
./J!f!!J- $10.00

PASCAL USERS GROUP

Pascal News
Communications about the Programming Language Pascal by PascaIers

. APL Scanner

. Computer Generated Population Pyramids

. Path Pascal

. Introduction to Modula-2

. Validation Suite Reports

. Announcements

Number

26
JULY83

POLICY: PASCAL NEWS (Jan. 83)

. Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de-
signed to be non political, and as such, it is not an "entity" which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Anyone can join PUG, particularly the Pascal user, teacher, main-
tainer, implementor, distributor, or just plain fan. Memberships from
libraries are also encouraged. See the COUPON for details.

. Pascal News is produced 4 times during a year; January, April, July October.

Membership:

· ALL THE NEWS THATS FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single-
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

. Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

. Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the editor together with changes
in the mechanicsof PUGoperation,etc.

APPLICATIONS - presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES - contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts for maintainers, implemen-
tors, distributors, and documentors of various implementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

VALIDATION SUITE REPORTS - reports performance of various compilers against standard Pascal
ISO7185.

-

47 IMPLEMENTATION REPORT

VALIDATION SUITE REPORT
48 OmegaSoft Pascal Version 2

51 SUBSCRIPTION COUPON

53 VALIDA TION SUITE COUPON

55 USUS MEMBERSHIP COUPON

Charles Gaffney Publisher and Editor

The Pascal Newsletter is published by the
Pascal Users Group, 2903 Huntinaton Rd.,
Qeveland, Ohio 44120. The Pascal Newsletter
is a direct benefit of membership in PUG.

Membership dues in PUG are 2.00 US
regular, other forms of membership please in-
quire. Inquiries regarding membership should
be sent to the above address. Newsletter cor-
respondence and advertising should be sent to
the editor at the aforementioned address.

Advertising Rates: $300.00 Fun Page. Please
live your preference of magazine location: front,
center, or back.

,
4
.

Pascal News
Communications about the Programming Language Pascal b~ Pascalers

JULY 1983 NUMBER 26

2 EDITOR'S NOTES

5 OPEN FORUM

SOFTWARE TOOLS
11 Program APL Scanner

By Vincent Dichristofano, Alan Kaniss, Thomas Robinson and John Santini

ARTICLES
26 "Don't Fail Me Now" By Srully Blotnick
27 Computer Generated Population Pyramids Using Pascal By Gerald R. Pitzl
32 Path Pascal - A Language for Concurrent Algorithms By W. Joseph Berman
37 An Introduction to Modula-2 for Pascal Programmers

By Lee Jacobson and Bebo White

BOOK REPORT
41 Data Structures Using Pascal

ANNOUNCEMENTS
42 SBB Announces Pascal Compiler for IBM PC
42 Sage Opens Boston Division
42 New 16 Bit Sage IV
43 New Modula-2 Manual
44 USUS Fall Meeting
44 Text Editor Interest Group
44 Modula-2 Users Group
45 USUS San Diego Meeting
46 Volitions Modula-2 for IBM PC

I

Hello,

Well, this is the third issue I am involved with and
there have been many changes. I would like to write of
Pascal first. .

Pascal has enjoyed a jump in attention in the last
year. One reason is that there are Pascal compilers
available for many machines and, I am tempted to say,
they are available for any machine. Most of the major
main frames have Pascal either directly or from a third
party.

One step down in size, I know of only one machine,
the Tandem computer which is without a Pascal imple-
mentation. A Tandem representative here in Cleveland
informed me they have a language called "TAL" and
in many cases will execute a Pascal program with no
changes.

A couple more steps down in size are the small Dig-
ital Equipment machines and compilers are available
from about four sources. IBM has the Display writer
and Datamaster. These were released without our lan-
guage, but in the last year, UCSD Pascal has been made
available through IBM. Apple Computer has been a
strong and long supporter of Pascal. TRS 80 has UCSD
Pascal.

The smallest machine with Pascal is the TI 99/4A.
In this size, Commodore has promised Pascal for this
summer on the "64" and "128" machines.

The small computer, that is, the home computers
and small business computers, have exceeded $10 mil-
lion in sales. This is according to Future Computing, a
Richardson, Texas research firm.

With a guess, I would say that Pascal is imple-
mented on at least 25% of these machines. If only 1%
of these were being used to learn and program Pascal,
then 25,000 people are presently involved. This is a lot
of people looking for the best books from which to learn.

I am making an appeal to our members to submit
comments and reviews oftext books so that we all may
benefit from your experience. I get caIls from authors
requesting information on Pascal. To these people, the
best I can do is to send complete sets of Pascal News!
With your comments and criticism, perhaps we could
influence future text books.

Herb Rubenstein of Budget Computer in Golden,
Colorado has sent a small article from Popular Com-
puting. It seems that advanced placement test in com-
puter science will use structure programming and the
Pascal language. These tests allow up to one year of
coIlege level credits in computer science. The author of
this article, Dan Watt, believes that the choice of Pascal
in the testing may lead to Pascal as a defacto standard
in high schools preparing students for coIlege. Let me
quote the last paragraph:

"This situation illustrates the power of the.
testing establishment to influence the lives of stu-
dents and teachers. Although the vast majority of
high schools now offer Basic as the standard com-
puter language for most programming and com-
puter science classes, this action by the College

2

Board may lead to the establishment of Pascal as
a defacto standard for high school teaching and
spawn an entire mini industry of curriculum to
meet the new requirements. It may also offer sig-
nificant school marketing advantages to micro-
computer companies that already support Pascal
- such as Apple, IBM and Texas Instruments."

I would like to see comments from you regarding
this use of Pascal in a rite of passage.

In this issue, you will find a reprint of Dr. SruIly
Blotnick's column from Forbes magazine. I like this
column because of the clever way he has made our
economy dependent on you learning Pascal.

I enjoy Forbes magazine. They emphasize com-
mon sense and iIlustrate proven business practices.
Forbes also takes a pulse of industries, and small com-
puters is a fast growing industry. In a column called
"Technology", edited by Stephen Kindel, on March
28, 1983, he noted that 2% of the households in the
U.S.A. own computers of one form or another. There
had been predicitions of 40% of households by 1990.
This has been reduced to 20% in 1990 because there
doesn't seem to be software that is useful in households.

Mr. Kindel ends this article with a quote from Sey-
mour Papert, an MIT professor:

"The real purpose of learning how com-
puters work should be to improve human logic and
thought processes, to make people more creative,
not simply more dependent on machines."

Maybe this would be a good issue to review the
tools available in our back issues. This issue contains
the APL scanner. I am embarrassed to print this, not
because of the program's quality, but because it was
submitted four years ago. Well, no time like the present.

In issue # 17 (yeIlow), Arthur Sale submitted "Re-
ferencer", a procedural cross reference. This program
provides a printout of the heading of each procedure
and function with indentation showing nesting. In issue
#25, Mr. Yavner has improved on this program with
"A Better Referencer" . Mr. Yavner claims that Pascal
News has been his sole source of instruction in Pascal.
I believe this is a compliment to Andy Mickel and Rick
Shaw for their efforts to maintain this newsletter. We
should also thank our contributors, Mr. Sale for in-
stance, for outstanding generosity. These people will
appreciate your complements, criticisms and gifts of
money. (Ho! Ho!)

Andrew Tandenbaum, in issues 21 and 22/23, pro-
vided us with "The EM} Compiler". This is a good look
at all that is necessary for a pseudo 32-bit machine pas-
cal compiler.

Th~ UCSD Pascal Project started with a 16-bit
pseudo machine portable compiler. It was called P4 out
of Zurich, Switzerland by Vrs Ammann, Kesav Nori
and Christian Jacobi. I mentioned this because it has
been published with critical commentary by S. Pem-
berton and M.C. Daniels in 1982. It is presented as a

Editor's Notes

case study of compiler design and is very interesting to
read.

.. Pascal Implementation
S. Pemberton and M.C. Daniels
Ellis Horwood Limited Publishers
Distributed by:

John Wiley & Sons
60S Third Avenue

- NY, NY 10016
USA

In #21 you will find Jeff Pepper's fine implemen-
tation of extended precision arithmetic.

Nicklaus Wirth, Pascal's creator, wrote Pascal S
and we have it in # 19 (mislabeled # 17). This is a subset
of Pascal and was intended as a teaching aid.

Also in # 19 is a Lisp interpreter written in Pascal.
"MAP", a Pascal macro preprocessor for large

program development, is published in # 17.
Issue # 16 contains the Validation Suite version 2.2.

This is the compiler checker that Arthur Sale and Brian
Wickman have now revised to version 3. This new ver-
sion is available by using the Validation Suite coupon
in the rear of this issue.

"Prose", a text formatter, by John Strait is the ma-
jor program available in # 15. A disclaimer in the in-
structions manual admits that it doesn't do everything,
but I must say, it has a lot of capability.

In # 13, two programs were printed that performed
the same work. A sort of "Battle of Algorithms".
"Pretty Print" and "Format" used any Pascal pro-
grams as input and printed it in a consistent style.

For those of you looking for other Pascal periodi-
cals, there are four of which I know. "Pascal Market
News", 30 Mowry Street, Mt. Carmel, CT. 06518. This
is a nice quarterly for $9.

Another quarterly for Oregon Software users is the
"Pascal Newsletter". Maybe this is too narrow in con-
tent, but you will know what Oregon Software is up to.
Their address is 2340 SW Canyon Rd., Portland, OR.
97201.

A very slick magazine with good design is .. Journal
of Pascal and Ada." You can contact them at West Pub-
lishing Company, 898 South State Street, Orem, UT.
84057. The cost is $14 for six issues.

The USUS News and Report is more a system
user'sjournal, but the system is based on Pascal. They
also have a software library, seventeen floppy disks full,
and all in source code and written in Pascal.

Now to the business of Pascal News. Pascal News,
as the Pascal periodical granddaddy published since
January 1974, has had its ups and downs. In 1979 our
circulation was 7,000; now it is 3,600. Our biggest prob-
lem has been irregular publication. I am committed to
four issues this year and I am considering six issues next
year. I believe that regularity will supply us with growth
and members and more software tools.

As I mentioned in the last issue, PUG (AUS) has
stopped and I, in the USA, have taken over their area.
Unfortunately, they have not sent me their mailing list
and I fear that I have lost touch with our members there.
This issue will be sent to those members listed as of
1979 and I hope they will "spread the word" and the
subscription coupons!

Open Forum

4.

Our PUG (EUR) has performed very nicely and I
thank Helmut Weber and friends for their good work.
But they have a problem concerning money. They have
not charged enough for subscriptions and were pressed
to send our #24. As a result, I will mail all issues di-
rectly and I hope you will not be inconvenienced. Please
keep in touch with them as they are a strong group.

I have saved the worst for last. In November, 1982,
I sent 300 copies of issue #24 to Nick Hughes in care
of PUG (UK), Post Office Box 52, Pinnen, Middlesex
HAS 3FE, United Kingdom. Using the phone number
866-3816, the air express shipper delivered these issues
by mid-November. All well and good. The issues ar-
rived before the cover date with plenty of time to post
them to our English members. I called Nick at this num-
ber many times, but spoke to him only after many
months. It was late April and I asked if I should use the
same procedure in shipping #25 to him.

Nick said that the issues arrived properly and that
method was efficient but wanted to know what was in
#25. He told me that he did not like issue #24 and from
the sound of it, did not like issue #25. He had disliked
#24 so much, he decided not to send any of them out.
Need I say more?

Nick will not supply his mailing list so I am sending
this issue and #25 directly to the members of record in
the United Kingdom as of 1979. If you feel a need to
find out why Nick Hughes did not like issue #24 or
would like to see it yourself, please call or write Nick
at the above address and ask for your copy. He has 300
and I am sure he can spare one.

As a result of these difficulties, I will receive and
service all subscriptions from here in Cleveland, Ohio.
From now on, there will be only one person to blame
if you have a complaint.

As of this issue, a year's subscription is raised in
price to $25 a year and $50 for three years. These rep-
resent two sets of costs; production and organization.
Production costs are typesetting, printing and mailing.
Other activities of production are editing, reviewing,
quality assurance and formatting. These tasks are per-
formed by "yours truly" and presently I do them for
free. (I'm real smart!)

Organization is a cost of servicing you and other
members satisfactorily. This includes collecting and re-
viewing the mail, depositing checks, updating the mail-
ing list, sending back issues to fill new subscriptions and
sending sets of previous years back issues. In order to
do this correctly, and in a timely fashion, I don't do it.
I pay a firm to perform "fulfillment" and it takes one
or two days per week. This cost is small compared to
the bad feelings generated if not done correctly and
quickly.

These are costs of which you are totally respon-
sible. This newsletter has been a beneficiary of volun-
teerism. There are no volunteers now (save me). In many
magazines, advertisements will pay for all production
and organizational costs plus provide profits, some-
times large profits.

The cost ofafull page ad in Byte or PC or PC World
is over $2,000 and these are publications with 500 pages!

Now we may be able to keep our costs down and
publish more often if we accept advertising. Three
hundred dollars per page is not expensive. I will pursue

3

advertisers and I am asking for your help. If you are
writing a book, have your publisher advertise with Pas-
cal News. If you are making software packages, influ-
ence your boss in the virtues of an ad in Pascal News.
If you manufacture or sell computers, sell your product
from the pages of Pascal News. This is the oldest Pascal
publication and, I proudly say, the most influential.

This newsletter help spread Pascal and our mem-
bers were most influential in the standard efforts.

I believe Pascal News' new mission is to enable
Pascal to be taught in the easiest way. This is in many
forms. For instance, reviews of books and texts, dis-
cussion of what features to teach first as a foundation,
how to teach advanced courses, discussions of exten-
sions or standard program tools to include in every well
written program as it is appropriate.

By the way, Andy Mickel tells me that the "Pascal
User's Manual and Report" by Jensen and Wirth has
sold 150,000 copies in 1982. This is interesting consid-
ering that in the previous seven years, it sold 175,000
copies. A very sharp jump in interest.

A new text book has been sent to me, "Pascal" by
Dale/Orshalik, 1983 DC Heath. A nice title, short and
to the point. The preface states a philosophy that I would
like you to comment on.

"In the past there have been two distinct ap-
proaches used in introductory computer science
texts. One approach focused on problem solving
and algorithm design in the abstract, leaving the
learning of a particular language to a supplemental
manual or a subsequent course. The second ap-
proach focused on the syntax of a particular pro-
gramming language, and assumed that the
problem-solving skills would be learned later
through practice.

We believe that neither approach is ade-
quate. Problem solving is a skill that can and should

4

be taught - but not in the abstract. Students must
be exposed to the precision and detail required in
actually implementing their algorithms in a real
programming language. Because of its structured
nature, Pascal provides an effective vehicle for
combining these two approaches. This book
teaches problem-solving heuristics, algorithm de-
velopment using top-down design, and good pro-
gramming style concurrently with the syntax and
semantics ofthe Pascal language. "

One of the letters mentions high resolution graph-
ics. I know of two texts that use Pascal as the illustra-
tive language of their algorithms. They are "Principles
of Interactive Computer Graphics" by Williams New-
man and Robert Sproull, 1979 McGraw-Hill and "Fun-
damentals of Interactive Computer Graphics" by James
Foley and Andries Van Dam, 1982 Addison-Wesley.

Two notes from members:
Steven Hull of Campbell, California, received a

notice from me that #22/23 had been returned to us be-
cause the postal service will not forward bulk mail. His
reply:

"I guess this will teach me to move from
Lakewood (a suburb of Cleveland, Ohio). Didn't
know bulk mail wasn't forward able. The Postal
Diservice has been re-routing every piece of junk
mail for a full year. . . I might have to file suit to
stop it all!

And from Eric Eldred of New Hampshire who re-
warded Pascal News with a three year subscription and
dutifully filled the coupon with name and address and
arrived at a request for "Date". Eric filled in "No!
Married!". Thanks Eric, I needed that!

Charlie

Open Forum

To Charlie Gaffney,

I'm glad you have taken on Pascal News. I hope
it works.

Perhaps, I should say what I would like to see pub-
lished in Pascal News. The most valuable things are
I) Tools, and 2) Info on the various implementations.
In my job we are using many computers. It is very help-
ful to know which compilers work well, meet stand-
ards, and produce efficient code. Apple Pascal is nearly
bug free, and works as specified (with UCSD quirks).
IBM Pascal VS is good - extensions are large pre-
senting conversion problems if they are used. It has a
good interface to FORTRAN. VAX Pascal is plain va-
nilla, appears to work well but we have not tested it in
difficult situations. HP Pascal 1000 works fine but does
not have a stack architecture and seems to compile
slowly. Recent tests on HP Pascal 1.0 for the HP 200
computers seem to indicate it derives from UCSD al-
though it is a native code 68000 compiler. It seems to
work very well. We are interested in Pascal for the Data
General Eclipse.

Good luck,
Dennis Ehn

215 Cypress Street
Newton Centre, MA 02159

Gentlemen:

Would you be so kind as to send information on
the Pascal User's Group (PUG) and its official publi-
cation Pascal News. Recently we have acquired a mi-
crocomputer Pascal compiler and are very much
interested in keeping up with current developments in
Pascal.

Our system is based upon a SouthWest Technical
Products Corporation S/09 computer, running the
UniFLEX Operating System (similar to UNIX). If spe-
cific information is available for this unit, please let us
know.

Additionally, the college has several (approxi-
mately 18) Apple computers which are capable of run-
ning the UCSD Pascal System. Once again, any special
information here would be very helpful.

We look forward to hearing from you and hope that
we can make a positive contribution to the Pascal User's
Group.

Yours Truly,
Lawrence F. Strickland

Dept. of Engineering Technology
St. Petersburg Jr. College

P.O. Box 13489
St. Petersburg, FL 33733

Dear Sir,

Ijust received issue number 25 of Pascal News and
was surprised to find an implementation note for our

Open Forum

Pascal compiler. What makes it surprising is that to the
best of my knowledge I have never sent in an entry t and
the information provided is about a year and a half out
of date.

In case you would like to provide your readers with
valid information, I have enclosed an implementation
note for the currently available compiler. I have also
enclosed a copy of the ISO validation suite report from
our language manual.

Work is currently being done on moving this com-
piler to the 68000 family of processors and should be
available by the end of 1983.

On another note, I have received issues number 21,
22/23, and 25, but not issue 24. I am also enclosing a
check for a 3 year membership - please see if you can
determine what happened to number 24.

Sincerely,
Robert Reimiller

Owner, OmegaSoft
5787 Brandywine Ct.
Camarillo, CA 93010

December 1, 1982

I hope the letter referring to the possible end of the
P.U.G. is wrong! I can be of some help if needed.

Allen Duberstein
Pine Instrument Co.

3345 Industrial Blvd.
Bethel Park, PA 15102

January 10, 1983

Dear Mr. Gaffney:

Enclosed is a check covering both the remailing
cost of Pascal News #24 ($5) plus my membership re-
newal for two years ($18).

My apologies for getting out of synchronization with
the Pascal Users Group. As the post office informed
you, I recently moved to the address noted. Frankly, I
hadn't received a Pascal News in so long that I simply
forgot about it. It appears that I won't miss any issues
-the enclosed All-Purpose Coupon is from issue #23.

Interestingly, after a long period (3 years) of not
using Pascal, it looks like I will be using it once again.
We have a couple of Convergent Technologies work-
stations in my office. These are very nice 8086-based
machines; Burroughs sells them as the B-20s, and NCR
sells them as WorkSavers. We will probably be getting
a Pascal compiler, and I am looking forward to getting
back into Pascaling in the near future.

Sincerely,

Read T. Fleming
144 Irving Avenue #B-3

Providence, RI 02906

5

November 30, 1982

I was surprised and pleased to receive issue num-
ber 24 of Pascal News. Thanks for taking it over. I do
have one question, however, which you might be able
to help me with. What year is it? My address label in-
cludes [82] on it but the previous issue I received was
dated September, 1981. I notice that this issue is dated
January, 1983. Should I send in another year's sub-
scription money now? What happened to 1982? I never
have managed to figure our Pascal News' subscription
scheme. Maybe a note in the issues towards the end of
a year saying "if your address label says [82] it's time
to send in a renewal" would help.

Thanks for your help.

Richard Furuta
Computer Science, FR-35
University of Washington

Seattle, WA 98195

8 February 1983

Dear Sir,

I received your notification of renewal in the mail
yesterday. I am slightly concerned that you may not
have received the check which I mailed to you in De-
cember. I hope that it has only been a slight mix-up,
and in fact, my subscription has been renewed for 3
years, as I requested.

I am currently using the Pascal implemented by
Microsoft for the IBM Personal Computer. It has some
non-standard features which were provided in order to
allow programmers to access the full capabilities of the
machine. This implementation is quite flexible, and was
designed to allow users to produce systems programs,
as well as application programs.

The greatest shortcoming to this product, how-
ever, is its lack of usable documentation. Even some-
one like myself, who has been programming in Pascal
for 8 years, has difficulty in trying to locate the appro-
priate material in the 'reference manual'. Once this is
overcome, the user is able to use this version for the
production of some very powerful software.

I continue to look forward to the delivery of your
fine newsletter. I enjoy the articles, and realize how dif-
ficult a task you have. Keep up the good work.

Regards,

Robert A. Gibson
1609 Lake Park Dr.
Raleigh, NC 27612

November 30, 1982

Pascal is being used for process control of laser
trimming systems. We use Oregon Software Pascal.

Barbara Huseby, Training Dept.
Electro Scientific Industries

13900 N.W. Science Park Drive
Portland, OR 97229

6

March 3, 1983

Dear Mr. Gaffney:

I'm writing to let you know why I am not renewing
my subscription to Pascal News. The main reason is
that the price is now too high for the utility of the prod-
uct (at least to me). I appreciate your efforts to keep
PUG and Pascal News going, but I'm afraid they may
have outlived their usefulness. Pascal is not really in
need of promotion as it was when PUG was formed.
The Journal of Pascal & Ada may be an appropriate
successor.

As a long-time subscriber and occasional contrib-
utor, I wish you luck in your efforts.

Richard Leklanc
Assistant Professor

Georgia Institute of Technology
Atlanta, GA 30332

January 7, 1983

Hang in there, Charlie!

Andy Mickel
106 SE Arthur Avenue

Minneapolis, MN 55414

December 9, 1982

Dear Sirs:

Could you provide us with information on mem-
bership in your organization, both personal and insti-
tutional, as well as the subscription cost of your journal.

We are also interested in a rigorous comparison of
the various PASCAL versions implemented by mini and
microcomputer vendors. Do you know of any such
comparative research? We are making plans to offer
Advanced Placement Computer Science in the fall term
of 1983, and wish to select an effective computer.

Very truly yours,

Charles McCambridge
Director

Instructional Materials Services
Niskayuna High School

1626 Balltown Rd.
Schenectady, NY 12309

December 25, 1982
Merry Xmas! Good luck, Charlie! Is your "acqui-

sition" of PUG a sign that PUG and USUS will some-
day merge? I'm not sure I'd like that, but let's see.

Jim Merritt
P.O. Box 1087

Morro Bay, CA 93442

December 24, 1982

Please s~nd me information on joining the Pascal

Open Forum

User's Group, I am a software project engineer at Gen-
eral Electric in Syracuse. I am currently in the process
of selecting a high level language for internal program-
ming of a 1024 x 1280 resolution raster display. Pascal
is the leading candidate, therefore, I am very interested
in the latest information regarding the language which
I feel a user's group could provide.

My interest does transcend my work however as I
do own a Commodore SuperPET which includes the
University of Waterloo software package consisting of
Pascal, APL, Fortran, Basic and a 6809 Assembler.

Sincerely,

Douglas W. MacDonald
4303 Luna Course

Liverpool, NY 13088

2/5/83

To Whom It May Concern:

I just received your notice to inform me that my
membership is about to expire and that I should renew
now.

I would like to tell you that I would consider re-
newing if I could be assured of getting my money's worth
- this time!

When I first joined in 1981, I didn't hear from Pas-
cal News for almost a year. Then a few months ago, I
received a second issue, but that's been it.

Now I am a convicted Pascaler. I understand the
difficulties of operating a non centralized club, but $20
should buy some kind of organization for things I feel.

Can you assure me of a better value this time
around?

Cordially.

David Abate
Micro People

116 S. Bowdion St.
Lawrence, MA 01843

P.S. Question: Do you intend anything on UCSD-Pas-
cal? This is my greatest interest.

7 January 1983

Hi,

This is a note in a bottle to: I) find out if you're still
out there, and 2) what's happening with Pascal. It
doesn't seem to be taking the bite (or is that byte) out
of Basic I thought it would.

We will start covering Pascal as soon as we have
finished Basic programming - about five weeks from
now. The extension program from Hocking Technical
College in Nelsonville has provided seven Apple II and
Apple III computers and two printers. By the end of the
year, they will have installed a winchester disc and either
a modem or a microwave link to their main campus
computer. We'll need it by then to cover the Cobol and
Fortran IV programs we'll be writing.

Most of my practical computer experience is in as-
sembler language. I used it at Cincinnati Milacron's

Open Forum

,
t

Process Controls Division (Maier's of the controls for
the T3 Industrial Robot). .

I am interested in any literature you have to send
me. In particular, I would like the titles of the books
you consider best for teaching Pascal - either on the
Apple II or on computers in general, Apple, Inc., sent
me the Pascal Reference Manual Gust a bit or a nibble
over my head). I've also read copies of the OOS 3.2
Reference Manual and their Basic Programming Man-
ual. I covered all these before classes started and wound
up tutoring two other student/inmates,

Sincerely,

Brian Appleman 166-767
15802 St. Rt. 104

P.O. Box 5500
Chillicothe, OH 45601

P.S. If you need more on my background, just ask.

83-02-24

Dear Charlie:

I am a member of PUG (AUS) which hasjust folded,
and I would like to re-enroll through PUG (US).

I don't share Arthur Sales view that PUG and PN
have no purpose now that there is an ISO standard. The
world still needs cheap, good software and PN (in a
modest way) supplies some of it. Also, some organi-
zation is needed to defend and develop good program-
ming language and style.

PUG (AUS) says I have a credit of 12 (old) issues
and that the funds have been sent to you. Please will
you accept my re-enrollment and advise me how many
(new) issues I am now entitled to?

Finally, I, and I'm sure, many others appreciate
your offer to keep PUG/PN going.

Thanks again.

Yours sincerely,

Peter Edwards
40 Davison St.
Mitcham, Vie.
Australia 3132

December 3, 1982

Best wishes in this venture, Charlie. I agree that
Pascal News and P.U.G. are worth saving.

John W. Baxter
750 State Street, Apt. #224
San Diego, California 92101

February, 1983

You people have ripped me off for the last time!
By your own back order form (attached) you show

that my renewal in 1981 paid for 3 issues mailed in 1982.
But then, WHAT OF MY RENEWAL PAID IN 1982?
ONLY ONE ISSUE #24 COUNTS??? AND THAT
HAD TWO PREVIOUSLY PUBLISHED PRO-

7

GRAMS!! (That is, programs I had ALREADY re-
ceived.) If you ran a decent organization, you'd make
my 1982 renewal count for 1983 also.

David S. Bakin
Softech Inc.

360 Totten Pond Road
Waltham, MA 02154

December 24, 1982

We're indebted to you, Charlie!

Wayne N. Overman
3522 Rockdale Ct.

Baltimore, MD 21207

February 17, 1983

Dear Mr. Gaffney,

I am one of those folks who does not have a cur-
rently correct address with Pascal News.

