '.' j) 00

I :- I + I.
UNTIL (CSlHAGE.P"[IJ IN [')'. '.'J) OR FOUND;

OPTION :- FOUND
END (*OPTION*);

Open Forum 41



- -------

42



IMPLEMENTATION NOTES ONE PURPOSE COUPON

DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person. address and phone number. *J

2. MACH IN E /SYSTE M CO N F IG URA TION (* Any known limits on the configuration or support software required. e.g.
operating system. *J

3. DISTRIBUTION (* Who to ask. how it comes. in what options. and at what price. *J

DOCUMENTATION (* What is available and where. *J

5. MAINTENANCE (*Is it unmaintained. fully maintained. etc? *J

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How. *J

7. MEASUREMENTS (* Of its speed or space. *J

8. RELIABILITY (* Any information about field use or sites installed. *J

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *J

10. LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other languages. source libraries, etc.
*J

43



(FOLD HERE)

----------------------------------------------------

PLACE

POSTAGE

HERE

Bob Dietrich
M.S. 92-134
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077
U.S.A.

----------------------------------------------------
(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors should sand us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

44
IMPLEMENTATION NOTES ONE PURPOSE COUPON



USA UK Europe Aust.

D Enter me as a new member for: 1 year $20 £12 DM40 A$16

D Renew my subscription for: 3 years $40 £24 DM80 A$32

D Send Back Issue Set(s)

New Subscription
Re New
Back Issue

COUPON ______ (Jan. 83)

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

** Note **

. We will not accept purchase orders.

. Make checks payable to: "Pascal Users Group", drawn on a U.S. bank in U.S. dollars.

. Note the discounts below, for multi-year subscription and renewal.

. The U.S. Postal Service does not forward Pascal News.

------------------------------

. Issues 1 . . 8 (January, 1974 - May 1977) are out of print.

. Issues 9 . . 12, 13 . . 16, & 17 .. 20, 21 are available from PUG(USA) all for $15.00 a set, and from
PUG(AUS) all for $A 15.00 a set.

D My new address/phone is listed below

D Enclosed please find a contribution, idea, article or opinion which is submitted for publication in the Pascal
News.

D Comments:

ENCLOSED PLEASE FIND:

CHECK no.

NAME

ADDRESS

PHONE

COMPUTER

DATE

45



JOINING PASCAL USER GROUP?

. Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

. Please enclose the proper prepayment (check payable to "Pascal User's Group"); we will not bill you.

. Please do not send us purchase orders; we cannot endure the paper work!

. When you join PUG any time within a year: January 1 to December 31, you will receive all issues Pascal
News for that year.

. We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

------------------------------

. American Region (North and South America) Join through PUG(USA).

. European Region: join through PUG(UK) : Pascal Users Group, % Shetlandtel, Walls, Shetland, ZE2 9PF,
United Kingdom.

. Australasian Region (Australia, East Asia - incl. India & Japan): PUG(AUS). Pascal Users Group, % Arthur
Sales, Department of Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania 7001,
Australia. International telephone: 61-02-202374

------------------------------

RENEWING?

. Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News. Renewing for more than one year saves us
time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

. Back issues will have a price rise to $25 on July 83

. Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

. Issues1 . .8 (January,1974- May 1977)areout of print.

. Issues 9. . 12, 13. . 16, & 17. . 20, 21 . . 23 are available from PUG(USA) all for $15.00 a set, and from
PUG(AUS) all for $A15.00 a set.

. Extra single copies of new issues (current academic year) are: $10 each - PUG(USA); and $A 10.00 each
- PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

. Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con-
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 em. wide) form.

. All letters will be printed unless they contain a request to the contrary.

46



APPLICATION FOR LICENSE TO USE VALIDA TION SUITE FOR PASCAL

Name and address of reqestor:

(Company name if requestor is a company) :

Phone Number:

Name and address to which information should

be addressed (write" as above" if the same)

Signature of requestor:

Date:

In making this application. which should be signed by a responsible person in the case of a company, the re-
questor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary property

of R. A. Freak and A. H. J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable

copies of the Validation Suite. modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and documentation contained in the
Validation Suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of com-
parative reports and similar purposes, and to make available the listings of the results of compilation and ex-
ecution of the programs to third parties in the course of the above activities. In such documents, reference
shall be made to the original copyright notice and its source.

Distribution Charge: $50.00

Make checks payable to ANP A/RI in US dollars drawn on a US bank.

Remittance must accompany application.

Source Code Delivery Medium Specification:

( ) 800 bpi. 9-track, NRZI, odd parity, 600' magnetic tape
( ) 1600 bpi. 9-track, PE. odd parity, 600' magnetic tape

Mail Request to:
ANPA/RI
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R. J. Cichelli

) ANSI-STANDARD

a) Select Character Code Set:
( ) ASCII () EBCDIC

b) Each logical record is an 80 character card image. Select block size in logical records per block.

( ) 40 ( ) 20 ( ) 10

) Special DEC System Alternates:

) RSX-IAS PIP Format (requires ANSI MAGtape RSX SYSGEN)
) DOS-RSTS FLX Format

Office Use Only

Signed

Date

Richard J. Cichelli

On behalf of A.H.J. Sale and R.A.Freak
47



48



Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:

. teaching programming concepts

. developing reliable "production" software

. implementing software efficiently on today's machines

. writing portable software

Pascal implementations exist for more than 105 different computer systems, and this number increases every
month. The "Implementation Notes" section of Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pasca/- User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active
members in more than 41 countries. This year Pascal News is averaging more than 100 pages per issue.