Enclosed is a check for $5 for a copy of issue 19
which was returned to you.

Thank you on behalf of all the members of the user's
group for the effort you are putting out. It is very much
appreciated.

Tom Bishop
P.O. Box A

Kenmore, WA 98028

March 14, 1983

Dear Sir or Ms.:

We plan to offer Pascal at our school. I would ap-
prec~ate receiving information on your group and, if
possIble, a sample copy of Pascal News.

Any suggestions or information you could send
would be appreciated. We are particularly concerned
that the new Apple 2-E does not support Pascal with
one disk drive. We had hoped tht UCSD Pascal with
one drive would work on the Apple 2-E.

Thanks for your help.

Sincerely,

Harold Baker
Director, Computer Science

Litchfield High School
Litchfield, CT 06759

February 11, 1983

H .,I.
Here's my renewal. I really enjoy Pascal News and

have been upset about what has happened with it the
past 18 months or. so. It has been of substantive value
to me, particularly in the area of the style of Pascal cod.
ing among the community that have submitted articles.

I would like to see more articles on Modula 2,

8

Wirth's follow on to Pascal and Ada in parallel. To me,
this would seem a way of keeping PUG alive as well as
providing a growth path to these languages for Pascal
programmers.

I use Pascal/VS extensively at work and I have
found its extensions the best of any other Pascal com-
piler for S/370 compatible machines. Almost all of its
extensions are within the "spirit" of Pascal and uses a
very good extension to STRING data. Of particular
convenience is its READSTR and WRITESTR func-
tions (they are procedures actually -unfortunately). I
force the concept of function upon them by embedding
their invocation within a function when required.

I never received issues 20 and 21 of Pascal News
during the confusion, although I did mention this at
times. I would certainly purchase them separately, but
I am not prepared to purchase two sets to get them.
Please advise.

Thanks for your work,

Bob Dinah
630 Alvarado St. #207

San Francisco, CA,94114

November 12, 1982

Dear Pascal User's Group:

The only source of information that I have on the
Pascal User's Group came from "The BYTE Book of
Pascal", according to an article written by Kenneth
Bowles. An editor's note of July 1, 1979 listed the an-
nual newsletter as $6.00 per year. I am enclosing $12.00
in case things have increased since that date. If this
amount is insufficient, please make it up on back issues.

I am currently using an Apple III with Apple com-
puter's version of UCSD Pascal. There does not seem
to be more than a dozen books written on Pascal, and
just a few on UCSD.

I am an ex-electrical engineer, turned to building
construction. Previously, I worked for Westinghouse
Research Center in Pittsburgh, and used the Burroughs
B6500 main frame computer with ALGOL language.
The B6500 used a number of formats and types that I
miss; the Fixed Format was especially useful since it
allowed the user to specify the number of total digits
and the number of decimal digits combined. I would like
to use this format in UCSD Pascal.

Thanks for taking the time to help me.

Very truly yours,
Larry J. Moorhead

5207- 32nd Street East
Bradenton, Florida 33508

18 March 1983

Dear Sirs,

For the first time we have received a copy of Pas-
cal News, and it has been read with great interest.

We would like to join your User Group but cannot
find either a price or contact address for our region.

Please send us this information as soon as possible,

Open Forum

so that we can become members and start receiving your
journal on a regular basis.

We have taken note of your abhorrance of paper-
work (and endorse th~ sentiment) and will send the nec-
essary prepayment once ':Nereceive the information.

Yours sincerely,

Bette Kun
Librarian

Control Data
P.O. Box 78105

Sandton, South Africa 2146

20 April 1983

Dear Mr. Shaw:

Enclosed is a check for $10.00 for a one-year sub-
scription to the PASCAL Users' Group Newsletter. We
have just recently acquired PASCAL-2 here at Villa-
nova and our students are using it on LSI-ll systems
running RT-II V4.0 for applications involving real-time
control, data acquisition, and computer communica-
tions.

Sincerely yours,

Richard J. Perry, Ph.D.
Villanova University

Dept. of Electrical Engineering
Villanova, PA 19085

15th February, 1983

Dear Mr Gaffney,

As a long PUG user the demise of PUG-AUS is a
blow. Anyhow, as you can see from the attached letter
I would love to continue and thus need your help.

Could you please detail the fees for 1983 for us
"down under" for surface mail and air mail and as you
can see I'm afraid I've not got issue number 21. Can
you help?

For interest I use:
UCSD Pascal/p-System

Pascal MT+ under CP/M

ERA-50 Computer
(8-bit, 8085 base)

ERA-50 Computer
(8-bit, 8085 base)

ERA-50 Computer
(8-bit, 8085 base)

ERA-80 Computer
(16 bit, 8086/8087 based)

ERA-SO Computer
(16 bit, 8086/8087 based)

and MP/M

Pascal MT + 86 under CP/M-86

and MP/M-86

Regards,
Dr. William J. Caelli, F.A.C.S.

President
ERACOM Group of Companies

P.O. Box 5488, G.C.M.C.
Qld. 4217, Australia

1-8-82

Dear Sir/Madam,

This is the first letter I write to contact you. Let

Open Forum

me introduce myself first. I am a student pursuing a
computer course in the Hong Kong Polytechnic - a
licensed user of your OMSI-PASCAL-2 V1.2. I don't
know what your definition of user may be. May it be
my Polytechnic or any student or programmer who use
your OMSI PASCAL-I under the Polytechnic, I ven-
ture to call myself a user in this letter, and would like
to join the Pascal Users' Group and receive the
newsletter.

In the past few months, I have been doing exten-
sive programming using PASCAL, and find it very
handy, especially in writing structured programs. How-
ever, until recently when I develop some system pro-
grams, I find problems. I discover that there is no source
listing or documentation on the OMSI PASCAL-I run
time system (possibly in file FPP.RTS) and its relation-
ship with RSTS/E, and I cannot interface with the low
level I/O trap handlers without knowing their details. I
find some problems on the RESET ODT mode, but I
cannot deal with it in assembly level.

All in all, my problem is highly personal and does
not in any way bear relation with the Hong Kong Po-
lytechnic. However, as a student on computing, I don't
want to leave problem unsolved. So, please send me
any informational help, if possible.

Included please find a bank draft of $6 for
subscription.

May I state once more my request. I need infor-
mation on OMSI PASCAL-I run time system espe-
cially the EMT trap handling.

Thank you very much in advance.

Yours faithfully,

Mr Kam Man- Kai
Flat 8

3/F Ting Yin House
Siu On Court

Tuen Mun - N.T.
Hong Kong

6th November, 1982.

Dear Mr. Mickel,

I am a student of computing studies in the H.K.
Polytechnic. Recently, I got a chance to buy a Chinese
version of' A Practical Introduction to Pascal' by Wil-
son & Addyman from which I was informed that there
is a PUG in States.

Briefly understanding the objectives of the PUG, I
find myself in great interest in joining the group. Would
youb be so kind as to provide me with further infor-
mation as far as the PUG is concerned. I am eagerly
looking forward to your reply.

Yours sincerely,

Alan Kwong
12, Boundary St.

Po Ring Bldg.
8/F, Block 'C'

KIn., H.K.

9

December 23, 1982

We have been using Oregon Software's RT-ll Pas-
cal implementations for over three years with excellent
results and complete satisfaction; Pascal is used for sci-
entific "number crunching", program development, al-
gorithm testing, etc.

Bob Schor
The Rockefeller University

1230 York Avenue
New York, NY 10021

December 30, 1982

A worthwhile journal.

George Williams
Union College

Schenectady, NY 12308

March 22, 1983

Dear Mr. Gaffney:
I,have previously received Pascal News through

Universit); of Tasmania. Is it still published? If so, do
I have ariycredit on my subscription dues? I would also
be interested in information about USUS.

Yours sincerely,

M.J. Palmer
CSIRO

Pri vate Bag
P.O. Wembley, W.A. 6014

10

February 3, 1983

Good job, Charlie! and good luck to the renewed
Pascal News!

Norman W. Molhant
320 Principale

Tres-Saint-Redempteur, P.Q.
Canada JOP lPO

May I, 1983

A professor in Ithaca, NY told me there exists a
public domain UCSD Pascal available for micro's.

I have a 60K Z-80 which uses memory map video,
and a 63K 8085/8088 (both machines S-Ioo bus) which
uses a TVI 950. I also have a H-29 terminal (like Z-19
but with a detached keyboard).

Is there really any way of getting this UCSD Pascal
running on one of my systems? (I have UCSD on the
Sage also Modula-2. Good stuff.)

Thanks,
J. E. Pournelle, Ph.D.

12051 Laurel Terrace
Studio City, CA 91604

..

Open Forum

,
t.j

j

~ .r~ y~ $""004y~ $""004y~ $""004y~ $""004y~ $""00/49','I-are $""004

Program APLscanner
By Vincent Dichrlstorano. Alan Kaniss. Thomas Robinson, and Jo~ Santini

NADC, Philadelphia, PA

~ APlscaMu(;nput I . TERMINAL), outPut
);

f6 I;RighUrg: "achdString (

FirstSut t: 'vfunc;
IM.tFuncTabl'tr: "FuncTab;
_OfSuu ts: ;ntltg.r

end;
fPlr.T.b s record

~al: 'ValTab { sdl
LutPar..: "FPar.Tab I

{

{

. Purpose:
this program is an imr::ementalion of APl in Pascal.

84
15
16
17
II
19
90
91
92
93
94 DiunInfo
95
96
97
98 OpR.cord
99

100
101
102
103
104
105
106 SubrTab'
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 var
137XCo lanSy., XRightArro..., xLeftArrollf, Xli tt l eC; rc l~, XPe,.iad, XLeftP.,.,
138 XRightPar, XU~ftBracket, XRightBracket, XSemicolon, XQu.dSYII:
139 integer;
140 character: array CAPLcharSet] ~ integer;
141 APlstatefllf"nt: array (1 .. InputArraySi ze) of integer;
142 digits: array (OneSymbol .. ZeroSylibol] of integer;
143 ErrorllitsgS:P:)cked array (1 .. "'berOfMfssages, 1 .. "essagelength) ~144 char-; --
145 APLfi t~: t~xt;
146 JltOpTab, DOpTab, Re-dTab, (harTab, Sp~cTab: ()PTabl~;
147 Sa...e-LaMt: Pack~dStr-ing;
148 name: Pack~dSt ring;
149 N~wTokenPtr, OtdTokrnPtr, HoldTokrnPtr, SavrTokrnPtr: "Tok~nT.ble;
150 Test FuncPt r, NrwFuncT,bPt r, OldFuncT.bPt r: ..FuncTab;
151 NewVa r-T,bPt r, OtdVarTabPt r: "v, rTab;
152 LrftVatPtr, RightVatPtr, V.lPtr: "valut!s;
153 NewValurs, NrwValPtr: 'lu~s;
154 NrwDim: "Di"'~nlnfo;
155 DiliPtr, NewPtr-, LrftDillPtr, RigthDillPtr: "Di.~nlnfo:
156 VarPo int er: "Va r-Tab;
157 Ot dVFuncPt r, NewVFuncPt r: "vfunc;
158 NrIlfVatTabLif\k, OldVatTabUnk: "YalTab;
159 position: integer;
160 LineLength: integer;
161 code, CalCnt: integer;

162 FuncStatM~nts: intege,.;
163 TokenError, Fi rstFunct ion: BooLean;
164 Li neTooLong, HasLabel: Boolean;
165 switch, FunetionMode, TokenSwiteh, ltsAnIdentifi.r: Boole.n:
166 Opp,.TabPtr: "OperandTab { sv };

. APLflle1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
51
59
60
61
62
63
64
65
66
67
61
69
70
71
72
73
74
75
76
77
7.
79
80

I'12
13

and sd2 I;
link to last
sdl or sd2 I

Authoro:
Vincent Dichristofano
Alan Kaniss
ThomasRobinson
John Santini

authors' affiliation NADC

end;
2 r.cord

exTDi.~: "Di.enlnfo;
di.~nl.ngth: intege,.

~
record

Oplndelt: integer:
OpS}'1IIbol: ;ntltg.r

end:
Op.randTab ~ecord

Operl'tr: .Valhb { oval I;
LastOpu: "Op.rondTab { !ink to la.t .val

end;
r.c'ord { .f }
---cIIT~Subr: "FuncTab { >, };

Tok.nc.ll ingSubr: 'Tok.nhbl. {

Stu.CallingSubr: .vfunc (
>3

LutSubrl'tr: "SubrTab (!ink to

Phll. PA.

project leader: Dr. Joser:h Mez.zarut:a

This prograrrJ was written as part 0f an
course at Villanova University.

Submitted and accepted for Pasca~ News. t£,'~ 1~7~.

I
lAb.l
--roo; >2

);
};

la.t .fconst
--p;:efix1 :: 60;

pr.fi.2 = 62 { preflx
"a.VarNueLong th . 10;
"aaINputL;n. =132;
InputArr.ySi ze :: 134;

Nu.~rOf"'s..g.s . 100;
"uug.LeF19th . 80;

., end;
OpTable = array [1 .. 16J ~ OpRecord;
VarTabPt rTyp~ ::: "VarTab;
TypeVa t TabPt,. :: "'Val Tab;
TokenPt,. :;: ~TokenTable;
Pt ,.FuncTab :;: - Fune Tab;
TyprVa lvrsPt,. = .values;
APLcharSet :;:

(as)"Ibol, BS)'18Ibol, CSy.bol, DSYllbol, ESy.bol, FSy.bol, GSY8bol,
HSylftbol, ISymbol, JSy.bol, KSYlibol, lSYllbol, "SYllbol, N5y.bol,
OSylitbol, PSYl'llbot, QSYlibol, RSyllbol, SSy.bol, TSYlllbol, USylibol,
VSyfRbol, WSYl'llbot, XSyllbol, TSYlibol, ZSYllbol, OneSy.bol, TwoSyllbol,
ThreeSYIRbol, Four$ylltbol, FiveSYllbol, Si xSYMbol, S~...enSy.bot,
EightSYllbol, Nir'lrSyllbol, leroSYllbol, colon, RightArrow, LeftAr,.ow,
SlIIatlCir-ele, p~r1od, LeftP."en, Rightp.,.en, LeftBractet,
RightBracket, sefllicolon, QuadriingLe, SP<lC~, plus, .inus, ti.es,
di...;dr, asterisk, iota, rho, COIU'., tilde, "QUAls, NotEQual,
L~5sThne, LessOrEQual, G"~aterOrEq~l, Gre.t~rTh.n, AndSy.bol,
OrSYlibol, ceiling, floor, Lar-geCircl.., ForwardSllsh, Do\t)LeQuote,
n~gative, Qu~st;onMa"k, 08.ga, eopsilon, tt»Arrow, DownArrow, alpha,
UnderScoreo, del, delta, S;ngleQuote, EastCap, ~stC.p, SouthCap,
"orthCap, ibeall, TSe.., YertiealStrok~, B.ckwardSl.sh);

for C:>C ASCII 12-tlt :~"de-:::

.!l!!!.
Packe-dString :: packed array (1 ... "axVa"NameL~ngth] of 0 .0 8191;

TokenNoI.II:: - - -
(For..R~s, For rg, GlobVar, JItonadOper, ReductOper-, DyadOper,
SpecOper, constant, StatEnd);

val..-s = record
-.riirVal: ,.eal;

NextValue: alues
."d;

V.rTab z record
---varia..e: Pack~dStr-ing i v1 };

FuncTabPt r: "Func Tab I v2 - ftab
'

.
Val TabPtr: "Val Tab I v3 - vtab I;
De fer~dVa l TabPt r:

..
FParliTab;

NextVarTabPt r: "varTab
end;

Va l Tab :8 ;:;Cord
In'ti"rliedResul t: Boolean;

di.ensions: int~ger;
Fi rstDi..~n: "Dhfte-nlnfo;
Forwa,.dOrde,..: Boolean:
firstV.lue: alues;
NutValhbL;nk: 'ValTab

end;
TokenTable-: record

NWToken:
case noun:
--,orllRe"

te-xt = ~ ~ char:

"TolcenTable-;
TokenNo of I JO I
ForlllArg, G'["ObVar: j vtab

(YarTabPt,.: "Va rTab);

"'on.dOper: (Monlndex: integer);
ReductOper: (RedIndx: integer);
DyadOper: (DOplndx: intege-r);
SpecOper: (Cha,.Indlt: integer);
constant: (Val TabPtr: "Val Tab);
StatEnd: (EndAdj: intltger)

end;
record

NextSt.nt: "TokenTable;
NextVFunPrt: "vfune;
Statub.l: PackedStr;ng

fl\d;
OperatorTypr = (niladic, lIonadie, dyadic);
FuncTab :: record

funcNue: PackedString
ar;ty: Op..atorType {

resuL t: Boolean {
f3

Ruultru..: Pack.dStr;ng
L.ftArg: Pack.dStr;ng 1

vfunc

I r 1 I;
f2);

true
{ f4
fS I;

explicit
I;

I;

Software Tools 11

167
168
16;
170
171
172
173
174
175
176
177
1781
179,
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
Z61
262
263
264
265
266
267
268
269

Pt ,-LaStOpeor: '"()PerandTab:
Sub,. TabPt r: .. SubrTabi
RPar"'~tr: "FPar.Tao I p1
lParmpt r: ..FPar.Tab (p2
VFunCPtr: ""func I nl Ii
hold: 'Tok.nTabl. I holds

J;
);

1 ast symbol J;

proc~dure InitParser;

begin
OperTabPtr := nll; SubrTabPtr:= nit: LParIlPtr:= nil;
RParmPtr := nir;- VFuncPtr := nil;-hold := nil; xCOTonSym.- 1;
XRightArrOIll := 2; XLeftA,.row:= 3: XLittleC;rcle:= 4;
XPer;od := 5; XLeft Par := 6; XRightPa,.:= 7;
XLeftBracket := 8: XR;ghtSracket:= 9; XSellicalon:= 10;
XQuadS)'1'II := 11; new(ODerTabPtr); ()PerTabPtr"'.LastOp.r:= nil;
PtrLastOper := OperTabPtr: -

end 1 Ini tparse-r I;

procedure Initial ;zeCharacterSet
{ read installat:on character set rroo flIe I;

var
-restForPrefill: ;I"\t~g~r;

Fi leC~aract~r: char;
SYlllbolIndex: APLcharSt"t;

b.gin

rest't (APLf it e);

for SYllbolInc:Je.x := aSYlllbol .!2. BackwardSlash ~b.gin
read(APlf i le, Fi leCharacter);

Tht" following cod~ would be- removed for non-COC installations

rpstforPreofix := ord(FileCharacter);
if nrstForPrrfix = prefi.1) or (TestForPr.fh prrfix2)
then -

b.gin
read(APlf; leo, fi leCharacter);
characterCSYlllbolIndexJ .- 100

*
restForPr,fh + ord(

Fi l.Charactfr);
.nd

el Sf

charactO'CSy..bol!ndox] := ord(Fi l.Charactor)

.nd
end {initialitt>characterset I;

procedure ReadlnErrorMsgs;

var
"S9Row, MsgCol: integer;

~
rudln(APLfil.);
for "sgRow : =1 to PtJllbe rOf Messages do
Tor "sgCol := lto Ilessag.L.ngth do

Error"sgsC"sgRo.;, "sgCol] := .
"\for "sgRow := 1 to ~.borOfllessag.s do

-oegin (read in error messages rr;);
~Col := 0;

whit. not .0ln(APLfil.) do
b.gi;;-- -

"sgCol := "sgCol . 1;
read(APLfile, ErrorMsgs(MsgRow,

end;
roadlnlAPI. f il.);

.nd
~ {r.adinerrormsgs };

blank out error messagt"s

file

"sgColJ>;

proc~uro Fi ll'-"Tables;

aonad 1c o~r.tors

"OpTlbC1J. OpSy.bol
"OpTlbC2]. OpSyabo l
"OpTlbO].OpSy.bol
"OpTlbC4].OpSy.bol

"Op Tlbes]. OpSy!lbo l
"OpTlbC6].OpSy.bol
"OpTlbC7J.OpSy.bol
"OpTlbC8].OpSy.bol
"OpTlbC9]. OpSy.bo l

:a charlctO'Cplus]; "OpTlbC1J.OpInd..:= 2;
:a chlracterC.inus]; "OpTabC2].OpIndox:= 3;
:a chlrlctorCti.es]; "OpTlbC3J.OpInd..:= 4;
:. chlrlctO'CdivideJ; "OpTobC4].OpIndox:= 5;
:a chorlctorCI,urhk]; "OpTobC5J.OpInd..:= 6;
:a chlrlctorCioU]; "OpTlbC6J.OpInd..:. 21;
:a chlrlctorCrhoJ; "OpTlbC7J.OpIndox:a 22;
:a chlrlcterCC I]; "OpTabC8J.OpInd..:= 23;
:a chorletO'Ctild.]; "OpTabC9J.OpIndox:' 1;

dyadic operat.ors

DOpTabC1J.OpIndox := 52;
DOpTabC2].OpInd.. := 53;
DOpTlbO].OpIndox := 54;

OOpTlbC4].OpInde. :. 55;

:a chI rlcter[pl us] i
:- charlcterC.inus);
:a chlrlcter[t i..s);
:a chlrleterCdivlde];

:- charact.r[asterisk]i
a 56; DOpTlbC6].OpSyabol
a 87; DOpTlb(7].OpSyIIbol
a 88; OOpTlbCU".OpSy.bol

OOpT.bC1J.OpSy.bol
OOpTlb(2].OpSy.bol
OOpTlbO].OpSy.bol
DOpTabt4]. OpSyabo l
OOpTlbC5]. OpSyabo l
DOpTIbCSJ.Oplnd..
DOpTlbC6J.0pInde.
OOpT.b(7J.lIDlnd..

chlrleurC Iou];
chlrle urC rho];
c har.c t er[cOIIlla];

12

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
J'O

J; 331
332
333
334
335
336
337
338
339
340
341
342
31.3 Irocedure Pr int APLSt atefllent;
344-
345 var
31.6 prefix, nl..ll: integer;
31.1 ind..: integ.r;
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365 ~ SError(ErrorInd..:

366
367 vir

368 ~,gCol: int.gO';

369
370 b.gin

DOpTlbC9]. OpSy"bo l := cnaracter[.quals];DOpTabC8].OpInd.. := 89;
DOpTlbC9].OpInd..:= 71;
DOpTabC10].OpSy"bol := chlractO'CNotEquIl];
DOpTlbC10].OpIndox := 72;
DOpTabC11J.OpSy.bol:= charactO'CLossThn.];
DOpTlbC11J.OpIndu := 73;
OOpTobC12J.OpSy..bol := charactO'CLossOrEqual];
DOpTlbC12].OpInd..:= 74;
OOpTlbC13J.OpSy.bo l : = chlrac to'CGroatorOrEqual J;
DOpTabC1n.OpInd.. := 75;
OOpTlbC14].OpSy..bol := charactO'CGr..torThan];
DOpTlbC14].0pIndox := 76;
DOpTabC15].OpSy"bol:= chlractorCAndSy.bol];
DOpTabC15].OpInd.. := 77;
OOpTlbC16].OpSy"bol := charactorCOrSy"bol];
OOpTabC16].OpInd.. := 78;

special character

ChlrTlbC1J.OpSy..bol := charactO'Ccolon];
ChlrTlbC2].OpSy"bol := charactO'CRightArrow];
ChlrTlb(3].OpSy..bol := charactO'CL.ftArrow];
CharTlbC4].OpSy"bo l : = chlractO'CS..all Ci rc l.J;
ChlrTlbC5].OpSy..bol := chlractorCporiod];
CharTlbC6]. OpSy..bol .= chi rac to'CL.ft PI .onJ;
ChlrTabC7].OpSy..bol .- chlractO'CRightParon];
ChlrTlbC8J.OpSy..bol .- chlractO'CL.ftBrackot];
ChlrTabC9].OpSy..bol := chlrlctO'CRightBrack.tJ;
ChlrTlbC10J.OpSy"bol := chlractorCs...icolon];
ChlrTlbC11J.OpSy.bol := chlrlctO'Cquadrangl.];
ChlrTlbC12].OpSy..bol := chlrlctorCspaeo];
SpocTlbC1J.OpSy.bol := chlrlctorCcolon];
SpecTlbC2].OpSy..bol := chlrlctO'CRightArrow];
SpecTlb(3].OpSy.bol := chlrlctO'CL.ftArrow];
SpecTlbC4].OpSy.bol .= charlctor[L.ftPlron];
Sp.cTlbC5].OpSy.bol :a chlrlctorCs...icolon];
SpecTlbC6].OpSy.bol .= chlractorCL.ftBrlck.t];

reduction operator

R.dTlbC1J.OpSy"bol := charlctO'Cplus];
R.dTlbC2].OpSy"bol := chlrlctO'C.inus];
R.dTab(3].OpSy"bol := charlctorCti...s];
R.dTabC4J.OpSy..bol := chlrlctorCdivid.];
R.dTlbC5].OpSy..bol := chlrlctO'ClstO'isk];
R.dTabC6].OpSy"bol := chlrlc torC.qull s];
R.dTlbC7].OpSy.bol := chlrlctorCNotEqull];
R.dTlbC7].OpIndox := 22;
RedTlbC8].OpSy..bol :a charactO'CLossThn.];
RodTlbC8].OpInd.. := 23;
RodTlbC9].OpSy.bol := chlractO'CLossOrEqual];
RodTabC9].Oplndox := 24;
RedTabC10]. OpSy"bo l := chi rlctorCGr..tO'OrEqual];
RedTabC10].Oplndox := 25;
RedTlbC11].OpSy"bol := chlractO'CGr..tO'Than];
R.dTabC1 1] .Oplnd.. := 26;
RedTlbC12].OpSy.bol := charactO'CAndSy"bol];
RedTabC12].Oplnd.. := 27;
R.dTlbC13]. OpSy..bo l : = chi rac t O'COr Sy..bo l] ;

RedTlbC13].Oplnde. ;= 28;
R.dTlbC14].OpSy.bol := choractorCeoi ling];
R.dTabC14J.OpInd.. := 29; R.dTabC15J.OpSy"bol:= charactorCfloor];
R.dTabC15J.OpInd.. := 30;
R.dTabC16].OpSy"bol := charactO'CLarg.Circl.];
R.dTabC16].OpInd.. := 31; digit,COn.Sy"bol] 1;
digits(TwoSy"bol] := 2; digits(Thro.Sy..bol] 3;
digitsCFourSy"boll := 4; digitsCFiv.Sy"bol] 5;
digitsCSi.Symbol] := 6; digitsCS.v.nSy..bol] 7;
digits[EightSymbolJ := 8; digits[NineSYftlbolJ:=

9"
digits(ZoroSy"bol] := 0;

end j fliluptables I;

R.dTabC1].OpInd.. := 2;
R.dTabC2J. OpInd.. := 3;
R.dTab(3].OpInd.. := 4;
R.dTabC4].OpInd.. := 5;

R.dTabC5].OpInd.. := 6;
R.dTabC6].OpInd.. := 21;

b.gin
for ind.. :. 1 to LinoL.ngth ~

be~;n -
1 APLstlt.m.ntCind..] > 6000
then

b.gin
profi. := APLstat...ntClnd..] div 100; writo(chr(profix»;
nUl := APL,tat...ntcind..] - 100-*profix;
wr;te(chr(nl.lll»

.nd
eluwri te(chr(APLstat.",.nt[ind..J»

.n~ .

wrfuln
~

{ prinlapl statement };

integer) ;

Software Tools

lL

H1
H2
H3
H4

'5
6

>77
H8
H9
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

'I"441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

TokenEr ror :. true;
for I!sgCol :. 1 to MUSlg.L.ngth do
--;;r It. (Er rorM.gSC"Errorlnd.., M.gCOn);
writeln; PrintAPLSt.te.,nt { echo stat.ement t.o user };
for MsgCol :. 1 to(positlon - 1) do "rIU(' 'I;
;;:Tt.ln(.chr(charact.r[UI>Arro,,]» r print polntor to ~..r .rror I;

~ I error }i

.

~I"
"h l. (APLUat...nt[po.ition]. charact.r[spac.]) ~ (position

C'---crML.ngth) do
position := pOSition + 1

!!:!!!.
(.kl p.pac.. I;

procedure GetAPLstat..u~nt;

var
""lnputChar: char:

restforPrefix: integer;
Fi rstTry: Boolean;

be,;n
or LineLength := 1 to ~.U"'utLine do

APLstat'flent(LineLengthJ := character(space) I blank out line
};

LineLength := 0: FirstTry:= tr~; position:= 1:
LineTooLong := false;
APLstatetllentC InputAr rayS; ze) := charae ter(OftIfg.);
APlstat""nt(InputArraySize - 1) := character(space)

I set end-of-l ine }; //
repeat

b.g;n
if not fi rstTry then getseg(input) test for 'cr. only };
fTrStfry := false;-
.,hile (not eoln(input» and (not LineTooLong) ~--:rr--Liii";Length < MaxINputLin;-

then
b.gln

LlneLength := LineLength + 1; read<InputChar);

The fOllowing code would be removed for non-CDC installations
Test forPref; x := ordCInputChar);
if (TestforPrefix = prefix1) or (TestforPrefix = prefix2)

then -
b.gin

read(Input Char>;
APLstatellent(LineLength) 4- 100

*
T.stForPrefix + ord(

Inpyt Char);
.nd

in

APLstat nt[LinoL.ngth) := ord(!nputCh.rl
.nd

elRLineTooLong := true
end-

until LineLength <> 0
(reject null lines);

if LIMTooLong th.n SError(71)
.nd I g.tapl.tat...enr-);

~ ltsADigitlT.stChar: int.g.rl: Bool..n;

var
Digltlnd..: APlcharSot;

~ { test to see if input character is a diglt
ItsADigit := false;
for Digitlndex := OneSYlibol to ZeroSymbol do
if T,stCh.r = Character(Oig'Ttlnd.x) then ItsAOigit .- true

!!:!!!.I It.adlglt !; -

~ ItsALetter(TestChar: integer): Boolean;

var
LetterIndex: APLch,rSet;

~ (test to see if input character 15 a letter
-rtSAL.tt.r := fals.;

for Letterindex := aSYlllbol to ISy"'bol do
if TestChar =Character(LetterIndex)- then ItsALetter true

!!:!!!.(itsalett.r
); -

~ CharTo~,.(TestChar: integer): integer;

var
DigitIndex: APLcharSeot;

~~i~
{ chage a character to a nl.lnber }

~ Digit Index := OneSYlllbol to leroSymbol do
--r1 Test Char = character[OigTt IndeJ()

th.n Ch.rToNu. := digits[Digit!ndex1

~ {Chartonl.ll1 };

~ NI.esMatch(Na.eOne, Na.eToo: PackedString): Boolean;

Software Tools

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
.wJ
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

var
Ind..: Inug.r;

~
(... I f two n (Id.ntl fl.r.) ar. tho

Na.lsMatch :- true;
for Inde. :. 1 to I'Ia.VarNu.L.ngth do
If N...On.[lnd..] C> Na..Too[lnd.>! ~ N l'Iatch :. fals.

~ r nam..match I;

proC.dure Tabl.Look\-,>(TestChar, Tabl.L.ngth: int.g.r; tabl.: OpTabl.;

:!.!.!:. Tabl.!nde.: Intog.r);

var
--rnd..: I ntog.r;

~I"
(

check for m...b.r.hlp In a gly.n tabl.
--:riDlelndlx :- 0;

for Ind.. :. 1 to Tabl.L.ngth do
If TestChar a'tabl.[lnd..].oPIy8bol ~ Tabl.lnd.. .. ind..

!!!! I tablelookup);

procedure identifier(~ nHe: packedStrinQ; y.!!. ItsAnldentifi.r:
800 l Ian) ;

var
'a..L.ngth: intog.r;

N.lleTooLong: Boo lean;

b.gln
ItsAnldentifier := fals.; SkipSpaces;
if ItsAL.tt.rlAPlstat...nt[pos I t ion) I

th.n
b.gln

NalleTooLong := false; ItsAnldentifier.- true;
for NaIlOL.ngth := 1 to Ma.VarNam.L.ngth ~ { blank out name
nalle[Na",eLengthJ :;- cha rae ter(space);
Na...L.ngth := 0;
"hil. (ItSAL.tt.rlAPlstat nt[position]» or (ItsADigit(
~st.t...nt[position]» do

bogln (build Id.ntlf1er)"
Na.eLength := NafJIeLength + 1;
if Na...L.ngth c= MuV.rNam.L.ngth
then nalle[Na.eLength) := APLstatentent(position]
erse NalleTooLong := true;
po$Ttion :a:: position + 1

end;
I f., TooLong
then 5£rror(70) name greater than maxlength

.ncr-
.!!!!!lid.nt1fl.r I;

procedure Make""lIber('y!!:' Real~lIber: real; :!!!. 1tsA~.ber: Boolean);

var
sign, OigitCol.l'lt: integer;

~ { convert character input string to numerical representation
ItsAtUlber := false; SkipSpaces; sign:= 1; DigitColl1t:= 0;
R..l_bor :s 0.0;
if (APlstat..ont[positlon) . charactor[n.gulv.]) ~ (ItSADig;tI- APlstat..ont[positlon]»

th.n
~

ItsA ber := true;
if APL.tat..ont[po.ltlon] s characur[n.gat Iv.]
tnen ~ sign := - 1; position:- position + end;
if not ItsADlg itlAPlst.to..nt[pos i t Ion])
th.n
--oig in

SError(1) (digit mu.t follow a mlnu. .Ign I;
ltsA_bor := fal..;

end
.lu

bogin (form whol. nl.ll1b.r portion

~ ItsAOigit(APLstatellent(position) ~b.gin
R..l bo. := 10.0 . R..l b.r + CharToNu.(APlst.t...nt

[position);
position := position + 1

~
if APLstate.ent(position) :: character[p.r;od)

then
b.gln

position := position + 1;

~ ItsADig;t(APL.tat...nt[position]) ~begin { rorm fractional portion }

Real,."..ber := Real"'.Mr + CharToNu.<APlstate.ent[
po.it;on]) . ..p((- 1.0 - DlgitCount). 2.3025851
I;

DigitCol.l1t := D;gitCo\l\t + 1;
position := position + 1;

end.
2..!.Oi~itColSlt 0 ~

begin
SError(21 { digit. ..u.t folIo" a d.cl..al point };
ItsA,..ber :s false;

.nd
end;-

13 !

J

R~alMJllb~r .-
~nd

~nd -
~nd fmakeanlMnber

575
576
577
578
579
5~0
581 function JIIIonadicR~ference: Bool~an;

582
583 ~
581. SubPosition, Tabl~Index: int~ger;

585
586
587
588
589
590
591
592
593
59~
595
596
597
598
599
600
601
602
603
6O~
605
606
607
608
609
610
611
612
613

_

614
procedurf OyadlcOpCheck;

:; ~ var

617
Tablelndel(: integer;

618
619
620
621
622
623
62~
625
626
627
628
629
630
631
632
633
63~
635
636
637
638
639
6~0
6~1
6~2
6~3
6~~
6~5
6~6

:~~
~nd I

649
650 proc~durt Ch~ckOthuTables;
651
652
653
654
655
656
657 ~ Neltlbn8lonk: int~g.r;
658

"'Wo'
661
662
663
664
665
666
667
668
669
610
671
672
673
674
675

I;

b~gin I see if operator is monadic within context of input lin~
fIIonadicReference := fals~;
if .wTokenPtr" .NextToken" ..noun StatEnd

then JlbnadicReference := true
else

b~gin
SubPosition := position - 1;
whH~ (SubPosition > 0) and (APlstat~.~nHSubPosition]
---C;:;aracter[space]) do -

SubPosition := SubPosition - 1 (get last non-blank I;
if SubPosi t ion <> 0 tl'u~n
-Tabl ~Look~ (APLs tat;;ii;nt(SubPosH ion], 6, Sp~cTab, Tabl ~Indel)

if (Tabl~lnd~1 <> 0) or (SubPosHion = 0)

th~n JIIIonadicRefC!'rC!'nce:= true
el se
if (Ne-.,TokenPt r" .Nex tTok~n" .no <> For.Res) and (NewTokenPt r

-.. .Nt.tToken" .noun <> ForliArg) and (NewTokenPtr''' ..Ne.tToken
.noun <> GlobVar) and (~wTokfnPtr" .'-xtToken" ..no..., <>
constant> and (APLmt8ent[$ubPosition]<> character[
period]) a;:;(j(APLstatelitntC$ubPosition] <> char.cter[
RightParen» and (APLstatMent[$ubPosiHon] <> character[
RightBrack~t])

then Monad;cRtferenCf .- true
end-

~ r.onadicreference I;

begin
TableLookl.b(APLstate"'~nt(position], 16, DOpTab, TableoIndeox);
if Tabl~lnd.. =0
the-n

b~gin
TableoLook~(APLstatellent(p05ition], 12, CharTab, TablfInd~x);
if Tabl~lnd.. = 0
then
--rf APLstatement(position) = characteor(SouthCap]

then
b~gin

OldTokenPtr := SaveTokenPtr; dispose(NewTokenPtr);
NfwTokfnPtr := SaveTokenPtr; position:= LineLength + 1;

end { t.his was a comment - ignore remainder of line }

eluSError(4) I invalid character encount.ered)

el~
beain

(special character encountered
~wTokenPt r'" .noun : =SpfcOper;

N~wTokfnPt r'" .CharIndx := TableIndex
~nd

fnd -
elu
~ MonadicRfference

t'l;en SError(74) t monadic referenc~ to dyadic op~rat.or)

tTSi
bfg;n { operator is dyadic)

NewTokenPtr noun := DyadOper;
NewTokenPtr" .DOpIndx .- TableInd.x

~
dyadicopcheck };

var
r.blelndel: integ~r;

CIokInde.. integ.r;

~
ChUndex :. position> 1;

il. (Chk1n~1 < Lin.L."\Jth) !!! (APlstat.untCChklnd~l]
---c1i.r8Ct.r(II'.c.]) do

Chk1l\~1 :. ChUnde.> 1;
lleltlbn8l8flk :. APlstat..~nt(Chklnd.I];

~ I nennonbl.nk I;

~ I cMckoth~rtabl~. I.

if Mu!lt)n81lllk a Chlr.cttr[fora.rOllh]
i1ien

~l.LoOk~(A~stata".;,tCpoSition], 16, .~dTab, Tabl.lnd..);
if T.bl.lnd.1 .a
tten Slrrorl7Z) I Invalid rNuct10n o~r.tor

'14

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702 procedure TryToGetA~lIber;

703
70~
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
72~
725
726
727
728
729
730
731
732
733
73~
735
736
737
738
739
7~0
7~1
7~2
7~3
7~~
7~5
7~6
7~7
7~8
7~9
750
751
752

~~~
flllction Na.elnVarT.bl.(nau: Pack~dStri"\J; var VarPo;nt~r:

755
---varTibPtrType; TutFuncPtr: PtrFuncTab): iiOOlean;

756 var

~~~
fo\lld: Boolean;

759
760
761
762
763
764
765
766
761
768
769
770
7n prOCfdur. AddNu.ToVarT,bl.(n...: ',ckldSt r;ng):
774
775
776
777
778

e-lse
--;r not J!bnad;cR.f.r.ncf

tli'.nsError(73) I dyad ic reduction reference
0't'"U

begin { operator is valId reduction operator
NewTokenPtr" .noun := R~ductOper;
NewTokenPtr" .RedInd. .- TableIndex;

end;
positiOn := ChkIndex + 1;

end
else
~gin

TablelookUp(APLstatellleont(position], 9, "'OpTab, TableInde.);
if Tablelndu =0 th~n DyadicOpCh~ck
or.. -
--:rf not NonadicRfference ~ DyadicOpCheck;r ,.-

beg;n (operator IS monad ic }

NtowTokenPt r'" .nolX'l := MonadOper;
PWwTokenPtr" .JIIIonlndelC .- Tabl!Index;

.nd;
position := position + 1;

~nd
end {check other tables };

var
~"'beorCOll't: inte-ger;

RealMJllbe-r: re-al;
1tsAMJllbtr: Boolean;

~
-rtUib.rCoII't := 0; NakeoNulllbfr(Re.lMJllbfr, ItsAtt.J",ber);

if not Its" b.r ~ Ch.ckOth~rTables
;rse

twgin (stor~values in value table
newU"wVal Tablink);
N.wVal Tablink. .Nf'xtV.l TabLink := OldVaL TabLink;
OldVal Tablink := NewVal Tablink;
NewVal TabLink" .ForwardOrder := true;
if Funct;onMode then NewValTabLink".IntermedResult := fals~

~ NewVal TabLink":'TiiteorfledResuLt .- true;
sWltch := true:
whH~ ItsA llber do

begin -
Nu.berCount := NUllberColl1t + 1; new(NewValues):
H sw; tch
'then

b~gin
switch := false;
NewVal TabLink'" .FirstValve := NewValues

~nd
elS;-NfwValPtr" .Ne.tValue := NewValues;
NewValues'" .RealVal := Real~lftber; NewValPtr:= NewValues;
M.keMJlllber (Real MJlllber, It sANYllber)

Ne:~=fues" .NtxtValue := nil;
if lIberCo\6\t > 1
th~n
--oi"g ; n

NewValTabL;nk..di.ensions := 1 {
mrnber 1S a vector }:

new(NewDilll); NewValTabLink..FirstDimen.- NewDim;
NewD;". .di.f'Olength := NumberCount;
NewDh," .NextDi.~n := nil

.nd -
~l"

b~gin
N.wVllTabLink..di.ens;ons := 0

{ nl.fnber is a scalar I;
NewVIlTabLink. .fi rstOi"en := n; l

end;
Nf;TO'kenPtr. .noun := constant;
NewTokenPtr" .Val TabPtr .Z NewValTablink;

~d
!!!!!. Itrytog~tan...b~r I;

~ ro-\IId :. fll..; Var""'int.r:. OldVorTlbPtr;
while (VIrPoint.r <> nH) ond (not found) do
-seain - - - -

TIII8 tch(n , V.rPoint~r" .VarNau» and (VarPointer".- FuncTlbPtr. TutFuncPtr) (
tut for gl0b81 var I

than fo\lld :. true
it'ii Var""'inter :. VIr"'"int.." .NeltVorTabPtrana:-

Naii!nvarTabl. :. fOllld;
.!!!!!.

{ n_dnvart.blo I;

bfolin (new variable n_e fncount.ered I
Mw(Na.VorTabl't r); NewVarTlbl't r" .NeltVarTabl't r :. OldVorT.bl't r;
OldVorTabPtr :. IkwVarTabPt,; IkwVarT.bl'tr' .Vorllau :. n...;
Newv.rT.bl'tr",V'IT'bl't.,I' !!!!J

Software Tools

-

719
780
781
782
783
784
785
786
787
188 function Funct;onAlr~adyDefi~d(vlr ".Fund".,:
789 -runcTnde,: Pt rfuncTob): Booleon;
790
791 v..
792 found: Boolean;
793
794
795
796
797
798
799
800
801
802
804
803
80Sproc~ure "'keTokenLink;
806
807
808
809
810
811
812
813procedureProcessFunt ionHeader;
8H
815
816
817
818
819
820
821
822
823
824
825
826
827
828
~2?
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

if NewTok.nP1 r <> ni l
then ---rr(IMwTokenP1 r' ,noun

-)
th.n NewVlrTobP1r' . funcTlbP1 r
.-rse NewVlrTlbP1r' . func TlbP1 r

~ ~dnametovlrtable J;

:. N.wfuncTobP1r:. !!!!.

b.gin
follM:t :z fals.;
whHe (funclndex
-rift> do

iTio,,;Sllatch(func Ind.,' . FuncNa"., NewfuncNa".)
t1i.n found :. t ru<t
;rs; Funclnde. :- Funclnd..- tFuncT.bPtr;

Fu;;(iTonAlreadyDefiMd :z found

~ { funclional reeadydef1ned
};

funclnd., :. OldfuncTlbP1r;
<> !!!!.) ~ (!!2!. found) ~ (1MwfuncTlbl't r <>

begin
new{NewTokenPt r); NewTokenPt r" .Ne.tTaken -=
SaveTokenptr := OLdTokenPtr; OldTokenPtr:=

end { maketokenlink);

OldTok.nP1r;
NewTokenPt r

vir
DUllllyPt r: -Func Tab;

na",', n_eZ, naM.3: PlckedString;
ItsAnldentifier, FuncKe-adErro,.: Boolean;
.riTyIndex: integer;

begin
Func~adError := fatse;
FuncStatements := - 1;

if FirstFunction
then begin FuncStatf!1Rents := 0; FirstFunction:= fatse: end:
irTfylndell := 1: position:= position + 1;
ident i f iere name1, It sAn Ident i f i er>;
if not ItsAnldentifier
then

begin
SError(7) I unrecognizable function'argl.lnent name }:

FunctionModf' := fats. I exit function mode };

FuncHeadError := tru@
.nd

etse
begin

ne",(Ne",FuncTabPt r); Sk ipSpaces;
if APLstatetttent(positionJ = character(leftArrow]

then
b.g;n

NewFuncTabPtr".result ::1: true { explicit result }:
NellfFuncTabPtr".~sultNa.e :a na11:
position := position + 1;
i dent if ier(n.,1, It sAnldent ; f i.r):

2.!.~ ItsAnldentifier then
b.g;n

SError(6)

! unrecognizable name to right of explicit res };
FunCHeadError := true

end
end-

elS;-NewFuncT,bPtr".result := false { no explicit result I:
Sk ipSpaces;
if (position <= lineLength) and (not FuncHeadError)
then - --Wg;n

ident i f ied nMe2, It sAn Ident i f i Ir);
if not ItsAnldentifier
thf'n

b.gin
SError(7) { invalid function'argl.lftent name }:
funcHe.dError := true

.nd
elS;-AriTylndex := 2

encr;-
SkipSpaces;
if (position <= lineLength) and (~ FuncHeadError)
then

b.g;n
identifier(nalle3, ItsAnJd~tifier):
if not ltsAnldentifier
then

b.gin
Serror(9) (invalid function right argl.lnent name }:
funcHeadError := true

.nd
elHAriTylndex :z 3

.n~
Sk ;pS;aces;

Funct;onfltode := true;

Software Tools

.!.!. (position <. LlneLength) .!!!!! (!!2!. Funcllud£l'ror) ~
begin

Sfrror(3)
t 1'1traneous ch.r.clers to r11ht of f'-l'lction Mlder

FuncHe.d~rror :a tr~
end;

cI"-Ar iTy Inde, of
17 -

begin
Ne..FuncTlbPt roO.Ir; ty :a ni ladic;
NewFuncT.bPtr" .FuncNl.e :- na..1;

end;
2:-

begin
HewfuncT.bPtr" ..rity :- lIonadic;
NewFuncT.bPtr" .Func".e :a n..e1;
NewFuncTabPt roO.RightArg :- n..2;
AddNa".ToVI rTlble(n...2);
IMwVlrTlbPtr' ,FuncTlbP1r :. ""wFuncTlbP1r;

end;
3:-

begin
-";;;FuneT.bPt r. ..rit)' :a dyadic:

NewFuncT.bPtr. .LeftArg := n..e1;
N.wFuncT.bPt roO.funcNllle :a n..e2;
NellfFuncTabPtr" .RightArg :~ name3;
AddNa..ToVlrTlble(n...1) ;
NewV.rTabPtr" "FuncT.bPtr := Ne-wFuncTabPtr;
AddNalieToVa rT.ble(n,..e3);
NewVarTabPtr" ..funcTabPtr := NewFuncTabPtr;

end
end tcase };
TrFunct ionAl readyDef i ned(Ne..Func TabPt r" ..FuncNalieI Oullt"'yPt r)

tn.n
b.g;n

SError(S) I funcUon already deflned I;
FuncHeadError := true;

end-
if~~CHeaderrOr then
-b.gin -

dispose(Ne..funcTabPtr) I header no good };

FunctionJlk)de := false t exit functlon node I;
NewFuncTabPtr := OldFuncTabPtr;

.nd
.nd-

end r-processfuncheader };

eeo
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928 procedure DestroySt.t..ent;
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958 procedure ReverseU nkL; st (!!!. ArgPt r: TypeVa l TabPt r);

959
960 vir

961 hold, T..Ptr: "vllues;

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

:~~ procedure plrs.rt!!.!!:. Tok.nTlbP1 r: Tok.nP1 r; vir P1 rToDI: TypeVll TabP1 r);
979
980 !!.!!:.

I;

vir
~u.TokenPtr: "TokenT.ble:

Au,SubrTlbP1r: "SubrTlb;

begin
-rT""Subr TlbP1 r <> !!il

t1i.n
begin

while SubrT.bPtr" ..Last SubrPt r <> nil do
~in

~SubrTabPtr := SubrTabPtr:
SubrTabPtr :a SubrT.bPtr" .L.stSubrPtr:
dispose(AuxSubrTlbP1 r);

.nd.
dispo~.(SubrTlbP1 r);

end;
OuiifOkenPtr := OldTokenPt r;
while Ou.Tok.nP1r <> HoldTokenP1r do

begin -
OldTokenPtr :- OldTokenPtr" .NextToken;
Ou.TokenP'tr := OldTokenPtr

end;
NeWTOkenPtr :s HoLdTokrnPtr;
OldTok.nP1 r :. 110ldTok.nP1 r{ return pointer to end of last good line

~
{ destroystatement };

d; spose(I)u.Tok~nPt r);

~ { rev.rselinkl1stI
V.lPtr := ArgPtr. .firstV.lue; TeaPtr:2 V.lPtr" .NextV.llJe':
while T."Pt r <> nil do

begin --
hold :. T.lIPtr" ,Ne,tVllu<t; T...Ptr" .Ne,tVIlu<t := VllP1r;
VllPtr :. T.lIPtr; T."Ptr:= hold

end;
ArgPtr" .FirstVllu<t' ,Ne,tVllu<t :. nil;
ArgPtr" .FirstVll.. := VllP1r; -; f ArgPt r'" . forwardOrder
then ArgPtr".forwardOrd.r :* fllse
else ArgPtr" .ForWirdOrct.r := true { toggle list order swi tch

endT reverselinklist }:

15

981
982
983
984
'85
186
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
10..9
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1011

VFuncHold, "vfunc { hold while searching I;
AuxOperTabPt r, "OperandTab;
AuxSubrTabPtr, .SubrTab;
AuxRPa,..Ptr: .FParMTab;
AuxLParMPtr, "FParMTab;
ValidExp: Boolean { true if valid expression I;
cnt: integer;
npv' integer { n\lllber of indices I;
assign, assign1' Boolean (assign.in progress J;
Don.SUccessor: Boolean;
DoneParse: Boolean;

procedure errodError-lndex: integer):

var
MsgCol: integer;

~ wnte(' ., Errorlnde.,' I):
for "sgCol ,= 1 to PlessageLength do
wr i te(ErrorMsg5[Er rorlndex, MsgCOl);
writeln; ~ 100 I return to scanner J;

end I error J;

procedure release;

t>eogin { releaseopertab I
OperTabPtr := Ptr"LastOper:
IIIhiLe OperTabPt r" ~LastOper <> n; l do

begin
Au.OperTabPt r : =OperTabPt,.;
OperTabPtr := OperTabPtr" .LastOper:

end;
end {releaseopertab };

dispose (AuICOperTabPt r);

procedure .xpress;on(var ValidExp: Boolean):
forward; -

procedure Rt"turnToCall ingSubr;

var
N.mePtr: "VarTab;

b~gin I rt'turntocall ingsubr }

if SubrTabPtr".CalledSubr".result
th~n

b~gin { place explicit r~sult in opertab }

i.!. not NaIl~lnVar-Table(SubrTabPtr'" .CalledSubr" .Resul tHalle,
Na",ePtr, SubrTabPtr'" .CalledSubr-)

then er- rorC 11)
{ I symbol not found I

;rs;
begin

AuxOperTabPt r := OperTabPt r; new(OperTabPt r);
Oper-TabPtr'" .LastOper := AuxOperTabPtr-;
Ptr-LastOper := Op~rTabPtr;
OperTabPtr".OperPtr := N,lIePtr".ValTabPtri

~nd;
~nd;-

re:tUrn to calling function }

VFuncPtr := SubrTabPtr" .Stat~IICall ingSubr;
~okenTabPtr := SubrTabPtr Tok~nCallingSubr- .Mi!xtToken;
,f SubrTabPtr" .CalledSubr" .arity <> niladic
~en

begin { monadic or dyadic }

AuxRP.rllPtr := RParmPtr: RParIlPtr:= RPar..Ptr'" .LastPar..:
dispose(AuxRParJlPt r);
if SubrTabPtr".CalledSubr".arity = dyadic then
-begin! dyadic only ! -

AuxlPar.Ptr := LParllPtr;
LParllPtr := LParllPtr" .LastPar,,: dispose(AuxLPar.Ptr):

end;
end:

AuxSub,.TabPtr ::1:SubrT.bPt r;
$ubrTabPtr := SubrTabPtr".LastSubrPtr; d;spose(AuaSubrTabPt,.);

~ I relurntoc.llinssubr I;

var
ValidSYM: Boolean;

begin { spec symbol
ValidSYM,. fal.e;; f TokenTabPt,.".noun ~ SOl'cOpe,.
then
--rf TokenTabPtr.,Charlndx' sya then

-begin -
hold :- ToktnT.bPtr:
TokenTabPtr ,. TokenTabPtr..NutToken; ValidSY8:' true;

end;
$p,~Tyii\>Ql ;' Vel idSYM;

~
(spec symbol);

procedure Ca II Subr;

18

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1'"1178
1179
1180
1181

var
PtrToVarTab: "VarTab:

begin (callsubr !
if SubrTabPtr. .CalledSubr" .arity <> niladic
then

begin

if ~ Nam.lnVarTable(SubrTabPt r" .Ca lledSubr" .RightArg,
Pt rToVa rTab, SubrTabPt r" . Ca lledSubr)

then error(32);
1TPt rToVarTab" . FuncTabPt r <> SubrTabPt r. ,C.lledSubr

then error(32) { progr_ logic error. variable n_e of }i

function arS\.ll1ent not found in symbol table }

AUKRPar.Ptr :* RPar.Ptr; new(RParIlPtr);
RParllPtr" .LastPar. := AuxRPar.Ptr:
PtrToVarTab" .OeferedValTabPtr := RParMPtr;
if SubrTabPtr" .CalledSubr" .arity = dyadic

then
begin { if dyadic

if not NamoInVarTable(SubrTabPtr" .CalledSubr" .LeftArg,
- PtrToVarTab, SubrTabPtr" .CalledSubr)

th.n erl"or(33);
1TPtrTovarTab" .FuncT.bPtr <> SubrTabPtr" .CalledSubr
then .1"1"01"(33) { same as error(32) };

A'UX['ParllPtr := LPar",Ptr; new(LParIlPtr);
LPar.Ptr6.LastPar. := AUILParlllPtrj
PtrToVarTab6 .DeferedVal TabPtr := LParmptr;
kParlftPtrA .PtrVal := OperTabPtrA .~erPtr;
AuxOperTabPtr := OperTabPtr:
OperTabPtr := OperTabPtr6.LastOper;
d;spose(AuxOperTabPtr)j PtrLastOper.- aperTabPtr;

end.
RParflPt1"" .PtrVal := ()p.rTabPtr6.OperPtr;
AUIOperTabPt,. := Op.rTabPt r;
Op.rTabPt r := OperTabPt r6 .Last Opel"; di spose (Aux()p.rTabPt r):
PtrLastOper := OperTabPtr;

IPnd;
TokenTabPt r := Subr TabPt r" . C. lledSubr" 6 Fi rst St at eflent" .Nel(tStftlnt:
VFuncPtr := SubrTabPtr6 .CalledSubr6 .FirstStat~ent:

~
{

callsubr l;

~ FunctCall: Bool~an;

var
PtrToFuncTab:.

"
FuncTab;

Na..OfFunc: PackedString:
Val idFn: Boolean:

beg in (functcall
Val idFn := fal se:
if TokenTabPtr" .noun GlobYar
then

begin
Na.eOfFunc := TokenTabPtr" .VarTabPtr" .YarNaIl.;
if Func t ;onAl readyDef ;ned(NaftleOf Func, Pt rTo FuncTab)
then

begin
AuxSubrTabPtr := SubrTabPtr: n~w(SubrTabPtr);
SubrTabPtr" .LastSubrPtr := AuxSubrTabPtr;
SubrTabPtr" .CalledSubr := PtrToFuncTab;
SubrTabPt r" . TokenCall ingSubr := Tok~nTabPt r;
SubrTabPtr-.Stat.flCallingSubr := VFuncPtr;
hold := TokenTabPtr;
TokenTabPtr := TokenTabPtr" .NeoxtToken: Val idFn .- true;

end;
end:

FunctCall := ValidFn;
end { functcall };

procedure ttJnWri te(Aeal No: rea l);

var
pr.fix, root: integer;

SigDig, tolCnt: integer;

~! output a n ber
if RealNo >= 0.0
then write('

"
RealHo, 1£: 2) { oulpul posllive n\.ll1ber

iTii
befn

{ output nesative n ber
ealNo,. - 1.0 .RulNo;

SigOig ,. trunc«ln(RealNo» I (In(10.0)));
for ColCnt :8 , to(7 - 5;gD;g) ~ write(' I):

-rr-character(negative] < 6000
then wri te(chr (charac terCnegat ive]»
or.e

begin
prefh ,. character(negative] div 100;
root ,. character(negative] - ~ . prefh);
write(chr<prefh), chr(root»;

end'
Si~ ,. SigOig + 5; write(RulNo: SigOig, 2);

end
end In\llwr1t1 I;

procedure ~tPutVa l,

Software Tools

118Z
1183
1184
1185

'86
187

11M
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1 ZOO
1Z01
1Z02
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
12H
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1241
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

126'1
1270
1271
1272
1273
1274
1275
1Z76
1277
1278
1279
1280
1281
1282

v.r
ent: int~.r;

AuxV.lto.esPt r: .valUtts;
Oi.Hold, dl..n1, di.en2, dlllen3: int~er;
OutCnt1, OutCnt2, OutCnt3: int~er;
idi a: Int~er;

begin (outputYll)
cnt :- 0; wr1teln; wr; teln;
If not OperTabPtr" .OperPtr" .ForwardOrder

"-iheft'"ieverseLI nkLI.t (OperTabPtr" .OperPt r);
AuiiV.l Pt r :. OperTabPt r" . OperPt r" . Fi rstValue;
Idi :. OperT.bPtr" .OperPtr" .di.en,'on.;
if not (idillen. In [0 .. 3)

ihei> -
~In

--ror ColCnt:. 1 to
"

geLength do
write(ErrorM.gS!"6O, ColCnt]); -
vriteln;

end
elM
--rr Au.V.l Ptr . ~

ihen

be"
n

or CoLCnt :. 1 to
"

geLength ~
write(ErrorM.gi!61, ColCnt]);
writeln;

end
.e.....

if ;dillens =0
ihen begin ~nWr;te(AuxValuesPtr"'.RealVal>; wr;teln; ~
else

begin
dimen1 : = OperTabPt r'" ..OperPt r" ..Fi rstD;.en" .d i.enlength;; f id ;mens >= 2
'then
--cITmen2 := OperTabPtr" .OperPtr" .FirstOimen" .HextD;..n.. .diflenlength
else dimen2 := 1;
'ffTd ;~ns :: 3
t'hen
--cITmen3 := OperTabPtr" .OperPtr"' .FirstDillen"' .He.tD;lIen.. ..HextD;.en" ..dillenlength
else dimen3 := 1;
TfTd i.ens :: 3 then
-begin {

rotat"edimensions
}

Oi.Hold := dimen1; di..en1:= dillen2;
d;.~n2 := d;lft~n3; d;.~n3:= D;IIHold;

fond;
fo~tCnt3 := 1 to di..en3 do

begin - -
for OutCnt2 := 1 to di.~n1 ~
begin -

for OutCnt1 := 1 !2. dimen2 ~
begin

cnt :=cnt + 1;
if «(cnt - 1) lIod 5) =0) and (cnt <>

1)

TIi~nbegin wdt~ln: ...rit~rr- ')i ~
HunWri te(AuxVa luesPt r" . R~al Va

l) i
AuxValuesPtr 0- AuxValu~sPtr" .NextValuei

end;
; fid;!lens >= 2
th~n ~ writeln; cnt:= 0; ~:

end;
writeln; 'IIIriteln;

end:
{ writeln; }

end;

~ outputval I-

~ variable: Boolean;

yar
globOrDummy: Boolean { gord }:

PassedAdj: "VarTab I k);

ra"9: Boolean
{ rd I;

Par.Pt r: "Val Tab { pt I:
Va l idVa r: 800 lean;
Val idlndex: Boolean;

procedure InputV. l:

yar
-'"iuxPt rToDa: "Va l Tab;

AuxVa luesPt r: "values:
Aux2ValuesPtr: "values;
RealV: real:
bOOlv: Boolean:
centr, cnt: integer:
AuxO;menFoPt r: "O;menlnfo;

begin { inputval
cot := 0; position:= 1; AuxPtrToO.:= PtrToO.:
new(pt rToOa); AuxPt rToOa" .Nex tVal TabL;nk := Pt rToD.;
AuxOperTabPt r := OperTabPt r; new(OperTabPt r);
PtrLastOper := OperTabPtr;
OperTabPtr" .LastOper := AuxOperT.bPtr;
()J)erTabPt r'" . OperPt r 0- Pt rToOa; new(Aux2Ya luesPt r);

PtrToDa'" .FirstValue 0= Aux2ValuesPtr;

Software Tools

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1318
1379
1380
1381
1382
1383

for ccntr :. 1 to "-..~eLength do wriU(ErrorMsg.[63, eentr);
W'rTt.ln; re.dln; GetAPlstatMint;
!.!e!!!.

"'akeltl"'ber(RealV, boolv); SkipSplees;
if not boolv
then

.
be~;n

or ColCnt :..1 to ""...geLength do
write(ErrorM.gsr62, ColCnt]); -
writeln; positiOl"l:- 1; cnt:- 0;
Aux2Value.Ptr :. OperT.bPtr" .OperPtr" .FirstVIl...;
for centr :. 1 to "-..~eLength do
write(ErrorM.gs[63, centr); -
writeln; re.dln; GetAPLstatetlent

end
olse

bogin
cnt :. ent . 1; Au.V.l Ptr:. Au.2V.l Pt';
new(Au.2Value.Ptr); Au.V.lue.Ptr" lV.l :. ".LY;
AuxValue.Ptr" .lIutV. l... :. Au.2V.l Ptr;

end;
unt ilPosit ion > L1MLength;
dispo.e(Aux2ValuesPtr); Au.Value.Ptr".IIe.tV.l...:.!!!!;
PtrToOa".InterlledRnult :~ false; PtrToDI".dl.en.lon.:. 1;
PtrToOa" .ForwardOrde,. := tr ;
PtrToDa. .NutVal TabLink :. nil; new(AuxOiunFoPtr);
PtrToOa" .FirstOilJl.n := AuxOTMenFoPtr;
AuxDimenFoPtr" .dill.nlength :8 cnt;
AuxDimenFoPtr" .NextOi.tn := ~

end { inputval };

procedure GttArrayPosition(~ Value.Pt r: TypoValue.PtrJ;

yar
indice: real;

kcnt: integer;
sl: int.ger;

AuxOimenFoPtr: "0;..nln10;

begin { getarrayposition }

---;r-npv <> ParllPtr" .dill~sions then error(35);r 'wrong mDo of subs('r:pts' 1-
sl := 0; AuxOperTabPtr:= OperTabPtr;
AuxDillenFoPtr := Par.Ptr" .FirstO;..n;
for kcnt := 1 to npy do
begin - -

--rr-AuxOperTabPtr. .OperPtr" .di..ensions <> 0
tiien error(35) ('non-scaler indices');
TnaTce := AuxOperTabPtr. .OperPtr" .FirstValue. .R~.lVal;
if indice - 1.0 *

trunelindiee) <> 0.0
then error(31) (

'non-integer indices');

iT"'r\ot (trunc(indice) in C1 .. Aux Dit81enFoPt r'" .di.enlength
-j) -
then error(38) {

'out of range index I I;
ST":= (sl

*
AuxDi.enFoPtr" .dillenlength) + tr~c(indice)

1;
AuxOperTabPt r := AuxOperTabPt r" .LastOper;
dispose(OperTabPtr); OperTabPt r := AuxOperTabPt r;
AuxDill~nFoPtr := AuxDitllenFoPtr" .NextOillen;

end;
V.TUi'sPtr := Par.ptr'" .FirstValue;
while sl <> 0 do { determine which value in t
--r pt(.vaUSv')][.vaU.Y-1)]...[.vaU .y_npy+1)]

{
:= .vaU.y-npy) I

begin y.l~sPtr := ValuesPtr" .NextValue; sl:= sl - 1; end;

~ { getarrayposition I;

procedure Li nkR~sul ts;

vir
PtrToValues: "values;

beg t
(

l1nkre.ult.

i npv =0
then

be~~n1 not g lobOrOu...y
then
if rarg then RParllPtr. .ptrV.l := OperTabPtr" .OperPtr

or.e LPar.Pt?".PtrVal := OperTabPtr" .OperPtr
el'S'e'"PassedAdj. .Val TabPtr := OperTabPtr" .OperPtr

encr-
else
beg ti globOrOUfHIY then ParlllPtr := PassedAdr .Val TabPtr

iTse Par.Ptr := pass-;dAdr .~fe"~dVal TabPtr" .PtrYal;
Ge'tirrayPosi t ion(Pt rToVal ue.);
if OperTabPtr" .OperPtr" .di.ensions <> 0
t1ien .r,.or(36) I 'assigned expression not a scalar' I;
rtrTovalues" .RealVal := OperTabPtr" .OperPtr. .F;rstVllue .

.RealVal;
end;

Au~erTabPt r := OperTabPt r;
OpcrTabPtr := OperTabPtr".LastOperi
PtrLa.tOper := OperTabPtr;

!!!!!.
(l1nkresult.);

di spose(AuKOperTabPt r);

procedure StackPointers;

17

1384
1385
1386
1387
1388

~89
90

.591
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
H38
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1410
1471
1412
1413
1414
1415
1416
1417
1418
1419
U80
1481
1482
1483
1484
1485

v.r
AuxPtrToOa: 'V.l T.b;

PtrToValues, AuXVll~sPtr: "values;

beg in (stackpo inter s
,
if npy 0
then
~

AU)lOp~rT.bPt r := OperTabPt,..; new(OperTabPt r);
OperTabPtr' .La'tOper := AuxOperTabPt r;
OperTabPtr. ..OperPtr := ParrnPtr;
Pt rLa.tOper := OperTabPt r

end
else

~g;n
AuxPtrToOa := PtrToD.; new(PtrToOa):
PtrToDa' .NutVal TabUnk := AuxPtrToOa;
PtrToO.- .Inter.edResult :s true:
PtrToO.'" .di.ensions := 0; PtrToD." .FirstDimen := nH;
Ptr100.- .Forw.rdOrder :. true; new(AuxValuesPtd;-
PtrToo.- ..FirstVaLue := AuxValuesPtr:
GetArrayPos it ;on<Pt ,.ToValues);
PtrToo." .FirstValue" .RealV.L := PtrToValues".RealVal;
Pt,.ToO," lor;rstValue" .NtxtValue := nil;
AuxOpeorTabPtr := OperTabPt r; new(Op.rTabPt r);
OperTabPtr" .LastOper := AuxOp.rTabPtr;
Ope,.rabPt r" .OperPt r := Pt rloD.:
Pt rLastOper := OperTabPt r;

.!!l!!;
~ { st..ckpoint.ers }:

~ Si8pleV.rhble: Boolean;

v.r
V.l idSv: Boolean;

~ (si8plevari.ble)

v8fidSv :z false: rarg:= false: globOrDUlIIIY.- false:
if assign
then

~:n , (TokenTabPtr'" .noun For.Res) ~ (TokenTabPtr... .noun
- GlobVar)
!!!!!!

~gin
globOrDu..y ::a true;
PassedAdj := TokenTabPtr'" .VarTabPtr;
hold := TokenTabPt r;
TokenTabPt r := TokenTabPt r'" .~.tToken;
ValidSv .- true

end
elS;-
~ TokenTabPtr'" .noun := ForllArg

then

~
H NallesMatch(TokenTabPt r'" . VarTabPt r'" . FuncT.bPt r" .
- Left Arg, Toke-nTabPtr" . VarTabPt r'" . VarNalle)
then rarg .- true;
PassedAdj := TokenTabPt r" .VarTabPt r

end
end

elS;-
begin

if (TokenT<ibPt rOo.noun ForlJlRes) or (TokenTabPt rOo.noun
- GlobVar)

~ b~gin
Par.Ptr := TokenTabPtr".VarTabPtr".ValTabPtri
!.!. Par.Ptr <> nil then

beg;n
hold := TokenTabPtr;
TokenTabPt r : = TokenTabPt r- . Hex tToken:
Val idSv := true

end
end-

elw
~g;n

; f TokenTlbPt r- .no , . For.Arg
then
~;n

f N..e tch(TokenT.bPt r" .V.rT.bPt r' . FuncT.bPt r
- .LeftArg, TokenT.bPtr" .V.rTabPtr' .V.rHaIle)
then P.r.Ptr :. LParllPtr" .PtrV.l
;rs; ParllPtr := RPar.Ptr- .PtrVll;
h'OTd :a TokenTabPtr;
ToltenTabPtr :a Tolt.nTabPtr'" tTok.n;
Val idSv :* true;

~;
f'nd;.nd.-

Si.Pl;Vari~l. :a Val idSv;
~ (si.ple variable);

procedure inde.(:!.!!:. Val;dl: Boolean);

v.r
V.l ;dE1, VaUdE2: Boolean;

18

1486
1481
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1501
1508
1509
1510
1511
1512
1513
1514
1515
1516
1511
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
15n
1534
1535
1536
1531
1538
1539
1540
1542
1543
1544
1545
1546
1541
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1511
1512
1573
1514
1515
1576
1571
1518
1519
1580
1581
1582
1583
1514
1515
1586
1587

begin I index
ValidI := false:
if v.lidE1
then

begin
npv :=

, I no. of index expressions }.

white SpecSymboL(XSemicolon) do
begin -

npv := npv + 1; fxpression(ValidEZ):
if not ValidE2 the-n error(39):

{ "linval id index ~;pr;ssion' 1
end.

Yam; := tru!!':
end;

end {index l;

express ;on(Va l idE');

begin (variable
)

ValidVar := false; npV:= 0:
if not assign

then
--rf SpecSYlllbol<XQuadSYIII)

the-n begin InputVal; ValidVar:= true ~
el se

begin
if SpecSy..bol(XRightBracket)
then

b~~in
, ndell (Va l idIndell):
if (not Vat idlnd.,) or (not Sp~cSy.bol(XLeftBracket»
tfien~ror(31.) { In;alid"index expression }i

end.
i f---si~pleva r i ab le
then begin StackPointers; ValidVar:= true end

end
else-
-rr SpecSy.bol<XQuadSy.)

then ~ <>.JtPutVal;
else

be-gin
if SpecSYlllbol (XRightBrackeU
then

begin
index (Va l id Index);
if (not Validlnd~,) or (not SpecSy.bol(XLeftBracket»
then--error(34) { in;'";Ud1ndex expression };

ena;-
i fS'i"plevariable
then begin LinkResults: ValidVar:= true; end;

end.
"ariabT~ := ValidVari

~
{ variable };

Val idYar := true ~

procedure pri..ary(~ "al id: Boolean) {

var
ValidX: Boolean:

assign: Boolean;

recursive entry };

~ vector: Boolean;

var
vec: Boolean;

begin (
vector--;ec := false;; f TokenTabPt r" .noun

then
begin

Au.OperTabPtr := OperTabPtr: new(OperTabPtr):
PtrL.astOper := OperTabPtr:
OperTabPtr- .LastOper .;_e AuxOperTabPtr;
Op.rTabPtr" .OperPtr := TokeonTabPtr" .Val TabPtri
hold := TokenTabPtr:
TokenTabPtr := TokenTabPtr" .NrlltToken:

end;
vector :- 'lee;

.!!!!!
{ yec t.or }

:

constant

V'ec := true;

beg;n I pri...ry
--;arid :- true:

if not vet tor
then
~1n

.ssign :- fllse;
if not v.r;able
then
--rr Spec$Y8bol<XR;ghtP.r)

then
beg;n

..pr.ss ion{Val idX);
if not V.l ;dX
ih.ntrror(14) ('non-valid exp within parens'
i'rit
--;T not Sl!fCSY8bOlIILfftPlr)

then
-.rror(15)

(
'rilht paren not balancf'd with left parent

!!.!!. val id :. true

Software Tools

1588
1589
159r.
15~1
1592 end;
1593 !!!!

r-priury);
1594
1595
1596 procedure e.press ion
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
16B
1614
1615
1616
1617
1618 ~ .op: Boolean;

1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639 ~ dop: Boolean;

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1611
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
16M
1687
1688

-elM
--rr not FunctCall then vil id :" false
ors~ CallSubr;-priury(valid); end;

./

recur' stY It !;

vir
Donebp, V.lldPrl, V,lIdFunc, VllIdA,sn: Boolean;

cod.: integ.r;

procedure u,igl'llent(!!!. valida: Boolean);

begin (usIal'llent
v.lIda :" false;
If $pecSyabol<XleftArrow)
then

begin
.ssig" :z true; Iss;gn1:- t,.ve;
if variable then \I.lid. := true
irSterror(!) tresull of an assn
vaLida :2 true; 1155;9n:= false;

end;
end {'SIignnent I;

nol a valid variable

Vir
Val idM: Boolean;

beg;~
(mop)

Va idfll := false;
if <TokenT.bPtr' .noun PIonadOper) or <TokenTabPtr' .noun
- ReductOper)
then

be~~n, TokenTabPt r' .noun =PIonadOper
ITen code := MOpTabCTokenTabPtr' .lIonindexJ.OpIndex
erse code := RedTabCTokenTabPtr' .RedInd.J.OpInde.;
!iOTd := TokenTabPt r;
TokenTabPtr -z TokenTabPtr".NextTok.n; ValidM:= true;

end-
'IOP:~ Valid";

~
(mop);

vir
-VatidD: Boolean;

beg;~ (dop)

Va idD :2 f.lse;
if TokenT.bPt r' .noun = Dy.dOper
tlien

begin
code :. DOpTabCTokenT.bPtr. .DOpInd.J.OpInde.;
hold :. TokenT.bPtr;
TokenTabPtr := TokenTabPtr" ._.tTak.n;
if (code> 80) then V.l idD :. true
;Lse ----
---rfTokenTabPt r" .noun = SpecOper

t'hen
--n- SQecSy..bol(XPeriod)

then
begin

; f TokenTabPt,.A.noun
==

DyadOper
t1ien

b~gin
if DOpTab(TokenTabPtr' .DOp Ind.]. Opinde. <= 80
then

begin
code :. code. (100 . DOpTab(TokenT.bPtr'.

.

DOpInd.], OpInde.);
hold := TokenTabPt,.:
TokenTabPtr := TokenTabPtra .He.tToken:
Val idD := t,.ue

end
else-e,.rod21)

encr--
elu
if TokenTabPt r& .noun = SpecOper

then
begin

if SQecSy..bol(XLittleCircle)
th~n

begin code := 10
*

code: V.lidD:- true
end

elu~,.,.or(26) {
'inval out.er prod exp'

en~
el"error(26)

'invalid inner product. exp

same as above
end-

elS;-ValidO := true
elseYaLidD .- true:

end;-
doP:= ValidO:

Software Tools

1689
1690
1691
1692
1695
1694
1695
1696
1697
1695
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

}; 1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
177l
1773
1774
1775
1776
1777
1778
1779
1780
1781
178l
1783
1784
1785
1786
1787
1788

!!!!!
(dop) ;

~ Its90olean(test: reaU: Boole.n;

be~:n, <test =1.0) or <test" 0.0) ~ Its800lean :. true
or.. IU900lean ,. false

end(i tsboolean);

procedure DyadCOIOP(v.r SHoat: real; v.lue: re.l; code: Integer);
I compute re.ult ony.dIc oper.tion

}

begin
else code of--r left CO'd.. - reduction opa .

2, 52: SHoat \" vllue . SFloat
3, 53: SFloat I" v.lue -SFloat
4, 54: SFloat :. v.lue SFloat
5, 55:

if SHoat. 0.0
ITen error(20) I .tt..pted dIvIsion by zero
iTSe SHo.t :" value I SHoat (dIvIsion I;

6,56:'
if value> 0.0
t"'hen
---sFloat :. exp(SHoat

"
In(v.lue))

{
n\.l'l1ber raised to a power}

else SHoat := 1.0 I (exp(SHoat . In(.bs(v.lue))));
21~:

if value =SHoat! equality!
!Lse SFlo.t :. 0.0;

22;-1'[:
; f vaLue <> SFloat { inequality
!Lse SHoat :. 0.0;

23;73:
;f vaLue < SHoat { less t.han }

!Lse SFlo.t :. 0.0;
24-;74:

if vaLue <=
then SFloat
eTs. SFloat

25~:
if value >=
then SFloat
iTSe SFloat

26~:
; f va Lue > SFloat { greater than)
orse SHoat :. 0.0;

27;-11:
if (ItsBoolean(v.lue» !!!!! (It,80olean(SHoat»
then
-rf (v.lue =1.0> .nd (SHoat. 1.0) (.nd

then SHoat :. 1.0
erse SFloat :. 0.0

eLse-e,.ror(19) (value not. boolean):
28~:
if(ItsBool..n(v.lue» .nd (It,Bool..n(SHoat»
then ---rf (value. 1.0) or (SFlo.t = 1.0) [or

then SHo.t :. 1,a
eTs. SFloat :" 0.0

eLue,.,.or(19) (value not boole.n);
29:-

if value> SHoat (...1 or ceilIng
then SHoat := value;

30:-
if value < SFloat { 8iniml.lrl or floor}
then SHoat :a vll~;

31:-
if (v.lue

"
SFloat) < 0.0

then ,,.,.or(50)
(

nI.II'Ibel'" and base of 11fferent sign
iTSe
~loat :. (In(.bs(SHoat))) I (In(abs(value)))

{ log to a ba.e }

end { ea.e
}

enO(dyad eomp);

rIght code. - dy.dIe
(addItIon);
(aubtraetion);
(aultlpl1cation);

~ SHo.t :. 1.0

~ SHo.t := 1.0

.

:-

1.0

SHo.t tIes. than or equal to I
:. 1.0
:= 0.0;
SHoat t great.er than or equal t.o

}

:. 1,0
:. 0,0;

~ SHoat .. 1.0

procedure Inde.GenerAtor(arg: TypeVa l TabPt r);
(

monadic iota operator I

vir
iotlIndex, TopVaL~: integer:

begin
--rr-.rga .dillensions <> 0

then error(Z1) (argl.lrlent not scalar
iTSe
"'iT argO .Fi rstValue' .Re.lVal < 0.0

t"hen error(22) { argument is negative
erse
--rf (.rg'.FirstV.lue'.RealV.l) - (1.0. trunc<.rg".

- Fir,tV.lue' .RealV.l» <>0.0
then erro,.(Z3) { arglAnent is not an integer}
iTSe

begin
new(NewV,lTabU nk);
OldV.l T.blink' .NextVal T.blink :. NewValTablink;

ops)

19

J

1789
1790
1791
'792

'93
'94

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

136
,37

.838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
185lJ
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

1871
1872
1873
1874
1875
1876
1877
1878
'879

~8O
,881
1882
1883
1884
1885
1886
1887
1888

Ne..ValTablink. .N..tVal Tablink := nil;
N""Val TebLink'" .ForwardOrder := true:
NewValTabLink".lnter.edResult := true;
NewValTabL;nk"'.dillensions:= 1 (result is a vector I:
ne"(Ne,,O;.>; NewValTabLink"'.FirstDil'llen:= Ne~D;..;
TopValue := tr...,c(arg" .FirstValue" .RealVaL>

(last index generd };
Ne..Oi.. .di.enlength := TopValue;
NewOi .NextDi.en := nil: iot.Index:= 1;
switch :a true; -
..hile iotaInde. <= TopValue do

b<Pgin
new(NewVal~s); Ne"Val~s" .RealVal .- ;otaIndex;
if switch
then

b<Pgi~'v tch := false:
Ne..ValTablink..FirstValue := Ne..Values

end
elMNe..ValPtr. .Ne.tValue := Ne..Values;
NiWV.lPtr := NewValues;
iota Index := ;ot.Index + 1

end'
if--;;itch
tnen
--rii"..Val Tablink. .Fi rstValue := n; l

{ result is vector of leng~O
else NewValues" .NextValueo ": ni l

en~ -
~

(iiide.generator);

rOCedure ravel(arg: TypeVal TabPt r);

IIOnedic COlI" operator }

var
el..ents: ;nt~er;

~
ne..(Ne..Val Tablink);
OldVal Tablink. .Ne.tVal Tablink := Ne..Val Tablink;
Ne..Val Tablink. .Ne.tVll Tablink := nil;
Ne..Val Tabl ink. .Inter.edResul t := t rue;
NewValT,blink" .For..ardOrd~r := arg" .ForwardOrder;
Ne"ValTabLink".di8ensions :=- 1

{ result is a vector };
ne..U""D;.>; Ne"ValTabL;nk" .FirstDi.en := HewD;fI;
NewOi." .~xtD;8en :c ni li s"itch:z true;
VllPtr :=- arg" .FirstValue; elMents:= 0;
..hile ValPtr <> nil do
~ (duplicate values into result)

ne..(Ne..Values); Ne"Vllues..RealV.l:= ValPtr..RealVal;
eluents :a elellents + 1;
if s..itch
tiien

b<Pgi~
s..,tch :::1 false;
Ne..ValTablink. .FirstValue := Ne..Values

end
eluNe..ValPtr. .Ne.tV.lue := Ne..Values;
NiWValPtr := Ne..Values; ValPtr:= ValPtr. .Ne.tValue

end;
NeWir." .di.enlength :. ele.ents;
if s..itch then Ne..ValTablink. .FirstValue := ~
else Ne..Values":'Ne.tValue :. nil

end'"""{ravel }; -

procedure ShapeOHarg: TypeValTabPtr);
{ lIIOfIadicrho operator }

~
ne..(NewValTablink);
OldVal Tablink" .Ne.tVal Tablink :. NewValTablink;
Ne..ValTablink" .Ne.tVal Tablink := nil;
Ne..ValTablink". Inte...edResul t :. trUe;
Ne..val Tablink" .For..ardOrder :. true;
Ne..valTablink".di.ensions :. 1 (result is a vector);

(NewDI.); Ne..OI." .di.enlength :. argO .di.ensions;
Ne..valTabllnk..FlrstDi..., :. NellOi.;
Ne..Oi." "1IIItDi..., :. nil; s..itch:. true;
OI8Ptr :. arg""FlrttDi8en;
..hile OI8Ptr <> ~!!2

begin I arg\Dent dl.~nslonl bf'COIIeresul t. values
new(NewValues) ;
Ne..Values. .RealVal :. Oilll'tr" .di.enlength;
if s..itch
tiien

begi~
sv tch :a falle;
Ne..Vll Tablink. .Fi rstValue :. Ne..Values

end
elMNe..ValPtr" .Ne.tValue :. Ne..Vllues;
NiWValPtr :. Ne..Values; Oi.Ptr:. Oi.Pn..Ne.tOi.en

.nd. .
; (s.;it eh
tiien
"Iie..Val Tablink" .Fi rstValue :. nil

t result is a vector or len&th 0
}

else Ne..Values" .Ne.tValue :. nil
end! Ihapeor I; -

20

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
19()4
1905
1906
1907
1908
1909
1910
1911
1912
1913
19U
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
19B
193~
1935
1936
1937
1938
1939
19~0
19~1
19~2
1943
19~~
19~5
19~6
1947
19~8
19~9
1950
1951
1952
1953
195~
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

procedure reduc t ion(arg: TypeVa l TabPt r);

var
(otllter, Rowlength: integer;

SFloat: real;

begin
if (arg" .di.ensions =0)

£!: (ar9" .FirstValue =!!il)
then
-error(24) I argllnent is a scalar or vector of length zero}
.l se
if (a"9" .d;m~sions =1) and (arg" .F;rstOilll~n" .d;.enlength

-=1> -
then ~rror(51) { argllllent is a vecto" of length one}
;T"5i

begin
new(NewVal Tablink);
OldVal Tablink" .Ne.tVal Tablink := Ne..Val Tablink;
NewValTablink".NeJltValTabLink := nil;
NewYalTabLink".lnterliedResult := trUe;
if arg" .ForwardOrder then ReverseLinkList<arg);
NewVal TabLink" .ForwardOrder := false;
NewVal Tablink" .di.ensions := arg" .dimensions - 1;

Di.Ptr := arg".F;rstD;lIIen; switch:= true;
while OillPtr" .NeJltDillen <> nil do

begin t build dimensions or-resul t }

new(NewDi 1ft);
if switch
ITen

begin
switch := false;
NewValTabLink".FirstOi"en := NewOi.

end
etse-NeowPtr" .Nt'xtOi.en :z NewDill;
N;;Di." .di.enlength := OillPtr" .di.enlength;
NewPt,. .- NewO;.; Di.Ptr:z Di.Ptr" .fWxtDilien

end;
ifswi tch
then
-";-wValTablink'".FirstOi.en := nil

I arg is vector,result is scalar
else NewD;"," .NeJltOimen := nil;
iiOWCength := OimPtr" .dillentength;
ValPtr := arg".FirstValue; switch:= true;
while ValPtr <> nil do

begin { performreduction}

SFloat := ValPtr. .RealVal
{

snoat gets last value in row};
V.lPtr := YalPtr...Ne.tValue;
for counter := 2 to Rowlength do
begin - -

DyadCollp(SHoat, ValPtr" .RealVal, code);
ValPtr := ValPtr. .Ne.tValue

end.
ne;("N;wvalues); NewValues" .Real~aL := SFloat;
if swi tch

tiien
begin

switch := false;
NewValTablink".FirstVaLue := NewValues

end
elS;-NewValPtr'" .HextYalue .- NewValues;
NewValPtr :~ NewYalues

end;
NewYalues'" .NeJltYaLue := ~

end;
end { reduction};

procedure monadic(arg: Ty~Yal TabPtr; token: TokenPtr);
(operations wi th codes between 1 and 31 J

begin
*s~oken".noun =ReductOper ~ ,.eduction(arg)

~ code> 20
tiien
-case code of

-z1: Inde;;(;enerator<arg);
22: ShapeOHarg);
23: ravel(arg)

end (case)
elM

b<Pgin
new(Ne..ValTabl ink);
OldVal Tabl ink. . Ne.tVal Tabl ink :. Ne..Val Tabl ink;
Ne..ValTablink" .Ne.tVal Tablink :. nil;
Ne..ValTablink".Inter.edResult :. true;
Ne..Val Tablink" .For..ardOrder :. argO .For..ardOrder;
Ne..Val Tablink" .di.ensions :. argO .di.enlions;

slIIitch :- true; Oi.Ptr:- ar9- .FirstO;lIen;
..hile Oi.Ptr <> nil do

b.gin t dupl ic'i"le dimensions of arg into rt'sul t
n.v(N.wOi II);
NtwO;." .di.enlength :- Oh.Ptr" .difllf,nlength;
if s..itch
tnen
liig i~Sill tch :a fils.;

NewValTabLink..firstDlun :. Ne..Oilll
~

Software Tools

.,.
I

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
Z088
2089
2090
2091
2092

else NI..Ptr" .Nt.tOi..n :- NewDi.;
NhPtr :- NevOi.; DillPtr:a Oi"t,.'" .NeltO;..n

if ';=;tCh
th.n
-';;-"valT,bLi"k".FirstDilien :a nH (result is a scalar ~
else Newt;.'" .Nt.tO; n :- nil; -
iWlTch :- true: V.LPtr :'8"irg" .FirstV.luei
whiLe V.lPtr <> nil do

begin --
n.wU.ewV,l ves);
if switch" true
th.n

b.gin
sw1tch :a fllse;
~wV.l TlbL;nk' .Fi rstV.lu. ,. N.wV.lues

.nd
.lu"'wV.lPtr' tV.lue .. N.wV.lues;
iiWV.lPtr :a NewY.lues;
CIS' cod. of

r: -
if ItsBool..n(V.lPtr' .R..lV. I>
- (logicll n.gatlon)
then
-;r.wV.lues".R..lV.l ,. 1.0 - V.lPtr" .Re.lVal
et,. ,rror(19) { value not boolean }:

2,-
N.wV.luts" .R..lV.t ,= V.lPtr" .R..lVal

no-op };
3,

N.wV.luts" .R..lV.t := 0.0 - V.lPtr" .R.alV.l
{ negat ion };

4,
if ValPtr" .R.alV.l > O.O! Slgn""
th.n "'wValuts" .R..lVal ,= 1,0
erse
--rt ValPtr' ,RealV.l < 0.0

then NewValues".Reall/at := - , .0;
5,

if ValPtr' ,RealVal =0.0 (reciprocal)

then ,r,.0,.(54) (attempted inverse of zero
iTS'O
-;r.wValues'.R..lVal ,. 1.0 I ValPtr".RealVal;

6: Nt.Values' .RealVal :. e.p(ValPtr" .R..lVal>
end I case };
ValPtr ,= ValPtr" .Nt.tValut

end:
ifS';itch thtn NewValTabL;nk" .FirstV.lye. .- nil
else NewVal~NtJCtValue := nit

encr- -
~ (monadic }i

procedure catenate(Left ."9, Right Arg: Type-Va l TabPt r);
{ dyadic canma operator - Joins 2 arguments I

var
Resul tLength: integer;

be~ ~n
{ catenate }

1 (RightArg'" .di.fl'sions > 1) or (leftArg'" .di.~sions 1)

then error(S3) { arglMnent(s) wUh rank greater than 1
else

begin
new(NewVal Tabli nk);
OldY.l TabLink' .Nt.tV.l TabLink
NewVal Tablink" .Nt.tVal TabL;nk
NewVal TabL1nk'" .1nter.I!dResul t
if not leftArg'" .ForwardOrder
theii"R'everseL; nkl i st (le ft Arg>;
i""f"not R;ghtArg" .ForwardOrder
thenReverseLinkLi st(RightArg);
NewVal TabLink'" .ForwardOrder := true;
NewVal TabLink'" .dimensions := 1 { result is a vector I;
new(NewO;.); NewValTabLink".FirstDi.en:= NewOim;

NewOi." .NextD;.en := ni l; Resul tLength :: 0;
if LeftArg" .di.ensions: 0
then
-yesultLength := ResultLength 1 {

left arg is a scalar
else
-resul tLength ,= Resul tLength Left Arg".F;rstOi..en' .

di..nl~ngth;
if RightArg' .di.ens;ons =0
then
-resu~tLength := ResultLength 1 I right arg is a scalar
else
-resul tLength := Resul tLength RightArg- .Fi rstO;"en".

diillenlength;
NewOi.- .di.enlength := Resul tLength;
if ResultLength =0
then
--;j;wV.l T.bLink" .Fi rstValue := nil

(result Is vector of lengthO
else

be9i~
{ transfer values to resul t }

Le tV.lPtr :. LeftArg'.FirstValut;
while LeftValPtr <> nil do

begin (transfer lill;;:-g values (if any)
new(NewValues);

if sw; tch
then

:= NewValTabLink;
:= nil;
:=~;

switch := true;

Software Tools

1
t

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
21~9
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

btg17
swotch :- fal.e;
N.wV.l TabLlnk'.Fi "tV.lue :. N.wV.l....

end
eluNt.V.lPtr. .Nt.tV.l... :. Ne.V.lue.;
N;WV.lu..' IV.l :. L.ftV.lPtr. IVal;
NewV.lPtr :- NewV.lues;
LeftV.lPtr :. L.ftV.lPtr. tV.l...

.nd;
RightV.lPtr ,. RightArg' .'irstV.l...;
.hile R;ghtV.lPtr <> nil do

b.gin (tr.nsfer right ;':-1 values (if .ny)
ne.(N.wV.l) ;
if ..ite h
then

begi7
S\II tch :a f.l..;
N.wV.l T.blink' .F! "tV. I... :. NewV.lue.

.nd
eluNtwV.lPtr- .NutV.l... :. N,wV.lue.;
N;WV.lue.' .Re.lV.l :. RightV.lPtr' .11..lV.l;
NewV.lPtr :- N.wV.l s;
RightV.lPtr :. RightV.lPtr' .Nt.tV.lue

~
NewV.lues'.Nt.tV.lue :. nil

end I transfer of values }-
end -

end (catenate };

procedure Ind..Of (LeftArg, R; ghtArg: TypeV.l T.bPt r);

dyad ic iota operator }

var
Maplndex, ;count, TestLength, OneMore: integer;

begin (inde.of)

if leftArg" .dimensions <> ,
ITen error(29) { left argl.J'llent is not a vector
~

begin
new(NewVa l Tabl ink);
OldV.l T.bLi nk' . Nt. tV. I TlbL ink
Ne.Va I TabL; nk' . Nt.tVa I TabL ink
NewVal TabL ink'" . InterliedResul t
if not LeftArg" .ForwardOrder
thenReversel; nkL i st (leftArg);
NewVa l TabLi nk" . ForwardOrder :* R;ght Arg" . ForwardOrder;
Ne-..Val TabLink" .dimensions := RightArg"' .di.ensions;
if R;ghtArg" .dillensions =0
then
~wVal TabL;nk" .Fi rstO;.en := nil{ right argr.rnent is a scalr.}
else

begin { build dimensions of result}
switch := true; Oi.Ptr::I RightArg'".FirstD;..n;
while DimPt r (> nil do

beg;n - -
new(NewOi.)i
; f swi tch
tiien

beg;n
sWltch := false;
NewValT.bLink".FirstDi.en :* Ne..Di.

end
elHNtwPtr. .Nt.tDi.en :- NewOia;
NewDi.'" .di.enl.ngth :a Di.Ptr" .diilltnlength;
NewPtr :: NewDill; Di.Ptr.= OfttPtr'".NtxtDi.en

Ne~~" .Nt.tD;..en := n; l
end; -

swit"Ch := true; RightValPtr.- RightArg'".FirstValuei
while RightValPtr <> nil do

begin
new(NewVa lues);
if swi tch
then

beg;n
switch := false;
NewVal TabLink- .Fi rstV.lue :z NewV.lues

end
else~wValPtr' .Nt.tV.lue ,= NewV.lues;
'i"'COUnt := 1; LeftV.lPtr:= L.ftArg".F;rstValuei
restLength := LeftArg' .Fi rstOi"en. .di.enl.ngth

I length of left arg};
OnePlare ,= Test Length + 1(length of left arg plus one);
Maplndex := OneMor.;
while (ieount <= TestLength) .nd UI.plndu . OnePla..) ~beg;n

try tj
fmt~~~v:!~~- ~~~t~~~ :r'i ~~~t.~~ r!~ ~:~. rg

then llaplndu:. icount(value m.tch);
;count := ;count + 1;
LeftV.lPt r := LeftValPt r' .Nt.tV.l...

end.
Newvalues. .RealV.l :s MapIndex;
NewV.lPtr := NewValues;
RightV.lPtr := RightV.lPtr' .Nt.tV.l...

end
if no match. index becOlles one 80re than lenlth of left .rl }

:= NewValT.bLink;
:= nil;
:= tr=Ue;

21

2195
2196
2197

198
,99

l200
2201
2202
2203
2204
2205
2206
2201
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2221
2221
2229
2230
2231
2232
2233
2234
2235
2236
2231
2238
2239
2240
2241
!242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
225?
2260
2261
2262
2263
2264
2265
2266
2261
2268
2269
2210
2211
2272
2213
2214
2215
2216
2211
2211
2219
2280
2211
2212
2283
2284
2285
2286
22&7
2itll

22"
2290
2Z91
2292
229S
2ZM
2m

it"'

NewValuu-.Ne.tValue :s ~
end

end (index or);

procedure ruhape(~eftArg, RightArg: TypeVal TabPt r);

dyadic rho o~rator _ change di.mensions of

var
Resul tLength, ele..nts: intf'ger;

DiltPtr: "Di8enlnfo;
NewPtr: "values;

beg in { reshape }

--rfLeftArg" .d;.~s;ons > 1
tn,n error(56) (left argument not a vector or a scalar
i'r.e

begin
nl'w(NewVal TabL; nk);
OldVal Tab~ink" .Ne.tVal TabLink
NewVal TabLink- .Ne.tVal Tab~ink
NewVal T.bLink" .1nter.~Resul t
if not LeftArg" .ForwardOrder

thenReversel; nkL; st (LeftArg);
Tf"""'not RightArg" .Forwar-dOrder
then-Reversel inkL; st (Ri ghtArg);
'iiiWYal TabL;nk" .FOr"lIIardOrder' := true;
if leftArg" .Fi rstDi.en = nil

"then NewVal TabLink" .dillens;ons := 1
i'r.e
-;i;..,val TabL; nk" .d ;lIens; ons : = Le ft Arg" ..Fi rst Di lien" ..

d;.~length;
Rl'suttLength :z 1; L~ftV.lPtr:= LtftArg".FirstValue;
switch :8 tr~;
while LeftValPtr <> nil do
---r"'left arg valuesarpoimensions of resul t

}

~gin (
but ld resul t d tmensions

}

Result~ength :. ResultLength. trunc(~eftValPtr-.
RealVal);

~..(NewOi IW);
NewOill" .dilltnlength := trunc(LeftValPtr" .Realvat>;
~eftValPtr :s ~eftvalPtr- .Ne.tValue;
if switch
then

begin
switch := f,lse;
Ne-wValT,bU nk" . F; rstO;.en := Ne..Di.

end
elS;-Oi.Ptr" .HextOi.en .- NewOi",;
i'i'8'Pt r : = He wD i II

end;
NeWD1I1".He.tOi.en := ni l;
RightV,lPtr := RightA;:g:.FirstVal~;
switch := true;
while eletlents < Result~ength

~~n
{ duplicate right arg

e e.ents := elMents + 1;
if RightValPtr = nil- { extend risht-arg~ent if necessary}
th~n RightValPtr := RightArg" .FirstValue;
NiWValues" .RealVal := RightValPtr" .RealVal;
if switch
then

begin
switch := false;
NewValTabLink" .Fi rstValue := NelllVat~s

end
eluNewPtr".He.tValue := NewV.lues;
N;";Ptr := NewVatues;
RightValPtr := RightValPtr- .Ne.tValue

end;
Ne;values" .Ne.tValue := nil;

end
~ (reshape };

:= NewVal TabL;nk;
:= ni l;
.- t"rUe;

ele.ents := 0;

do
values into result values}

new(HewValups);

var
Inpr01COM, Inpr02Cod., l.eftSkip, RightSkip: integer;

icount, jcount, kcount, lcount, mcount: integer;
Lutl.eftDi., firsUightDim, C_onLength: integer;
lptr: "values;
hold: roal;
SHoat, .alue: roal;

beg:n
{ inn.r product Is ..atrl, multipllcatlon

o 8I'tr :" L.ftArg. .firstOl..n;
if l.eftArg. .firstOi..en <> nil thon
-whiL. OillPtr- .Ne.tOi.on onlT"Go

-n-'lIPtr :s Di8l'tr- .Ne.tOl.;;;--(lot last dl..en or lort ar,(ir any) };
If (DillPtr <> nil) and (RlghtArg".firstDi..n <> nil)
then - --rT61-'tr' .dl.tIIltl\Ot~ 0 .iOMAro. .'irItOill.,,- .diunltngth

tlien
ror(52)

I last di. or Ian .r, not . to first di. or rlght arg
}

18 coda di. 100 (a.porate operators);

I"
coda =-TOO . Inpr01CoM;

22

2Z91
2Z98
Z299
2300
Z301
2302
2303
Z304
Z305
2306
2301
2308
2309
Z310
2311
2312
Z313
Z314
2315
2316
2311
2318
2319
2320
2321
2322
2323
232~
2325
2326
Z327
2328
2329
2330
2331
233Z
Z333
233~
2335
2336
2337
2338
2339
23~0
23~1
Z3~2
23~3
Z3~4
23~5
23~6
2347
23~8
23~9
2350
2351
2352
2353
235~
2355
2356
2357
2358
2359
2360
2361
2362
2363
236~
2365
2366
2367
Z368
236..
2370
2371
2372
2373
237~
2375
2376
2317
Z378
2379
2380
Z381
2382
2383
2384
2385
Z386
2387
2388
Z389
2390
2391
2392
2393
2394
2395
Z396
2391
2398

new(NewVal Tab~ink);
OldVal TabLI nk- "Ne. tVal Tab~i nk
NewVal TabL ink- . Ne.tVal Tab~; nk
NewVal TabL ink- . Inter.edResul t
if not LeftArg- .ForwardOrder
tli.ii'lieverseL i nk~ i st (~eft Arg);
'11'"not RightArg- .ForwardOrder
tli.ii'lieverseL i nk~ i st (RightArg);
N;Vval TabLink- .ForwardOrder := true;
NewVal TabLink" .di.ensions :s LeftArg- .di.ensions

RightArg- .di.enslons - 2;
if NewVal TabLink- .dimensions < 0

then NewVal TabLink" .di.ensions := 0;
SwITch :s true; ~utl.eftOi.:s 0;

if L~ftA"'g" .FirstOi.en <> nH
then -

begi~ I copy all but last of left Irg dims into result
Le tSkip:= 1; Oi.Ptr:= LeftArg"'.FirstOi.en;
while Di.Ptr" .Me.tO;.en (> nil do

begin I copy left Irg dimensi~5 }
new(NewD;.) ;
HewOi .di.~length := OillPtr. .dille-nlength;
LeftSkip := LeftSkip . Di.Ptr".dillpnlength;
if Sill; tch
t""hen

begin
slIIitch := false;
NeIllValTabLi"k-.FirstOilten := NfWDi.

end
el~NewPtr" .Nt.tDi'lf'n := NewOi.;
HewPtr := Hewo;.; Oi.Ptr:= Di.Ptr" .NextOi.e-n

end-
L,stL;ftDi. := Oi.Ptr- .di.enlength

p"d;
i ("RTghtArg'" .Fi r'tO;.,n (> nil
t'hen

begin
I copy all but first of right arg dims intQ result

RightSkip := 1;
Oi "Pt r : = Ri ght Arg'" . Fi rstO;fI.n'" . HextO;fI!'n;
..hi le Oill't r (> ni l do

begin { copy right arS dlmensions }
new(N"IIIOi.);
NpwDill" .dillenlength := Oi.Ptr" .dill~lf'ngth;
RightSkip .- RightSkip . Di.Ptr..dillenlength;
if swi tch
then

begin
switch := false;
NewValT.bLink" .FirstOirien := NewOi.

end
el;-NewPtr" .He.tO;.en := HewOill;
NelllPt,. .- HewOill; OiraPtr:= Oi.Ptr...NextOi.en

end
end;-

if$;itch then NewValTabLink"'.FirstOilien := nil
;Tse NewOill":N;;'"tDilien:= nil; -
~eftArg" .FirstVaLue :: nil then LeftSkip := 0;
Tf RightArg".Fi rstValue =nTl then RightSlr.ip:= 0;
S";itch := true; -
if Ri gt'lt Arg" .Fi rstOi.en <> nil

then Fi rstRightOili := RightArg" .Fi rstO;lIen" .di.enlength
i1S't FirstRightO;1II := 0;
ITFi rstRightOilll > LastLpftDi",
then COIIMonLength := Fi rstRightOifll
;rs; CotllfllonLength := LastLeftO;II;
icount := 0; L~ftValPtr:= LeftArg" .FirstValue;
whil~ icount < LeftSkip do

begin { loop for eoach row in left arg }
lpt,. := LeftValPtr

{ hold start of row position};
jcount := 0;
while jcount < RightSkip do

b'9i~ ! loop for each cOll.mln in right arg
~e tValPtr := lptr;
RightV.lPtr :& RightArg" .FirstValue;
leount :8 0;
wh it ~ l count < j count do

begin I skip to starUng value In right arg
RightValPt r :s RightValPt r" .Ne.tValue;
if RightValPtr s nil than
-RightValPtr :s iiiihtAri" .FirstValuo

{ ex tend arg I;
lcount :- lcount + 1

end'
kco""~ :8 0;
whH. kcount < Co_onL.ngth do

begin (loop for each el_Nil in row/col~n
SHoat :. RlghtValPtr. .lItalVal;
DyadComp(SFloat, ~.ftValPtr" .lItalVal,

InproZCode) ;
value :- SFlo.t;
if kcount. 0
th.n
'Htldentlty value ror first tl.e throUlh

"Sf lnprQ"QQ, Qf
~, 53, 18: Sfroat

:" 0.0;
54, 55, 56, 17: SHoat :. 1.0;
11, 72, 13. 74, 75, 76: { null case

and (case I
alie"Sfloat :" hold;
DY-deomp(SFloat, valuo, InproICode);
hold :" SFloat { save s,",..er r..ul t I;

:* NewValTablink;
:= nil;
:= true;

Software Tools

2399
2400
2401
2402
2403
2404
2405
2406
2401
2408
2409
2410
2411
2412
2413
2414
2415
2416
2411
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2415
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2481
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498

LaftValPtr :" LaftValPtr" .N..tValua;
if LaftValPt r

"
nil than

-LaftValPtr :. L'iTtrrgr.fir.tValua.
(astend arl I;

8COunt :- 0;
whila scount < RightSkip do

begin I skip to nest ..~. In rllht arl
)

MCO\I"'It:. MCOunt+ 1;
RIghtValPtr :" RightValPtr" .N..tValue;
if RIghtValPtr . nH
then RIghtValPtr :;-RightArg" .fir.tVal...;

!!!!!i
kco"'t :. kcount+ 1

end;
naw(NawValue.); llewValue." .RealVaI :" SHoat;
If .witch
than

begl~
IV tch :. fllse;
NawValTabt.ink" .fi r.tV.l... I" IlewVal....

end
else NawVaiPtr" .NeltVal... :" NawVal ;

tMwValPtr :a NeIllV,LlAs; jcount:s jcount + 1:
end:

icour.t := icour1t + 1
end-

ifS;1tch then NeIllValTabLink- .FirstYaLue- .- nil
'iTse Ne'IIIValui'Sr:-NeolltV,lue:= nil

encr- -
'md innerproduct };

procedure Out,rProduce(LeftArg, Right.rg: TypeVal TabPtr):

var
---OUtProCode: integer:

SHoat: real;

be~n
tProCode := code div 10: new(NewVal TabLink);

OldV.ITabLink".Ne.tValT.bLink := NewValTabLink;
NewYalTabLink".N!xtValTabLink := nil:
NewVat TabL;nk"'.IntermedResult := trUe;
if not LeftArg" .forwardOrd.r
thenReverseLinkLi st (leftArg>;
TTnot RightArg" .ForwardOrder
tnenReverseLinkLi st (Ri ghtArg);

NewVal TabLink." .ForwardOrder := true;
N~wVal TabL;nk" .di.ensions := leftArg" .dimensions + R;gt'ltArg".

di.ens ions;
switch := true; Di.Ptr:= le1tArg" .Fi rstOimen;
while DilllPtr <> nil do

be'gin
{ copy If!ft arg dimensions to resul t }

new(NewOi.); NewOi"," .diMef"llength := OilllPtr" .dillenlength;
if switch
then

begin
switch := false; NewVal TabL;nk" .Fi rstoimen .- Mewo;m

end
eluNewPtr" .Nf'xtO;lIIen := Newoilft;
NewPtr := NewDilft; OiIllPtr:= oi"'Ptr" .Ne-JCtO;!le"

end;
Di8Ptr := RightArg" .FirstOimen;
while D;aPtr <> nH do

begin { copy diiiienSions of right arg to resul t }

new(NewD;.>; NewDi"," .di"'''''length .- Di",Ptr" .dillenlength;
if switch
then
~gin

--swTtch := false; NewVal Tablink." .FirstOimen NewD;".
end

eluNewPtr" .'-xtO;lfIen := NewD;II;
NewPtr := NewOill; O;IIIPtr:= Di.Ptr" .Ht!JCtDil'llen

end;
if-SWitc:h then NeIllValTabLink".firstD;men := niL
iTse NewDi :Ni'XtDillen := ni l; -
$VTtch := true; leftValPtr:= leftArg" .F;rstVaLue;
while leftVaLPtr <> ~ ~

begin
RightValPtr := RightArg" .FirstValue;
while RightV.lPtr <> nil do

begin - -
SFloat := RightV.lPtr" .ReaIVal;
DyadCosp(SFloat, LeftValPtr" .R.alVal, OutProCode);
new(NewVal ues);
if switch
then

begin
switch := false;
NewValTabLink" .FirstValue := NewValues

end
else-NewVAlPtr" .NextValue := NewValues;
NeWValues" .RealVal := SFloat; NewValPtr.- NewValues;
RightValPtr := RightValPtr" .Ne'tValuo

end;
left'ValPtr := LeftValPtr" .NextValue

end;
if$;itch then Nl!wValTabLink".FirstValue := nil

erse NewValues":"NeltValue .- nil
end{ outerproduct I; -

Software Tools

2501
2502
2503
2504
2505
2506
2501
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
253'
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
25d9
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600

rocedura dysdic(LafUrg, lighUr,: TypaYaITaltPt,);
operators 111th codas or 52 and hillier I

var
cOIIpatibla: _laan;

arg: TypaVal TaltPt r ;
SHoat: raal;

~
--rf"coda > 1000 !!!.!!!. InnarProducHLaltArg, RightArg)

il.a
~ coda> 100 !!!.!!!. OutarProduca(LaftAr,g, RightArg)

il.a
---rt coda > 80

than
---can code of

-V: Inde&Ot(LaftArg, RightArg);
88: ra.h_(LafUrg, RightArg);
89: catanata(LaftArg, RightArg)

.!!!!! lea..
)

al_
--sigin I al.p1a dyadlca I

cOllpatlbla :" true;
if (La ft Arg" .dlsenslons >= 1) ~ (RightArg".
- disen.ion.

>" 1>
then
~ LaftArg" .dlsonslons <> RightArg" .dlsensions

then
co.PAt;ble :8 f.lse

{ different ranks/neither scalar
el se

begin { ranks match _ check lengths J
LeftDi.Ptr := LeftArg" .FirstDi.en;
RigthDi8Ptr := RightArg. .FirstDillen;
while LeftDi.Ptr <> ~ ~

bev;n
2 LeftOilltPtr" .dilftenlength <> RigthDi.Ptr....

di.enlength
then
-co.p.tible := false { different length(s> I;
leftOiaPtr := leftDi.Ptr" .Ne.tDi.en;
RigthDiaPtr := RigthDi.Ptr. .NextDi.en

end
end;-

if compatible
- I arg~ents suitible for dyadic operation}
then

be~;n I build dimensions of result}

2-
RightArg" .di.ensions > LeftArg" .di.ensions

then .r9 :;r RightArg
else
arg := LeftArg I resul t has shape of large, arg };
new(NewVa l rabL ink);
OldValT.bLink Ne.tV.lTablink := NewValTablil'\k;
NewVal Tablink'" .NextVal TabLink := nil;
HewValTabLink".lnterliedResult :=~;

2.!. LeftArg. .ForwardOrder <> RightArg" .ForwardOrder
then Re-verseLinkList(leftArg);
NewVal T.blink" .ForwardOrder := .rg" .ForwardOrder;
NewVal TAbLink" .di.~sion$:= .rg" .di.ensions;
switch := true; Di.Ptr:= .r9- .FirstDi.en;
while Di8Ptr <> niL do

beg in (copy d imenSTons to resul t }

newOwwOi.>;
NewDIs" .d Isenlangth . = Di IIPt r" .d isenlangth;

if swi tch
then

begin
switch := false;
NewVal TabLink" .Fi rstOi"en := HewOi.

end
elu~wPtr" .PeJCtDill~n := NewOi.;
NiWPtr .- NfwDi,,;
O;.Ptr := Oi8Ptr" .Ni!xtOimen

end;
if---;;; tch
tiien

ewValTabLi"k".FirstO'lien := nil
! result is a seal)

else ,Oi." .NeletOi"en := nil;
switch := true; -
RightValPtr := RightArg".FirstV.lue;
LeftValPtr := LeftArg" .FirstValue;
ValPtr := arg..FirstValue;
while V.lPtr <> nil do

begin I porfo oper.tlon }

new(NfwVJllues>;
SFloat := RightV.IPtr" "ReaIVal;
DyadCosp(SFloat, LeftVaiPtr" .RealVal, code);
NewValues" .Re.IVal := SFloat;
if switch
then

begin
switch := false;
NewValTabLi"k".FirstValue := NewValues

end
.l,a NewValPtr. .Ne,tValuo := N.wValues;
Ne-wValPtr := NewValues;
V.lPtr := YalPtr" .~.tValUf;
LeftV.lPtr := LeftV.lPtr" .Ne.tValue;

23

l

~

2601
2602
2603
~604
.605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
648
~649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
!692
2693
2694
2695
2696
2697
2698
2699
2700

RightV.lPtr := RightV.lPtr".NutV.lue;
if LeftV.lPt r = nil then
-LeoftValPtr := LeftArg" .FirstValue

(ex tend arg);

if RightV.lPt r = nil then
-RightValPtr := RightArg".FirstV.lue, ex tend

end;
ifswitch
then
-";IIIValTabUnk- .F;rstValue := nil

i vector of Ien 0 }

else NewValues" tValue .- ~
en;r-

el..---'-'ror(55)
{ argl.lllent.s imcompatible for dyadic operat.ion }

end

~ dyadic};

procedure FunCall(~ Val idfunk: BooLean);

v.r
Val idP,,: Boolean;

begin, funcall }
ValidFunk := false;
if FunctC.ll
then

begin
if TokenTabPtr" .noun <> Stat End
th.n
~gin

SubrT.bPtr".TokenC.llingSubr := TokenTabPtr;
pri...y(Vll id,.); if not VIlid,. then error(1 7);

I 'leftarg of dyadic ~;;C.ll not a prtm8ry')

end"
C..rr~br; V.UdFunk:a tr'Ll&!i

end;

!!!!!.' funcall);

~
(expression

p"..ry(Vll idPri);
if not Vil idPri
then

~g;n
i TokenT.bPtr" .noun StatEnd
then ~ ValidExp := true; .ss;gn1:= true I!'nd
elseV.l,dExp:= false

en;r-
else
~gin

DoneExp := false;
while not DoneExp do

begin -
FunCIll<V.l idFunc);
if Val idFunc
tlen ~ expression(Val idExp); OoneExp:= true end
else

begin
ass ;9rwent (Va l idAssn);
if ValidAssn .nd (TokenTabPtr" .noun = StatEndJ
then ~ Do;:;;ExP := tru~; ValidExp:= true; end;

TTnot Val idAssn
then
~.op

tiien
begin

lIOn.dic(OperTabPtr" .~erPtr, hold);
OperTabPtr" _~erPtr :a NewVal TabLink

end
elH
---rt not dop

then begin Val idExp -= tr~; DoneExp:= true end
.lse

be9i~
pr ..ry(ValidPri);
if not Val idl"ri
then
--"ror(13)

, dyad oper not preceded by I pr I

1I\d'
end'-'

encI.-'
!!!! GxprUllon

else
~~;n

y.dic(OperTlbPtr" .OperPtr, OperhbPtr".
LastOper" .OperPt r);

Au.OperTabPtr :. OperTlbPtr;
OperTabPtr := OperT.bPtr' .LastOper;
PtrLastOper :. OperTlbPtr;
disposeUu.Op.rTabPt r);
OperTabPtr- .OperPtr :. NewValTlbLink;

~.,.d;

I;

24

2701 begin, parser }
2702 assign:= false; .ssign1:= false;
2703 reput
2704 expression(ValidExp) { checks for valid expression };

2705 if not ValidExp then ~rror(10) {
'invalid expression'

2706 else -
2707 ---rt $pHSy.bol(XRightArrow)
2708 then
2709 ~ not «OperT.bPtr-.OperPtr".FirstV.lue nil) and
2710 - OperTabPtr".OperPtr".di.ensions > 0»
2711 then { branch I
271Z tresult of expression is at opertabptr }

2713 if OperTabPtr".OperPtr".FirstV.lue".RulVal - 1.0 * trunc
2714 - (OperTabPtr" .OperPtr" .FirstV.lue" .RulVaL> <> 0.0
2715 then error(12J' stmt.n to branch to not an Integer
2716 else
2717 ~ SubrTabPt r =ni l
2718 tlien -
2719 begin (function mode)

2720 TokenTabPtr := hold; DoneParse:= true
2721 end
2722 else
2723 ---rt trunc(OperTabPtr".OperPtr-.FirstValue-.RulVaL> in
2724 - (1 .. (SubrTabPtr".CalledSubr- .ttJmOfStatements)J
2725 then
2726 --s!gin
2727 VFuncHold := SubrTlbPtr'.C.lledSubr".FirstStatMent;
2728 for cnt :'1 to trunc(OperhbPtr" .OperPtr'.
2729 -Fi rstVIlue'7RulVIL> do
2730 begin -
2731 VFuncPtr := VFuncHold;
2732 TokenTabPtr := VFuncPtr" .NextStMnt;
2733 VFuncHold := VFuncPtr" .NextVFunPrt
2734 end;
2735 Auiitlj)erT.bPtr := OperTabPtr;
2736 OperTabPtr :. OperTabPtr" .LastOper;
2737 dispou(AuxOperT.bPtr); PtrLastOp.r:= OperhbPtr;
2738 TokenTabPtr := VFuncPtr" .NextSt.nt
2739 end
2740 elseReturnToCall ingSubr
2741 .lse ,--SUccessor

)

2742 elSo"""T successor I
2743 beg in

2744 if not assign1 then OutPutV.l; assign1:= false;
2745 11 SUbrTlbPtr =nn--
2746 tlien -
2747 --,;e~i~ { Interpretive
2748 0 d := TokenTabPtr;
2749 TokenTabPtr :. TokenTabPtr" .NextTokeri;
2750 DonePIru :=true
2751 end
2752 else

(function
2753 begin
2754 VFuncPt r := VFuncPt r" .Hex tVFunPrt;
2755 Don.Successor := false;

2756 reput

2757 rrYFuncPt r <> ~
2758 then
2759 begin

2760 TokenT.bPtr := VFuncPtr- .Ne.tStmnt;
2761 Don.Suecessor := true

2762 .nd
2763 else
2764 begin

2765 R. turnToCa II i ngSubr;
2766 if TokenTabPt r" .noun =StatEnd
2767 th.n Don.Suec.ssor := tr~;

2768 end;

2769 unt i l DoneSucc~ssor;

2770 end;

2771 end

2772 until DoneParse;

2773 release { release memory);

2774 end' pars.r I;

2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800

Don~Parse := false;

begin (scanner
)

In it i,l; zeCh.rae terSet; ReadlnErrorMsgs;
InitPlrur (initillize tlbles etc. I; Fill~Tlbles;
Funetionflbde :z false; FirstFunction:a true;
OldValTlbLink :.~; OldFuncTabPtr:. ~ OldVlrTlbPtr:' ~
OldTokenPtr :. nil; flewTokenPtr:. ~ NewFuncT.bPtr:. ~
NewVFuncPtr :s nH; HoldTokenPtr:.!!..U; TokenError:a false;
NewVIlTlbLink := nil; flewVlrTabPtr:' ~ GetAPl..statMent;
while (APLstltMeiit!1) <> characUr(ForwlrdSlash]) or (APLstat..ent(2J
-0 chlrlcUr[lsUrisk]) do {

'. end. progr... r
begin -

SkipSpaces; TokenSwitch:- true;
while (position <. LineLength) Ind (not TokenError) and (!!2!
~neTooLong) do - -

be?;n
(scannfn"'g }

, APLst.tMent(posit;on]' chlrlchr(del]
-, function delimiter }

then { del encountered }
---rri Funct ionMode

then
be,;n I end of current (unction

flewFuncTabPt r <> nit
then NewFuncTlbPtr" .bOfStaU.ents :. FuncStat..ents;
I!f...ncStltMents > 0

Software Tools

2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892 read tn;
2893 .nd;

2894 end Gcanner }.

th.n
~gln

NowfuncT.bPt." .NutfuncT.bPt. :. OldFuncT.bPt.;
OldfuncT.bPtr :. N.wFuncTlbPt.;
NowVfuncPt." .NutVfunP.t :. nl I

.~ --
.1..
-sE..od75) (function d.flned with no .tltH.nta I;
Function"'de :- false; position:- position + 1

.nd
.1..P.ocn.funtionH..d.. (.tI.t of. n.wfunction

.ISiT not. d.l .ncountered}

b.gin
if Tok.nSwlrch
th.n

b.gln { this I. .tlrt of . n.w .t.t nt I
Tok.nSwltch :. f.l..;
HoldTok.nPt.:. OldTok.nPt.(..y. st.'tlnl po.ltlon

M~k.Tok.nLlnk; NowTok.nPt.".noun :. StatEnd;
NowTok.nPt.".EndAdj:. 0; HUL.8~I:' hI..

.nd"
M.k'T~k.nLlnk; idontifl..(n..., ItsAnld...t if I..);
if not !tsAnld.ntifier th.n T.yToGetANu.be.
;Tse -

b.gln { p.oc... Id.ntlfl..
Sk ipSpaces;
if (APLstttt...nt[posi!ion) ch...cterCcolon»!!!!!.

(

- N.wTok.nPt." .Nu!Tok.n" .noun = St.tEnd)

th.n
begin { process statement. label

SaveLabeL := na.e; HasL.bel -s true;
position := position + 1

.~
else
---,;i'gin (process variable name

if not Functionflt:lde
th.nN.wTok.nPt." .noun := GlobV..
else
--rf Nu"Mltch(na..., NewfuncTabPt."" Resul tN)

then "wTokenPt,." .nOIll := For.Res;rse--rf (Na...'Mltch(n , NewfuncTabPt.". L.ftA.g»- o. (N '...tch(n , NewFuncT.bPt.-.
iITghU.g»

then NewTokenPt,.".nO\l\ := ForaAr;
f["5; HewTokenPt,.".noun := GlobVar;

if Ne-;;'fOk.nPt.- .noun <> GlobV..
then Test FuncPt r := NewFuncTabPtr
eT'Si TestFuncPt r := n; t-
TTn'ot Na.elnYa"Tabl~,.e, VarPointer,- TeStFuncPtr)

th.n
~gln

Addll8...ToV..T.bl.(n...);
N.wTok.nPt.- .V..T.bPt. := N.wV..T.bPt.

.nd
.1..NewTok.nPt." .V..T.bPt. :. V..Polntt.

encr-
.nd --

end;
SkTPSpaces;

end;
if"""NewTokenPt r <> '1; l
then --rr (TokenError) or UWIIITokenPtr"..noun StatEnd)

then Deost rOySt.tMent
eTSe
--:rt Funct ionMode

th.n
b.gin

FuncStatMients := FuncStat~ents + 1;
; f FuncSt.tements > 0
then

begin I catalog function state!'"1ent
ne..,(NeIllVFuncP't r);

.i!. FuncStatentel"lts = 1

then NewF\JncTabPtr".F;rstStatellent := NelllVFuncPtr
;tS;' OldVFuncPtr".NIHtYFunPrt := NelllYFuncPtr;
OldVFuncPtr := NewVFuncPt r;
jf Ha,L.b.l
tiien NewVFuncPtr" ..Stat Label := SaveLabel;
NeIllVF\JncPt roO..Nel(tStI8lnt := NewTokenPt r

.nd
.nd

el se--rf APl.t.t nt(1) <> ch...ct..(d.lJ ~
-begin

par Sfr CNewTokenPt r, NewYal TabL; nk);
100: DestroyStatftlent

end;
TokenError .- false; GetAPLstatHient;

Contents cf APLfll..

A8CDF:FGHIJKlJ1NOR,RSTVV.xrZl234oc"d_,-'.- it ,. '--;". ,-":
.

"vllo

"-?d .. 1_\.~.
'c::>nuJ,TI\
INV ALID CHARACTeR FOLLOWS N'vAT ;,', ';;;J

Software Tools

DIGIT NlJST FOLLOW A lif;CIHAL PrJINr
UTRANF:OUS CHARS, FOLLOtI fVNCllO.¥ .¥f.A;'~~
IItV ALID CHARN:TtR ENCOUNUAt"&
fVNCTION ALRF:ADY DEFINAD
lLUGAL NANE TO hIGH'! Of UI'LICIT H';~':T
INVALID fUNCTION/AFrGUHt"NT.¥ANt
RESULT OF ASSIGNHF:NT NOT VALiC v AiI:AS:.c
INVALID fVNCTION RIGH'! AJi.GUHtNT N;'!'!,
INVALID F:XPRESSION
SYN80L NOT FOUND
STATF:MF:NTNO. TO BFrANCHTO NOT [,';OCt.'
DYADIC OPERATOR NOT PRACE:DE:DBY PU'IAH

/f1fVALID F:XPRE:SSION.ITHIN PAFrf,NThi.So'S
NISNATCHF:D PARF:NTHF:SF:S
NOT USED
LEfT ARG OF DYADIC FUNCT. NOT A E-hl.'IA.IY
NOT USED
V ALIIF: NOT BOO LF:AN
ATTtNPlF:D DIY ISION 6Y zeRO
AlliUNENT NOT A SCALAfr
AI/CUNEN'f IS NtGKf lYE:
AltiUIaNT IS NOT AN INTf:GF:fr
AlliUNErf IS A SCALAR Ofr E:HPlY VECT:JiI
NOT USED
I/fV ALID OUTer PRODUCTF:XPfrE:SSION
INVALID INNF:R PRODUCTF:XPfrESSION
NOT UStD

.
LEfT ARGUNF:NTIS NOT A VECTOR
NOT USW
NOT UStD
F:RROR IN FUNCTION ARGUMF:NT
tRROR IN FUNCTION AfrGUME:NT
INVALID INDF:X F:XPReSSION
NON-SCALAR INDICF:S
ASSIGNED EXPRF:SSION NOT A SCALAR
NON- INTF:GeR INDICF:S
INDEX OUT OF RANGe
INVALID INDF:X exPRF:SSION
NOT USF:D
NOT USED
NOT USF:D
NOT USF:D
NOT USED
NOT useD
NOT useD
NOT useD
NOT USF:D
NOT UStD
NUNBi:R AND BASF: OF DIFFF:RF:NT SIGN
ARGUNEN'f IS A veCTOR OF LENGTH ONF:
ARGS. NOT CONPATIBLE FOR INNF:R PRODUCT
ARGUIaNT-SJ WITH RANK. GRF:ATF:R THAN ONF:
ATTENPltD INVERSE OF ZERO
AI/CS. INCONPAT IBLE FOR DIADIC OPERAT 101
LEfT ARGUNENT NOT A VECTOR
ICft USED
NOT USED
NOT USF:D
GREATER THAN THRF:F: DINENSIONS

IlL
RE-ENTF:R LAST LINE
INPUT
NOT USF:D
NOT USED
NCft USED

NCft USED

/lOT USED
/lOT UStD
IDEIfTIPIER TOO LONG
INPUT LINt TOO LONG
INVALID REDUCTION OPtRATOR

DIADIC REDUCTION REnRENCE
NOIADIC REFERENCE TO DIADIC OPF:RATOR

FUNC1'IOI DtPINED WITH 10 STKfE:HeNTS
IIOT useD
IIOT USED

NOT USED

NOT USF:D

NOT USED
NOT USED

NOT USED
NOT useD
NOT USED

NOT useD
NOT USED
NOT USED

NOT USED
NOT UStD

NOT UStD

NOT USED

NOT USED
NOT USED

/lOT USED

NOT USED
lOT USED
NOT USF:D
NOT USED
VARIABLE NOT ASSIG/IED A VAWE

,

PUG

25

"Don't Fail Me Now"
By Srully Blotnick

The government imposed a 55-mph speed limit on
cars, not computers. Why, then, are computer owners
going so slowly?

Are we in the early stages of a technology bust?
Strange as this may sound at a time when the nation
seems to have gone computer crazy, a good many sci-
entists are starting to worry about just that.

Their concern stems from the massive switch in the
computer business from a customer base consisting of
a handful of large institutional buyers to millions of
smaller ones. The computer finally has become a piece
of mass-market electronics, much like video recorders.
Why is that a problem? A basic rule of business is that
risk accompanies opportunity. In this instance, the risk
affects not only the companies in the field, but the entire
country, thanks to the expanding economic importance
of this industry. Its health will soon playa decisive role
in determining the U.S.' international competitive
position.

The risk in dealing with the mass market is always
a simple one: The mob is fickle. What intrigues it today
may leave it indifferent tomorrow. This time the fickle-
ness could produce a national disaster. The U.S. has
unwittingly invested a major portion of its capital- and
even more important, its hopes - in this area. That's
why some thoughtful workers in the field are beginning
to pray quietly: "Don't fail me now."

How, specifically, do they see a failure occurring?
The consensus view is as follows: "A Ferrari is excit-
ing, but how exciting would it continue to be ifthe only
place you could use it were your driveway? Well, that's
exactly what is happening with way too many of the
computers now being bought. Car or computer, people
are eventually going to get tired of just looking at the
thing and bragging about it to their friends. Then, the
fad will pass. Computer manufacturing plants will close.
Only a minuscule proportion of computer buyers are
making good use of the machine's capabilities. They
don't know enough about programming to make the
machine really perform."

"Well, suppose everyone learned BASIC?" I
asked.

The overwhelming majority had a better idea:
"BASIC is a very easy language to learn, but it would
be enormously better, a dream come true, if everyone
learned Pascal, which is far superior and just as easy to
master."

Dr. Srully Blotnick is a research psychologist and au-
thor of Getting Rich Your Own Way and Winning: The
Psychology of Successful Investing.

Reprinted by permission of Forbes magazine,
February 28, 1983.

28

Since last summer I, therefore, have been collect-
ing the opinions of everyone, from teachers and hob-
byists to investors and small business owners, who know
Pascal to see which books they consider best. A tally
of the nearly 1,600 replies shows the following:

For people who know nothing at all about com-
puters or computer programming, the best place to be-
gin is R. Pattis' Karel the Robot: A Gentle Introduction
to the Art of Programming (John Wiley, $8.95). You
don't need a computer to read this book (or the others
about to be mentioned). By learning how to move a ro-
bot through the streets of a small town, you come to
understand how programming instructs a computer to
do what you want it to.

Pattis' book is about programming but doesn't ac-
tually teach the language. The elementary text that re-
ceived the top rating in out survey was Arthur Keller's
A First Course in Computer Programming with Pascal
(McGraw-Hili, $14.95). The book received high praise
("Very clear and easy to read") from everyone from 17
to 70. It is suitable even as a high school text.

After Keller's book, the next step should be A
Primer on Pascal by Conway, Gries and Zimmerman
(Little, Brown, $20). The consensus view: "This book
will help you deepen your understanding of the lan-
guage once you've learned the elements." For those
who already know BASIC, a good way to learn Pascal
fast is Quick Pascal by D. Matuszek (John Wiley,
$11.95).

One work that was highly rated by advanced stu-
dents was the second edition of Pascal - User's Man-
ual and Report (Springer- Verlag, $10.50) by K. Jensen
and N. Wirth. That is hardly surprising since one of the
coauthors, Nikolaus Wirth, invented the language.

To see what the language can really do, serious stu-
dents will want to learn about data structures - that is,
such t~ings as lists, stacks, queues, trees, sets, records,
recurSIOn, sorting and searching. The three top-rated
texts, all very well written, are: Data Structures and
Algorithms by A. Aho, et al. (Addision-Wesley, $28.95);
Advanced Programming and Problem Solving with
Pascal by G. Schneider and S. Bruell (John Wiley,
$26.95); and Data Structures Using Pascal by A. Te-
nenbaum and M. Augenstein (Pre ntis-Hall, $25.95). As
the ~u~hors ofthe first work comment, "The only pre-
requlSlte we assume is familiarity with some high-level
programming language such as Pascal."

Finally, people with a background in probability
theory rated the second edition of R. Cooper's Intro-
duction to Queueing Theory (North-Holland Publishing
Co., $27) the best - clearest and most user-friendly -
book on the subject.

Summi~g up: Buying a computer and not learning
to program It properly not only wastes money, it also
stands a good chance of eventually harming the nation's
economy. PUG

Articles

Computer Generated Population Pyranil~~ft~,~;tt
Using Pascal

Gerald R. Pitzl
Geography Department

Macalester College
St. Paul, Minnesota

Background

During the past twenty years the development of
computer applications in geography has been exten-
sive. Hundreds of programs have been written and many
are available to users through various dispensing insti-
tutions, particularly the Geography Program Exchange
located at Michigan State University ,I VirtuaIly all of

the programs, however, are writen in FORTRAN and
are suitable for easy instaIlation primarily on large
mainframe computers.2

A similar situation exists in cartographic computer
program development. Although the number and va-
riety of programs written is extensive, the FORTRAN
language is used almost exclusively, and the software
is designed for use on large systems. A recent textbook
in computer-assisted cartography provides only pass-
ing mention of microcomputer graphics in the field of
cartography.3

As a consequence of this situation, computer ap-
plications in geography and cartography are limited pri-
marily to the larger colleges and universities that have
mainframes and the faculty within the departments to
teach the subjects. As a geographer in a small liberal
arts coIlege teaching not only introductory cartography
but a course in micro-based computer mapping, I feel
somewhat like a pioneer trying to make a clearing in the
wood without the proper tools. The situation is further
exacerbated because liberal arts coIleges have not been
as highly revered by the computer industry as have the
high technology learning centers and are consequently
not receiving anywhere near the number of equipment
grants or the same degree of personnel support.

Yet, more than one writer has commented on the
need for a closer association between the computer in-
dustry and the liberal arts college. In a recent editorial
in Datamation, John L. Kirkely stated the following:

We urge our industry to work with the lib-
eral arts coIleges to develop courses of study
that combine the humanities and the sciences.
A merging of these artificially separated dis-
ciplines could be a powerful tonic for both our
colleges and our corporations.4

I believe that, in time, changes will be made which
will result in the liberal arts colleges receiving their fair
share of industry support. In the meantime, however,
individuals in those colleges will continue to make con-
tributions to the furtherance of computer applications
in what would be considered today to be non-traditional
disciplines. The set of programs included in this paper
are suggestive of the kinds of things faculty can produce

Articles

and which 1) are effective vehicles for developing the
understanding of key concepts in a discipline (demog-
raphy in this case); 2) are produced with a cost factor
reflecting only the programmer's time; 3) can be easily
implemented on any system, micro to mainframe; and
4) are written in the programming language of the day,
Pascal.

The Population Pyramid (Age Structure) Diagram

It is abundantly clear that world population con-
tinues to grow at a less than acceptable rate, and that
some regions, particularly those with countries exhib-
iting low levels of economic development, have excep-
tionally high rates of growth.s The population pyramid
is a useful diagram to study the composition of the pop-
ulation of any country or region.

In the diagram, age groupings of five years each
(0-4, 5-9, 10-14,..., up to 75+) are presented for both
male and female segments of the population. The scale
along the horizontal axis reports the percentage of the
total population in each of the age groups. Generally a
pyramid shape wide at the bottom (young age groups)
is representative of a fast growing population while an
age structure more evenly represented along the year's
axis identifies a population that is stabilizing and that
does not have a high rate of increase. The industrialized
and urbanized countries in the developed world would
fall into the later category; the less developed in the
former.

The Programs

Three programs have been developed for student
use in an introductory human geography course.6 It is
not necessary that the students know the Pascal lan-
guage in order to run the programs. Introduction is given
in class on login/logoff procedures and how to access
the programs. The student need only find suitable in-
formation in the appropriate statistical source for each
of the age groups for a particular region, round these
values to a whole number, and enter the numbers in the
sequence described in the program prompts.

The programs developed include:
1) pyramid-file - This program is used to create

an external file of information including the region
names, year of the data, and the percentages of male
and female in each age group. Following the input, pro-
cedure echo-data publishes all the information entered
for verification. If there were no input errors, the stu-
dent selects the appropriate key and the program stores
the information in an external file in the student's ac-
count. The listing of program pyramid-file follows:

27

proen.. ryr...ld.fl1r(It'\~l1t, out~llt"

(. proar." to ('(..te .f'! r.t..r".l tt 1~ f"t
popul.tlon pyr."'!d ".t..

eon.t
,erro.r.tor a --.....--..----------.---..------.---.

tyDtttlt. .
r.cord

('ountrYI p.CI(f'd .rr..v rI.,'''' r-t cl'l.r;
ye.,. ~.C'I(,CI .rr.y (1..41 ot C'''.rr
...It'l'.rcl'nt, t':9"lf'~'.rcrr't 1 .rr.v ft..' to) ,.,.t lrt"'1~r

end,
Id.nttfl.rl a fl1. ot ~.t.,

ur
t...P' d.ta,
InfOI lo."tlfl.r"
111'1'\1." o,("I(.d ..,r.y (I..lnl of C'r~rJ
.n...,. e".r,

VIf
I' Int.;:,.',

~I01rI'
.rSt.ln,
.rU'c" .nt.r t11. ""."41'1 ')I
r..dll\(r SI.n.".),
.tlt.I'"
wrU.1Pl'
.tttt'C" .nt.r 01.C'. 1'I."'f! -- US" II:> COlnl..,'" '),
r..dl"rt,..r.count ty),

.t ft.l'"

.,It''ll\;

.,IC.'- .nt.r tt'lt' yeAr of th. ~.t"
'"relcUrtcc..O.YI'.r) ,

.rlt.ln,

.,St..1",,- "0-, .Plt.r irA!. Int! f'
,. r.rc.rt.:al it'lf'".rtt.tn(- ..("t" .0. oro\1~1 'nt~r ...,. r.rt,rtllc;.l', flt't'".rlt.l,.(" fro" t". nlQ"'.lt .ae Qroup to U'. JO..lt.'U

.rlt.l"(: YOU.u,t r"Ilve tb et'ltrl.. ft'r ..c,.. n,o\;r.-):

.rlt.ln(eftt.t AI fnt.n.,. .11 on tr". ,.". Ifn..")J

.rlt.l""
tor I ,. 1 tfl t II ao

re.d (t'I!IO It11I.1.". fe."'! II J 1 I

.rlt'l"(. ftto)'t" .I"\tef tne feo".1. rf',C'."tlgt,. "11
'or I .. 1 to ,. dO

,..dC teltlr. te..l.r.rc.nt (t)
"reedl""

end fr.."'.".t.> J

Vif
I. If'lt.Q.r,

h.O'"
.rat.l""
.r 1t'lr C'.~.r.f or),
.rltelft'
"rtt.lf'1(- tn. followtna 1",,,r."tlo,", .., ef'lt.r.d'-U_rH.ln;
.rUeln("

""
te"r.co1Jl'ltrv),

.r 1tell'll

.rit.II'I(-
""

t."r.y..r1,
.rit'll'll
.rU.I- It.le .-h
tOf 1 ,. I to Ie. de

.rlt.(tt'''''.''al..~.rc.''t rt t 1 J>I.(U.I'".,Sttlr,
.rlt.(" ,...1.. 1 -),
for J t. 1 tt'! 1h 1('1

.r1tf'U IoI.t l.r.rc.t'ltfl")1'
.rtt.11"!1
.rlt.l",

"r It.l"(..eo.r.." or J'.rtt.ln(" II t"'. IP',or".tjt'!n corrlct?'"
.rtt'l"C" It y.s" .nt"r I -.y"", It tlOf" t.r.)'
"rltt"" "",,"" 1 "),
r'aol,.,.",..,) ,
.rlt.ln,.f 1Iel".nd (.C~O.d.t.),

vo,
11 11'I('Q.r,

too.aln
,,_rHenn'o, tl.l."'I..',
1I'to..coutl(ry :a t..c.CCtuntry,
'uti 1.'0 II1,.fo..,..r '8 t..r.Y.Ar,
rutlln"'t
for t ,. L to ,. dO

1"Ift'o..,.tlf'.rcenfrIJ ,. t..c.'.I,pfrc."tr!J,
rut IIn'ol
""..,lor I

'"
I co .. dO

~..In
Info..'...'e".rc..ntlll 18 te.CI.t..lltr.i'r."trtJ,
ou'lInlol
."",.lol.IIMol

.ntlt «.to, t..

I 28

btqf"
r..d.dlltA'
"C',",o.rlat.,
If (ar.,..,., :if-y") rr r~"I..r . "y-) t".n

t-.aln
.tOr..d..ta,
.rlt.11'1(" (If..ratfor (,o"rl.t.~)1
.r1t'ln(" lnfor"'''tlol'l 'toffH, 1,. tn. riJ., ", tl1.n...)

."d
'1.,

.,It.!",(" tnvdtlc1 d.t4" r'JI'I tn. r'ltnar'lI" 8Q.I"'-'
.I'I~.

2) geLpyr_file - An editing program which the
student may use to access an external file, display the
contents, and make any necessary changes. This pro-
gram would come in handy if more recent data is re-
ceived and the file is to be updated. The listing or
program geLpYLfile and an example run of informa-
tion contained in the external file, SWEDEN .PYR,
follow:

fl proor.'" to '.8"S", tn,. '.t.r""l dat. fil.
c:r..t'd oy UI. pr('lgr."" "tlYf."'Ld.ft

1."" ."dto ...k. '''8I'1Q'' 1f l'I.c.".ry.

type
d.ta

r.cord
('out'lt,y. p.Cktd .rr.y rt..l~l f'" e".f,
y..r. ~"('I{.d array 11..41 fit ctl.r,
IJIPCt" fpC'tl .rr-,y rtulb) 0' lp't.9"r.nd,

ld."t1lI"1 . fit. nt t1.t.,

vort..p, dlt.,
Info' Idel'ltlfl.r.,tll.n,,,,.. I'.CI(.t.t .rr.y rt..1") ~t ("hU'

proc.dur. .tdpl1n."

b.atn
tor I I. I to 10 11('1

.rU'I'"end (lklplSn.s.

Vir
1 I I"t"q.r,

b..'".rlt.1",
.rlt.(" IJ'lt.r fll. "I,".. -"fl.dln(f 111'1'1'''')'r.llt(lnfo" fl1.n,"") ,
tl.p,country .8 Info..cotJ"tr,;,
.elClntol,
t..p,y..r '8 IftfO..Y.I"
oot C1"'011tor 1 ,. 1 to Ie do

blolnt,.p,mcetU) ,. Info..",pctU),
OelCI"'ol.nd,

for t ,a I to Ie 00
bloln
tl.p, f~et (1 J

'8 I"fo., fpt't r 11'
..tCI"'olend,

.10..11"'01
Oft' , tll..d.UI

fro~edvr' put' 11'P'I.",.t.,

eon.t
.eD.rat or a

ur
I. Int.Qe"

!
"
,

.,.Oln
lie IP linn.
.. r U.lr'\ C,.rt.r.! or),

.r!t'lP'l'
'rlt..!"'(" tP\. fo11o",I"#I InforIflIUt'f'\ 11")1
.r1t'lP'l{iJ C:Ol"lt'I",t1 11"

-" fl)'''..'"
",")I

"rtt.I'"
.rlt.lft("

""
t."'r.rolJ"trvJ,

.r It.l11,

.rlt.l11("
""

t,,,,,,v.,,,,,,
.rlt.lll,
.r1tl(iJ ".Ie r~rC'et'lt."1J
fer I .. t to Ih dO

.,tt.(t,IIIP.lfcctU)t 1)1
.,IUI.,
.rttf(" 't"'.I. e.rc:.t'ltI"),
'or I '8 I t.

"
do

.rlt.Ct'IJI~.trc! It J. 1)1
wrlt"lt'l'
"rl t.l,.,

Articles

I

I

{

!

-fl ttl" t ..c.r.tor)
"nd (pu~11In_aAt.) ,

VAr
11 It\tIQtr'. 1.1.ctor. c".r.

Dloln
.,ft.lf\,
_,it'ln,
.,ltt11\(-
.., U.!"'('
.'tttl""
.rU.l-l'1'
.rUtln,' u," tn. followlna let ft' 1.I.ctor.,'),
.rtttl",
.ritll"'.
.rSt.lnC'
.rlttl"'-.rltelft("
_,It.lr\l
.ritll"'"
.rlt.l",".'It.l,,,iI
.,1t'ln,
.rlttl",iI

"
yOU ".V. co.olttttt tn. Ch.no),

.rlt.lnc' .nt.r .t'I to .nd t". 10f',-),

.rlt.ln,

.rlte,' .nt.r . ..1tctorl
,,~.c!l" (.Il..etor) I
r.pelt

c... ..I,,(tor of
'A', -,".

"'01"
.rlttl"'(- Inter f"It..

I''''
"..,)1

iIIor1t'll"(. 'II'
,~ cOlu"",,,

""r.'d 1 r'I
(t,,.,

. COII"(rv)
."fir'y.. "v".

YOU "'IV
...tc, ,I'\y I'tu."er of

C~'''9'1'')J
t'ly l.lecttl"'J tP'lI .rrroflrl.tt IV.tlot"),
for tn. d.t. (a

t't cn.na.d,-U

.r.. n'fIII'.. .."),
yt.r .. '''V'''),
11'8.'p'r~."t ..),
f,1II11.p'rc'L'\t,..."
.nt.r t'" l.leC'tor, t"..n (C'r), '''d.)'you . t 11 1'). Dro,.pt.d tt' .nt.r tn.""d8t..'),

'II

boql.
.rlt.(. f'nt.r tl"" , v.erl

."
r.ed!" Cte"r. Y"r).nd,

..., '",',
""01'"
wrft.1"'" '!'It,r .11 11.tp~P'I "'..,. r~rc.,.t v'Ilt1.. ..');
.rltf'l"C' r'lll1!'1'lt ."p ort'll.lr'J1 tf.l lo.".~U")J
I or 1 .8 1 t a I ~ ,to

r.ad Ctf'!:'t." ~Ct r 1 J
)

J
r ln
"no1J

'f'''. ",",
beotn
.rlt..,,(" p"t.r ell slwt"e" "'1'.1.. ~~r("'c"'t V.lll\I.~

',.,St..",(" "'leu.,pst
"'I'

QrCIJrs tC' toWf'St:");
lor t u 1 to It d('l

"lId (t,lIIr .tPC't r 11) I
,e.d\n

Pf"l~'
end (ca... ~

.r1tfl1f"1C" .,..,t/'lf'r '''lpctlf''1r-: ""="1011 n (s.lec t or)
II"tl. (111.etor . "to"') or (s,...ct('l" "t"):
r..,ltf'(1F\fo. fl1el'l.f"'.'J
Info..eountrv ,. tfTtI.l"OUnrrv;
putClnfO)J
tnfo..ve.r ;* t."'r.Y'.ar;
put(tnlo),
for t t. 1 to t b dn

b'91T'1
Info..rpctrlJ ;* tp'fr'l pctfl1'
rutUnfo)

en'"
for 1 .8 1 tl'l I tt

.d"b.c,lra
Info..tpct[11

.* tf''''I'I.fpctUJI
put(lnf01
.nd,

C'los.(ttlfoll
.rlt'l"(. new data stort'" t,., ..,

ftu",a"'."_rlt'ln,
DUbltl"'.dat.

.nd flftlk..' 1t ..cl'la"'o' St :

beain
.rtt'1~'
.rlt_.'".,It_1t1(- ~o you ~.nt to
.rlt.1n('" if 10, el"lt.r .
.rtt.c- If raet, ..nt.r an
r.lctln(c",olce"
If (Cl'\ol(. . 'v-) or (enote. ,. "v"" tP'!f'r.at..ll1..c".t'I'1.1
e...

.rlt.1nC' no cP'!al"l~.1 tl'\ t". '11
)

end C.odlty.fll'.cl'lotc~. ,

II'01Uv ft. o1ata? ..'"...y) ,
.."..... '1/

iU1J! _

.cc'I'.f Il..tI.t..DUtlli,PI.dlta,
"od Sfy.t I1P.C,,0 1c.

.n....

3) drawpyramid - The final program accesses the
information stored in the external file and produces a

Articles

pseudo-graphic on a line printer.
duce a single plot, as shown in tlleB
or a double plot of either one region in.
or two different regions. The student
double plot and enters the file names, The
over from there and produces the output. A doU&16<p1ot
of SWEDEN and MEXICO illustrates the iIOltruc-
tures of a country with a low rate of growth and 0,.
which is high. . ..

run ..tpyr

ent.er r11. naM: sweden.pyr

the follow1na IntoMl'8t1on 13
contained 1n .sweden.pyr:

.sweden

1970

..1. percent: 1 2 2 2 3 3
Q

r...le percent: 1 2 2 3 3
q &I

do you nt to 8Od1fy the data? --
it so, enter a 'y'
ir not, enter an 'n':
no chanses to the rUe.

Ready

(onlt
bllnllt. ...

",

tyro
d.tl .

,.C'or1
cCHJr"ltrv: ""clr.>1 .rr.y rl..15J nf c"'.rl
ve'ri ~.el(.1 arr.y [1..'11 t.lf c".r,
I'tlle, f''''tll.1 .Hr.y (1..1b) of Inc..",."

.nd,
id.ntifl.rl . flit of o14ta'

tll'"I"" . PlelC,d .rrav (1.. tn' t"Il chlr,
.n

cl'lele" C'f'l4r,
t...P' rtata'
"'Itrlx' array C1...".. 1..')) ot ~I\.r'
tlvra..ttf. Id."'tttt,rl:
fll.l.. tll"21 fl1."...'

beat,.
for 1 1& 1 to .2 (1(1

tor 1 U t
t"

IIIj .,0

"','r1l'1, 11 :_
"1"''''''''.ntl (1n1ttlJltz,..arr.y) ;

t"Qln
.r I t.1,..,
"-rlt.l,.c'" .nter II It t"ll 11 . dout-le rl(1t,')1
wrltttlr(" ~nt.r .,. f('lr It ,1"'111. riot. .)J
rtadlnCcl'lolceJ'
.rlt"ll"1

.n" (f,:'lot.C'hotc,.

b.qln
It (c".ele..: "r..) cr (rP\('Ilce

r-,olr'l
.r it'l"""--rltfl"('"
.'It'l"(.
.rt t'l" ("
.rH'l"(".r It".", ("
'Io'r1t.l"'.rlt.1P\(1 In),
rUdl.CU1tlll
r..altl(fl..2)

,.tlt'r 'IC''' HIP 1"1.'" ('In. lep.r.f. ltn.,"U
Ultt ten ColU~nl for

'4tCr" f'lotl tt'l, t"Ierker, ,.."
tt YO\J .r. .t tn. J1r"Ppr1nt.r,');
r:'olltlon t"" .rltlrQ "'.d to tr'l")J
1..t 111'1' of thf'Dlp'r 0.'or,")1
."terlnD Crr) IIIft,r

t"''' "COf'\d fll. r'I "

29

.ftd
.11' 4JIf'\~1... rlo".

""01r'!
.rltttrC-
.r t t.t'" ("
wrlt'lJ'l(..
wr srt),. (..., it.!,. ("
It' I tfl"'(".,U.l ,..,
"rlt'l~(..a"l I""
f"""'"

(t t If' 11
~,..'"

fret ft"tf'r.t t 1"."'
,

.or
I,

"
Ira Il"Itf'Q'rI

ftlt.rray: .rray (1..21 ('Of
rtlt''''''''''

.nr.r t~f t11. (I"'" ullno fer COJu"".,"U
",at. t~. "'.r~.r."."'''),
It you ar. .t rn. 11,.. pr1"'1"")'
rn.ttJt"/'I tl'\. ..ritl"'Q "..d to tl'l.")J
t"l 1tn, tt(U"@ 1'.r., b.tor,'),
,.rt.nr<:::l <C'r),'U

t'I'oln
If (eM)le. . .0") or (('l"Iole,.. ,~.., tr-..I'I("Oub}. plot)

tof'all'1
fl1..rr.yl1J .-
ftl..rr.v(2) ,.
for f 1& 1 ttl ,

t<l1''11'"
1fl. 1 t"'..,..

If :. 4]
I'll'Ir '8 '11 J
r...t(cyr."'."', fflf'.rr8y't),
te.",cout'ltry .. oyr Jd..countrvl
q.t (pyr..ld)'
ItL!'_ a U\.tlt
for 1 ,. 1 to I!) 110

..trlaU, 1 + 111 ,. t,.C".cou",try(1J
.11.

for 1 I. 1 to ,~ tin
1I"8trll(4, 1 . 'J 18 teIt'CI.("('IufltryOJ;

t.IJIP.Y.dr I. ~Yr."'td..ve"r'
oet (rvr.~ld J'
t f 1 8 '2

tfolen
for11111to rot0

"'ltrtxC!:!, 1 t1' 1= t,.r.ve.rCJ)
elle

for "I u 1 to rto

"'Itrflr~" 'J
18 ff"'D.YPlrt"lJ'

for "I 18 1 to I tI .11"J

htat'"
ttIfP.~.1f'[1J 18 t'vr."ld.,.~lP(1Jt
o.t(tlvrl"ll1)r
it ",atrl." . 1 . 4, J1 . ., . t'.r.''''l..(iJ) () t,t.M.tf'l,r'\...trtaf2. j . .." 1. t.Itt 1.r,Q III".''11.".trll(2 . 1 . 4. 2' . '2. t.'I" l.r1Jl II:f"r""(~)
f'r'\d,

for , III 1 to
'b C'!("\

tt.all'1
t."'P.f,""ltljJ :. r-yrd"'ld..tf'.'If'(iJ I
cut (tlvr'''I~)'
it lII.trf." . 1 . 4, 11 . "}. t."".tf'".U(1)' () tl.nk t"'el'\

II'.trhC2. j 4.'7.'. tPltr.fe"'.)rfJ1) :a
tile

",.trt.[1 . J . ..
"

. '2. t,"r.ft"'l,(11) :8 C'hr(lI:)
'r"Id,

C'10" t ryr."'t ~,
.no

.M
tilt htr'lQ1' riot}

t-tOlf1
r'lfttryr."'ttf, tU,n:
tt"'t,couf'ltry :. C'Iyr.."td..C'~d,.try'
Q.t(pyr ldJI
for 1 la 1 to t~ ,",0

..trl.Ct. , . 'J ,- tf''''D.co'J'''tryr,1:
tt.~.y..r ,- rvr'lI'ld..yp.rl
qttcpyr'''ld}'
tor 1 ,8 1 to .. ,",0

..trtlt~. , . 2J 18 te-"P,Yjll"r{1)1
for 1 I. 1 to t... 1')0

btOlr'l
te,,~,"'''1''(11 :. ryr."'ld.."'1-C1JI
9tt(pyr''''ldJI
..trlxt2. , . 4, 11 - 1 . t""I"'."'.I1>')1];a
'ndl

for 1 ,a . t,.. 1to
"0

blQt'"
t,.C.t'1f.1I1111J :a ,.,yra.1 f"t\'...1..(1JI
a.t(cyr Sd)1
,...trlx(2') . 4,

"
. l . t""r-.rl"'81.f)lJ :8

end'el011(ryraIP11)
oM

.rut Cr.t r l.v'_.r.".alllol"l_~...t...

vo,
I.. ,. ~, tr'ltfl'QP"
Itlorttttl., pacw..tI Irrlly 1'..t'J olt:tt.r,
lO"''tItttlt' c.e.."., .rr...v 11..J,>1 O'f C''''.r,
a~IQrouPI' D.Cked 'rr,V 11 S1 ('If ctl'rl

"''"'WO'''''I'\' "',c.to .rray (1..1('1) of cr'I.r,

b'Ql'"for t 18 2 to .2 00
D'al'"..trhCl. 11 '8 "!":...trlarl. "J1 u ..:..,

.nd'
for 1 ,. I tl"! 6J (10

tolol'"
~.trtaft, 1J '8

,
"'.trll(.2. 11 '8 '.",
I"d'for 1 .. . to)7

"0..trlaft, ,'J ,. "1",for 1 ,. ., to t1 f11t'
"'atrlxf)'7, 11 18 '."It (cr-t"I1C"1. "r'I'" or (c"olt'l 8 "ft') ttlP"
1'1101"
lonotHl1 I. "t'orulltln'" gyrl.tctt '''~lrl.,~OI.tt''for 1 '8

) to P 0(1
.atr1_'), 11 ,8 JorH~t1tlf'{1 . 2)

.M
"11'

I'ItOI'"
Il'IorttJt1e '8 "rorul.tlo" f"yr.".Ic1",
tor 1 ,. ,\ to 70

('I'".Itrlat), 1) '8 Iherttftl'" . 21,,..d,

""r'I"O"lr'I '8 "".I..t.,,'I.",
for 1 ,. IJ to U .0

...trllft). 11 .. "'.nwo..",{1 I'),
for 1 ,.)' to tJ 110

",.trl.n], 11
'8 "..",wo~er'll1 'n],

..trhrt. ~JJ '8
,

It.trhlt.
~'" '8 "0'"...trhCt. ~!)) ,8 "e",

",.trIlC., 53) '8 "''''..trhU, "'1 I. "!I.o",
..rrh16, 55) '8

,
'919roup, ,-.., 0.7 4'~ .6960..to4\5-" q~o.S4.".t9 60.. 4J!I.) 9)0.)'

2'-79'O-24I5-I9IO-U .
,

I '8 l'k '8
"."tl' t (8 bS do

htQl'"
'or

j ,. S2 to ~,. 110
btQll'\
".triltk, 1.1 '8 .~,..,rOIJPI(tJ'
1 '8 1 . 1
.",d,

lie .. It +
.t'ldl

..trhIJC, ~)) 18 .~",

..trhIH. ~6) ,8 ,
".trhU'. ~~J 18 "~",
Itltrhl)to. !t1} 18 "()":
..trhCJ". !>4, '8

,
.atrlxf)., ~"J :8 ,
1 ,. 7,
-tll1. 1 (8 ., 190

1\'01"...trhU-. 1J '8
,

I .. I . 4
."'ft,

"'.t r 1_t)...
",.trllf)-.
..trhlj.,
".t rtx Cjft,

'rh()Ia,
...trIlCJ9,
..rrfxf)',

trf.C)'..
"'.,rh:(J'.
...t r Ix ()~,
".trhOC,
..trl.0ft,

trl.(1.,
..,rllf.l,

t r t Ifr t1 .
.,trilIU,
..trill."
...trhf.t.
~.t,hUt.
...trtx f 41,

.ft. 110..111

.or
ct'\.ck 1. c",.CII:2. d.t" I

J') '8
.., ,

11 .. "1"..) : 8 "r:.,
1t J '8 "". I
l"J ,8 ,
"} '8 ".',2))

'8 "",J1 J .8 "2",
)!'J '8

,
I') '8 "to",4)) .- ,
U~J:. ..,',
., J :8 "0",
2.) 18 "£I'"
2'1 .8 "e.,1~j ,8 . r",
l7] 18 'c',
il) .8 ;

l"
18 .f'I'"

Jr.) 18 "t",,

~tol'"_r ft.l,.,
r'ltt (Clyr...". t f1"'"cr-f'C'i:l.cf"u"try ,8 pyr.-'''-.COUf'tfY'o.t(r.,r..ld),
rtlPCIIC1,W'.",. flvr '''..v,."
C'lolf'(pvr...ft)'
r.'tt Cryr..,". tt ."",
C'1'I.C'lI:l,C"C"Il"trv I. ty l eniJ"'tr.,.r
Of't (l:I"rl" 1ft »:
fl'!f'C'1r:2,yt'.r U fyr'II'Jo..yt."
f lei. (I'yr'.111

J'If C~'f" J .countrv 8 C'~.C'Ir' .cou,.t ry
f"'o1~
-r It. lfl{"
~r It'l,. ("
~r Jtf'l~("
0."

.11' fff1ft.r ' .,....
""ol~..r HtlP" ("
'rllfl"('
.rl t Ilf' ("
.M

""''''
hv..~ol."'''1,u'\.t lorQ ,

.., e""C'lrl.v...r..."),
", cn.ctCi'.V.'rI.., . .. 0")1,

1""'1 Y41'1. f~r I.et'! v..r")

'. C'r'I.ctrl.C'f'I'.u'Itry,. .. ."),
'. t"'t"'.(fht~tr,;,,'.. 0')1
"8"", I.."". v.lu, ffilr Dot" .r...'"

proc.-tur. 1"!;11"'.., Cfor rr"'r.r outrut tor'.tt1p\Q)

.n
1i ."t.I"r,

I 30 Artir.IA!iI

beal"
fer 1 .8 . tft 12 dft

.rItI'.'"
.n" flkSl"1tn..'

...i,)' t,..,.".,:
'11",
'1I:Ir'l1nel'
for 1 I. 1 tft '2 tit!

fer 1 I. j to "J
""t-f'olr

.rit'("'.trtaU, il);
tt , . I)' t ro..n

.rlt.l"
..n<1;

If (C't.olC'.. -r', or (t,..otC'. . .tJ-) u.."I y"'rol..JP} ."'at ten J
.-trlt,...

",ut 'pro~.,C'..c:vr.."'t'U ,

D'Olrt,..1t'.) tt~..r r.'.,
I"lt't.,rootc.,
.n'.'.fl1'."'.":let. II'
r.', t ,v"..rt1..III.,, 1., A'rr~"'\JC'I8_~.,.r." t"

end.

-------,
! popul~ti"n pynmi~
I :'!weden
! 1910

a..

. !. 75-

60-6'

50-5'

30-3'

25-29

20-24

15-'9

10-14

5-9

0-'
------ o

10 8 6 8 '0

perc-ent

Conclusion

The inclusion of exercises such as this one in social
science classes has proven to be valuable in a number
of ways. It allows students with little or no program-
ming background to get over their tentativeness about
approaching a computer. In addition, I believe that such
exposure to computers, however limited, contributes
to the overall computer literacy of students. Finally, the
experience may spur a student to want to take a course
in computer programming or to learn other uses of the
computer.

There is absolutely no reason why students in all
divisions ofthe liberal arts setting should not benefit by

Articles

"'--'---'--,' ;
populaUon prr..td8 .- 'Upe,.tepol~ t
.v.den ...1~ ~~~ t
1970 '975 !. I.

I.0 , ('I. .
I. 0I (' .
I

. 0 I ('
_1e t f...l"

01 0
I

o I 0
I
I
I

. 0

o.
o _ 1C;.1Q

10_111

'0
8 8

'0
perc-ent

sweden
llexlco -. 0

'= ': sue value for both area!;

the opportunities available in the field of computer
science.

Notes

I. The Geography Program Exchange assists uni.
versities and other non-profit organizations with the in-
terchange of computer software which relates to
problems of a geographic nature. The address is:

Geography Program Exchange
Department of Geography
Michigan State University
East Lansing, Michigan 45824

2. One of only a few books written on the general
topic of computer applications in geography is Paul M.
Mather, Computers in Geography: A Practical Ap-
proach (Oxford: Basic"Blackwell, 1976); it contains four
chapters, one of which is an introduction to the FOR-
TRAN language.

3. Mark S. Mormonier, Computer-Assisted Car-
tography: Principles and Prospects (Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1982), p. 22. .

4. John L. Kirkley, Editor, "Our Industry Could
Lead a Liberal Arts Renaissance," Datamation, March,
1983, p. 29.

5. Brian J. L. Berry, et ai, The Geography of Eco-
nomic Systems (Englewood Cliffs, New Jersey: Pren-
tice-Hall, Inc., 1976), p.36.

6. The programs in this paper were prepared using
Oregon Software Pascal, Version 2.0, and run on a DEC
PDP 11/70. PUG

31

Path Pascal
A Language for Concurrent Algorithms

By W. Joseph Berman
Advanced Programming Techniques, Inc.

704 Village Road, Charlottesville, VA 22903

1. Introduction

This paper is intended to provide an overview of
the Path Pascal programming language. Rather than in-
troduce the language by studying its definition, the ap-
proach taken here is to explore a moderately complex
example. While any detailed understanding of Path
Pascal must be based upon the formal definition of the
language, this paper will present the most important
concepts embodied in the language.

After a brief history of the development of Path
Pascal, the problem to be solved by the example pro-
gram will be presented. Using this example, three major
concepts of Path Pascal will be explored. With these
major concepts, the operation of the program can be
understood. Finally, a summary of the present status
and anticipated future of Path Pascal are discussed.

I

2. Background

Path Pascal was originally developed at the Uni-
versity of Illinois in 1978 by Dr. Roy Campbell. Details
of the original Path Pascal compiler project are avail-
able from the University of Illinois as a series of Re-
search Reports. In addition, the definition of the
language has appeared in SIGPLAN Notices [1].

The University of Illinois implementation of Path
Pascal was for the LSI-11123 processor. Path Pascal has
now been implemented on a variety of machines in-
cluding the M68000 (by NASA-LaRC), AMAC-80 (by
Martin-Marietta) and VAX-111780 (by NASA-God-
dard). This report is based upon experience gained with
Path Pascal as part of NASA Contract NASI-16985
during 1982 using the M68000-based Path Pascal com-
piler developed by Dr. Ed Foudriat at NASA's Langley
Research Center.

Path Pascal is based upon "Path Expressions" first
described by Campbell and Habermann in 1974 [2]. The
key concept is that coordination among a collection of
concurrent processes should be expressed in a language
designed especially for that purpose. "Path Expres-
sions" conveniently and succinctly specify the central
concepts of "mutual exclusion" (protecting "critical
sections" of code) and of "synchronization" (waiting
for information to be computed by other processes). In
Path Pascal, the primary unit for mutual exclusion and
synchronization is the subroutine, allowing the use
symbolic names in the Path Expressions.

In Path Pascal, "counting semaphores" are used
to implement both mutual exclusion and synchroniza-
tion. By specifying the Path Expression prior to the
subroutines that it controls, the compiler can generate
appropriate initialization, P-operation and V-operation
at the beginning and ending of each subroutine.

32

2.1 The Island

Before discussing the example Path Pascal pro-
gram, it may be useful to understand that this program
is a simple event-driven simulation. The simulation in-
volves an island and its inhabitants.

The island of this program is a very special island.
It consists of a 25 x 17 grid, each element of which can
either be empty (displayed as a blank), contain a wolf
(designated by a 'W'), or contain a rabbit (designated
by a 'R'). Initially, there are 17 wolves (all in column
10) and 17 rabbits (all in column 16).

Each wolf begins with a user-specified "energy".
This energy is used on an "annual" basis to remain alive,
looking for rabbits to eat or other wolves with which to
mate. Each "year" the wolf looks around his position
on the grid, determining if there are any rabbits or wolves
in his neighborhood. If there are any rabbits, the wolf's
energy is increased by eating them. If, on the other hand,
there are too many wolves in the neighborhood, the wolf
loses excess energy due to overcrowding. Only ifthere
are a reasonable number of neighbor wolves and this
wolf is "fertile" does the wolf attempt to produce an
offspring. If the wolfs energy is reduced to zero, it dies.

Each rabbit also begins with a user-specified "en-
ergy". This energy is affected in a manner similar to a
wolf, except that a rabbit is considered to have been
"eaten" if there are any wolves in its immediate neigh-
borhood and that rabbits gain energy by overcrowding
rather than losing it.

Finally, the user may wish to "repopulate" the is-
land, assigning new energy and lifetime specifications.
This is done by pressing any key on the keyboard.

3. Path Pascal Constructs

The example program, ISLAND, is primarily writ-
ten in standard Pascal. It makes use of only three new
constructs - OBJECTs, PROCESSes and Wait-for-Son
processing.

3.1. OBJECTs
Of the several extensions to standard Pascal, the

OBJECT construct is the most important to under-
standing Path Pascal. An OBJECT is a Path Pascal
TYPE with several properties similar to a RECORD.
As with a RECORD, each variable ofan OBJECT TYPE
allocates stack space and NEW of a pointer to an OB-
JECT TYPE allocates heap space. The space required
for a OBJECT TYPE is that for the semaphores implied
by the OBJECT's Path Expression and for any varia-
bles explicitly declared within the OBJECT. Unlike
RECORDs, OBJECTs contain subroutines (PROCE-

Articles

J

J

DURESs, FUNCTIONs and PROCESSes). Those
subroutines that are included in the Path Expression are
termed "ENTRY" routines and may be accessed from
outside of the OBJECT using the RECORD-like nota-
tion "object.entry(parameters)" (e.g., line 436 or line
444).

Lines 16-52,71-95,96-183 and 186-200 indicate four
common kinds of OBJECTs. These examples will be
discussed in the following sections.

3.1.1. OBJECT CRTOBJ (lines 16-51)

This OBJECT is an example of an "interprocess
buffer" OBJECT. Since processes run concurrently (see
Section 4), they must be synchronized in order to trans-
fer information. Unlike ADA in which processes must
"rendezvous", Path Pascal facilitates the concept of
"interprocess buffers" that contain data to be trans-
ferred from one process to another. This allows the
"sending" process to continue execution after gener-
ating the information for the other process.

The Path Expression on lines 19-21 has both mu-
tual exclusion and synchronization expressions. the first
two expressions simply state that the operations PUSH
and POP are atomic (only one PUSH at a time and only
one POP at a time). The last expression specifies the
synchronization between PUSH and POP. It states that
a call to POP may not proceed until a call to PUSH has
completed and, furthermore, at most CRTSZ calls to
PUSH can be honored before at least one call to POP
occurs.

This last implication of the Path Expression, that
at most CRTSZ calls to PUSH can proceed without at
least one call to POP, is the key to understanding the
data structures (lines 24-27) and code (lines 29-51) of
CRTOBJ. Since at most CRTSZ calls to PUSH can oc-
cur without a call to POP, all that is required is space
for CRTSZ "messages". Since the "interprocess mes-
sage" in this case is just a character, BUF is simply an
ARRAY of CRTSZ characters. INPTR specifies where
PUSH is to put its character, and OUTPTR specifies
where POP is to get its character. This code works be-
cause the Path Expression controls access to the rou-
tines PUSH and POP, and, therefore, controls access
to the BUF ARRAY.

J

]

3.1.1. OBJECT CREATOR (lines 71-95)

This OBJECT is also an interprocess buffer; how-
ever, the buffer has only a single entry (the VARs XX,
YYand EE). This form of the interprocess buffer is very
similar to the ADA "rendezvous".

3.1.3. OBJECT SCREEN (lines 96-183)

This OBJECT is used to control access to the INFO
ARRAY, the inmemory representation of the island. The
Path Expression on line 99 simply states that one and
only one of the allowed operations may be progress at
any given instant.

The routines in this OBJECT include SETUP (for
reinitialization), KILL (for termination), LOOK (for
examining the "neighborhood" of a wolf or rabbit),
ASSIGN (for direct control ofINFO), CHANGE (a test-
and-set operation) and DONE (a set-and-test opera-

. Articles

'J'
\},' \'::'~~ <i,"'" '

:~

tion). The routine WRITES (update terminal screen) I.
available only within this OBJECT.

3.1.4. OBJECT SHUTUP (lines 186-200)

This OBJECT is used to synchronize the termi-
nation of the simulation. Since Path Pascal does not al-
low "preemptive termination" of process (see Section
4), care must be taken when writing processes that must
eventually terminate.

This OBJECT acts essentially as a binary sema-
phore. The call to SHUTUP. WAIT on line 376 will cause
the calling process (SHUTDOWN) to suspend opera-
tion until the call to SHUTUP.SIGNAL is made on line
364.

3.1. PROCESSes

The second major addition of Path Pascal to stand-
ard Pascal is the PROCESS. Conceptually, a PRO-
CESS is a PROCEDURE that, after it is called, executes
in parallel with its caller. In Path Pascal, all processes
that are not waiting due to a Path Expression, a DOlO
(see below) or a DELAY are competing for the hard-
ware processor(s). Also note that each call to a PRO-
CESS creates a new process, as in lines 311-317.

PROCESSes in Path Pascal can either be normal
or INTERRUPT PROCESSes. An INTERRUPT PRO-
CESS has two special attributes not associated with
normal PROCESSes. The PRIORITY and VECTOR
information are used to control the inteITUpt hardware
such that the DOlO statement (lines 213-237) acts as a
"wait-for-inteITUpt". In addition, as shown on lines 211,
216, 234, 239, it is sometimes necessary to enter "su-
pervisor state" in order to access device controllers.

3.2.1. INTERRUPT PROCESS DL VJIN (lines 201-221)

This process is an "infinite loop", waiting for an
inteITUpt from the terminal input hardware. When such
an input occurs, the character is forwarded to the ap-
propriate interprocess buffer.

3.2.2. INTERRUPT PROCESS DLVJOUT
(lines 224-241)

This process is also an "infinite loop". It waits for
a character to be placed into the appropriate interpro-
cess buffer, transfer the character to the terminal, and
waits for the completion interrupt.

3.2.3. PROCESS WOLF (lines 242-270)

This process corresponds to a wolf in the simula-
tion; it is called when a wolf is to be created. The pro-
cess is a loop corresponding to the lifetime of the wolf.
In the loop, the ENERGY of the wolf (a local variable)
is constantly updated until it is reduced.to zero and the
wolf dies.

3.2.4. PROCESS RABBIT (lines 273-302)

This PROCESS is similar to PROCESS WOLF,
except that it corresponds to a rabbit. As with the wolf,
the ENERGY of the rabbit is constantly updated until
it is reduced to zero and the rabbit dies.

33

3.2.5. PROCESS SHUTDOWN (lines 366-380)

This PROCESS is used to wait for input from the
user (any input will do). When this input occurs, it is
necessary to notify the screen monitor (line 374) and the
main program (line 375). However, at thia point it is
necessary to wait for the main program (actually, PRO-
CEDURE PROCREATE) to complete its processing
(line 376). Finally, SHUTDOWN "absorbs".any extra
attempts to create rabbits or wolves. This is completed
when the special message having an ENERGY of zero
is encountered, and SHUTDOWN is terminated.

3.3. Wait-for-Sons Processing
.When a PROGRAM, PROCEDURE, FUNC-

TION or PROCESS calls a PROCESS, it is necessary
that this "son" process terminate before the "father"
can terminate. This is logically necessary due to the
scope rules of Path Pascal. Furthermore, this "wait-
for-sons" processing is a useful tool for coordinating
the termination of a system.

Except for "wait-for-sons" processing, there is no
reason that the code in PROCEDURE PROCREATE
could not be part of the main program. Note, however,
that all of the WOLF and RABBIT processes are ini-
tiated by PROCREATE. Hence, PROCREATE cannot
continue until all of these processes have terminated.
This fact is critical to the coordination between PRO-
CREATE and SHUTDOWN when the simulation is
being terminated.

4. PROGRAM ISLAND

Having looked at the special features of Path Pas-
cal that are used by this program, it is now possible to
step through a typical execution of the program.

The main program begins (lines 430-433) by allo-
cating heap-space for CRTIBUF and CRTOBUF, by
initiating the input/output processes DLJVIN and
DLVJOUT, and associating DLJVIN with CRTIBUF
and DLJVOUT with CRTOBUF.

The driving loop of the program (lines 435-445)
clears the terminal's screen (using DEC-VT52 proto-
col), prompts the user for parameters (PARAMS), rein-
itializes the simulation (SCREEN. SETUP), initiates a
process to look for terminal input (SHUTDOWN), and
calls PROCEDURE PROCREATE.

PROCEDURE PROCREATE (lines 303-365) be-
gins by initiating 17 wolves and 17 rabbits. It then enters
a loop waiting for requests for creation. When such a
request occurs, it is first tested to see if it was generated
by SHUTDOWN, indicating that termination should
begin. If this is not a SHUTDOWN request, it is a re-
quest for the creation of a wolf (ENERGY> 0) or a rab-
bit (ENERGY<O). Each direction (UP, DOWN, LEFT
and RIGHT) is tested to see if it is available. If all di-
rections are occupied, creation is not possible. If a free
position on the island is found, the SCREEN .CHANGE
call updates the simulation and the rabbit or wolf is cre-
ated (lines 358-361). When the special SHUTDOWN
request is encountered, PROCREATE signals SHUT-
DOWN that it has completed processing, and waits for
all ofthe wolf and rabbit processes to terminate.

Once all of the wolf and rabbit processes termi-
nate, PROCREATE returns to the main program (line

444). The main program now signals the SHUTDOWN
process that no more requests for creation will be gen-
erated, and the master control loop iterates.

5. Summary and Conclusions

While a single example cannot cover all of the con-
structs and uses of those constructs, the ISLAND pro-
gram is representative ofthe important capabilities that
Path Pascal has that are not found in standard Pascal.
These capabilities include multiple processes (PRO-
CESS), interprocess coordination (OBJECT), and pro-
cess termination coordination (Wait-for-Son).

Having programmed in Path Pascal for several
months, it is clear that these new capabilities are useful.
Many of the PROCESSes and OBJECTs that have been
written have been found to be highly reuseable since
they "encapsulate" and entire concept or function
within the program. However, it is equally clear that
these new capabilities do not "solve" the concurrent
programming problem. Developing the Path Expres-
sions is a tedious, error-prone undertaking. Nonethe-
less, once a Path Expression is finally "correct", it is
usually clear to anyone reading the code exactly what
will occur when the program is executed.

One of the goals of the current research with Path
Pascal is to identify various "prototype" Path Expres-
sions. The "interprocess buffer" is a good example. If
a few such prototypes can be found to be sufficient for
most situations, a "macro OBJECT" facility might be
added to Path Pascal to make these prototypes readily
available to the average programmer.

PROGRAM ISLAND: f' tl«JLF AHO RABBIT SIMULATION PROGRAM.)
C'ONST

BEL 7; (' ASC I I FOR TERMI HAl. BELl. .1
CR J 1:

C'
,,~rr I POR TERMINAL [NO

Of' INP(rr .\
F.:,>r 11: (. ASCrI POR TERMIMAL CREATOR ')

rR'f'SZ J20. (' ~IZf: Of' TERMINAL BUPFER . I

XMAX 7.,; (' I~LJ\.Nn !':IZE: rot..C;tJ ')
YHAX 1& (' J:':LANn ~JZ£: ROWS.j . \

)(Wul.t'
]1),

(' INITIAL. roUJMN fOR WOLVE':' ')
XRARRIT n.

I'
INITIAL CIJLUHN PUR RA~RIT~ "}

TYpr

(-PTPTP "nITnR.J;

f~PT'OB.J OR.'F\'"7
(.

~YNCHRONIZF: TERMINAl. JNPlrr/otrrpU'f ")

PATH
l:(PfJ~H). ,. 1}N'E AT"

TIJ4[0)
l:(POP). CO ONt> AT "TIME "1('RT~;'l.:(PtJ~;H;l'OI') (" PI'SH THEN Pl)P

°1
END'

VA.
,UIP ; ARMY 11 .CRT5Z) Of CHAR;
INPTR : IN1"F.GER;

otrrP1"R : I NT£GER;

EH'TRY PRtx:EOURE PUSHl CR: ,lIAR' ;
RD:;[N

RU>" INPTR) , CII,

If' INPTJI-C"RTS7. THD
INP1'R: I

f.L!=;[
INrTR: IHPTII't I;

ENO; (0 PRf)f'UXIR£ PUSH ')

..
/

lNTHY PkOq;UIJIU: POPf VAP f -H : nlAR).'
"rt;IM

nl: RO"'(OUTPTRI:
J,. otrrPTR rRT5Z 'ftI£N

OtrrPTR: J
[1..<;[

OIITPTR: 0I1l"P'I'R+ J
;

t:NO;
I"

PROCEOUIt,£ POP ')

JNIT;

I\f;ijl"
JNPTR: J;
OlrrPTR :.a J;

£NO.
END;

l'
OBJECT CR'I"08J ')

VII#.
,RTJ8Ur : C"RTPTR: (' JNPtn 8Ul'I'P ')
rR'rOIKIP' : ~RTPTR: 'I OU'J'PU'I' IlUl'na

. ~

VINIT . Jtrn:G£R: (' 1«113: INITIAl. ENERGY I I

Articles

W'l'U IIrPE...,R (' ""II
IIONML LI rEYn.

""",,",'AL I NTF.GEtt (' ""II
AIIIIUAL ENERGY USAGE 'I

WP'ERTILr.: rN"rF.CER (' ""II DIERGY roR n:R'I'ILI'I'Y

"wr,..*D rNT!:(i.EJI
"

10011 MX ENERGYor NEIGHBORS ')
WMAX IHTP:GER (' Wra.l': MX ENERGYFOR AN INDIVIDUAL

"
AINJT INTEGER: ,. RABIHT: INITIAL ENERCY 'I
RYRS INTF.GER; ,. RAR8IY,NORMALLIFETI"

"RAHNIJAJ. I NTF.GEJI : ,. RAR8IY, NllftlAL ENERGYU5.\QE
"RTF.'RTJ u: : I NTF.GER :

"
RARRIY, £NEftGy I'OR rER'J't LI'l"f '\

RI
"
MoWn t NTf.GER;

(. RMRIT: MAX ENERGY OF HE I GH80RS 'I
......x J NTP:GER ;

/' RAfI"IT: MAX ENERGY ,.'OR AIf INDIVIDUAL

(' WRITE 1"0 SCREEN 'j

/.
V'I'''

JUMP .j

/' EMPTY'j

,. RABBIT,\

(' ""II
.,

I"RF-ATnR OfLTt:r-T (' ;.YNI"HRONIZE wnt.f'/RA,R''�T CREATION'
)

PATH}
: II 'REATr: !':TAJn'1IP)

ENO:

VAR

xx
VV
EE

ENTRY PROCEDURE: CIltEATE(X. Y. [: INTEGER):

8EGIR
xx :. X:
yy ~& Y:
EE, E,

£NO; (. PROCElJtIM£ '"R£ATE ')

t:NTRY
RE<.;IN

X
V
F

PR'XEDURE STARTUP(VAR X. Y. F.: INTEGER}:

END:

X'L
YV;
EE:

(' PROCEDURE ,sTARTUP . \

[Nil; /. of\.Jt:tT CREATOR ')

SCREEN 08JEt...,. (' COORDINATESCREEN
.)

PATH
1: (SETUP. KILL. LOOK, ASSIGN , CHANGE. DONE)

[NO;

VAP
STOP : BOOLEAII:

IN"O
. ARRAY fa. .XMAX.O. .YMJ.Xl OP INTEGER;

ENTRY PRCX"[OUR£ S£TUP: (' l RE)INITIALIZATION')
VAP

X INTF.GER:
Y INTEGER;

Rf.GIH
STOP. ,.Ar...C;[;
FOR X : == 0 1'0 XMAX DO (. RESET ENERGIES .)

rOR Y. 0 1'0 YMAX 00
INf'O(X.Yl ;- 0:

ENn; (. PROCEDURE SETUP ..)

ENTRY PROCEDURE JCILL: (. 8F.GIN TERMINATION')

REGI"
STOP. TRUE:

ENO; (. PROCt:OI1R,E KILL')

ENTRY PROCEOURE LOOJ((X. Y: INTEGER: VAR ER. EW: INTEGER):

PRnCEnURE TEST(ENERGY: I N'rEGER
) ;

REGI"
IF' EHERGY, 0 THEN

ER ER" ENERL-r
ELSf.

EW. EW"ENERGY;
ENO: (' PRO('EOORE TEST .)

"F.GI"
ER : ~ ('I; (' SURROUNOING RABBIT ENERGIE.!) . \
[W ;. 0: (' !:l1RROIJNOING IiKJLF ENERGIE'!) .)

TESTl I Hf'(J [X 1. Yl);
TE5T(INFO! X.,. Y I L
TE!:Tr IMPC)fX." 111;
TE!:Tl INPnf X. Y.. J 1

};

ENf); (. PROCErnJRE LOOIC ')

1

1

PROCEDURE WRITES(X. Y. E: INTEt;ER};
RF.GIN

rRT08UT~ . PUSH(CHR(Ese));

cRTORUF- . PUSH(.
Y'

):

rRT08UF - . PUSH(CHR(Y.
)

J
));

rR1'08Uf'~ . PUSHI CHRl X. U
));

IF
E"'O THEN

CR"J'08upA . PUSH(' ')
ELSF.

IF' [cO THEN
CRTOBUPA .PUSHl

'R'
)

EL..c;r
CRTOBUFA .PUSHl

'W'
):

ENO: (- PROCEDURE WRITES ..)

ENTRY PROCEDURE ASS I GM(X. Y. E : INTEGER) 0
BEGI.

IHFO(X.Y)
:'"'

Eo (- UPDATE IN-MEMORY.)
VRlTES(X. Y. E): (- UPDATE SCREEW .)

END: (- PROCEDUItE ASSIQII ..)

ENTRY PUNCTION CHANGEl X. Y. E: INTEGER) :iIOOt..EAH;
REGIN

CHANGE : PALS!:;

If' (INPO{X, Y}""O) AIID NO'r STOP 'MIEN (- PR.EE ..)

8EGIN
IHf'Of x. YJ :.= E:

(. UPDATE IN-MEMORY')
VRITES(X, Y. E); (. UPDATE SCRER

,)

CHANGE ;.. TRUE:
£NO;

£NO; (- PUIICTION CHANGE -)

DlTRY f'UNCTI<:* DOICElX. Y.~: IItI'EGER) ;BCK>LEAJrI:

Articles

III!QI8

111I'011.'1
'"

EI I' UPDATE IR-MEIOOIIY ')
DCMa.~ I"ALS& I

I' IE,OI OR S1'OP_ "TERlUR"TE WOLFf_I,. ')
1tEC18

wrcl1"£5(X.Y.O\, (' UPDAftseRED tt)

IK*I I. , ,11IO,
END I (' Pt8C'?1C* DOlI! ')

£NO: (- 0II.JIX7 ICUIII ')

oa.JEC"I"{. By.a.OIIlIE ftItMJIlATIC8 .}

PATH
1 :(SICifIAL,.IY)

END,

EN'I'IIY p~ SfGNALI

ItEC IR
DID; (. PIIOC'EOUItI SIGNAL . \

EN'I'IIY~_I",
REGI8
END; f. PROCEDUItEtat,. ')

£NO: (- OBJECTSIIU'IVP')

tN'I'EMuP'I' PROCESS OI.V.JI" f 'ItJOIIUTY-) . VEc-roR4' 100 1 (IIWP:CIltTP't.,n:
(' nEf'AI1LT VF.CTOR . "JO

.)

(' OEf'Am.T ADOA.F.55 '77777'\60')
VAR

r~RI '?7777~foO I
RtWf '77777~f,7 I
rHAIIF
(~H

ArCIN
REPEAT

~HPSET ;

I'$R .
nOlo.
j'HAUF

I NTECEa;
I trrEGER:
INTEGER:
j~HAR;

,"If' .

r:"R f.4'

F.Nfl

,'Sf;;

.";IJI'RTN.

If' c'HAUF.o THEN

I RUF'
_

PIJ~H((~HRf f.~r
)

1:

IRIW- f'!1sHrrHA{rHltUF MOO ~lft}};

"NT:!. F...l f.
(' tN1'F.RRtfPT PROCf.S5 ULV.JIN -1

INTFJifH~P7' PROtF.:-;S o{.v.1mrrrrRlnRITY.J.VEcTnR 11101 (of't1F:.'RTVTR)'

I' !1Ff'AIJL l' V'f.(,'f':)k '110'
)

. f1Ft"Ar!I.1'A.nnRF..'~? .~ P7?c"t,4 ')

,
-~'H 1777-nL,t.41

f',llf'i .7??7.Jr,f 1

"H
fif';IN

RENo:AT
I)FIlIf'- ~'Ol'(c'H)'
';TfP~~rT :

ltf'fF.-lit:R.
IrrM"EGF.R;

("HAR'

R!fF CIRJ'(CH)
r_d(j.

I'~R I'~;R ...'
,':rIPRTN.

IIN'T'!:. F'Ar..''f:

t:Nf" r'
INTERJHIPT I'kllII-i'::;~ 111.V,/lKrr

pRO('£.!)~ wnLPf X. y,
IF.NF:FtCy: INTt:<;ER}:

VAR
(' OHF: I Nf,TAHrE PER WOLf'

.)

F:NF.R(W
FP
FW
III.Y

RP;IN
F:NF:RI;Y - ; rNF:Jlr:y :

RF.rr...T
FNf"RI;Y t:Nfkr;Y

W""""AI.
"lloIfFN ISJI'If('(X Y_f.k.f'W1

IF'
Ep. ()

TH1:N
ENf:Jtf;Y

[1.::r
iF FW. WI-~*,J THEN . . 'r'!If> MAfrrlYWlII.\It:;: . \

":Nt:Jt'.y FNf.FH,y
itil\.NN"''''J.

t:l.::r

iF' 1 fWd) AHI' I t:HERt;y WFt:kT; IJo > TIU:N
. MF.A"!'I... ,

liF:ATh ;(. I(
":Ntk';Y I

,,. FN":;.;:;Y. ,
itU:N AVldr, fit, (.,.IN'; kAKI1IT' \

I NTF.GF.R :

I NTF.riF.R ;

tNTt:r;F.R;

1NTf'(;f.JJ:

f' nJJtRDft' ENf.IiI1;Y LF.Vt:l. ')
EMFPf;YL£VEI.

0"
NEIGHJ40RIN(,;RANIiI~ .,

(.
DIE,""Y L1:Vn. OF Nffl;HJW)kJNG NnLVE5 .1

(' -.n::;T" TTMF.kf'TWEENA.:"TtVJTU:~ .1

ALWAY::.0 . I

ANNI rAT. t:HUo/l;Y U:';At;l-:
. tn, 11 Nfr(.)HHr'~; .1
I,Aft/~IT', 'J'I'I t.:AT . ~

t:N!-:Jo";Y

iF t:NfRc;y, WMA,A'j'Jft;N
fNt:J.I!.Y tl8'lAX:

['LY WHAX ,.Ni-fl..Y

'F ;'i.Y' t-:Nn"l~y Tltt:JI
,.).v. t:N.:

y

r't:l.AY, IIL.v
);

;INTII. ;;,.);.1:I-:N,("-JN.:/&.v t:JIENI;Y):
,.:NI.

.' f'k(""f:~;!; 11II111 . I

'ANNift. II:;": t:XI't.:.:. lNF.ki.lY . I

I'
RF.:;T . i

l' IJ£C"IUF. IftlF.TKl:JI $I'lL&. -ALJVE-
.)

IFt;~-,.: kAJ1H~T,X,Y.~J..Ht~Joot;'(.ur",:..t."1 ,. ,...t: IN;:T"",.t. I"t:. MM)tIT

V~'
: Ni"t-.;'....
I "'ITJ...r.Fi
'~-,......-
: "IT n

:'frJlr.NT t:N y :..:v-n.
"!.lItNIoY :.t:Vt.I. 'If' N":I f"'''''}.I

fifl; RAMI'IT:; .)

~;Y :.tVt::. .".. Ht'I,,,""'."IH-. Wln.YES .)
. M :.T" TUO' Itt-"""'£'H "''''fIVi''I~c;,

.,

"'NFP';'"n..

'.W
"t.y

,.,. .IN

"~""',.Y
"'ntA" t'Ntfl,;y t-NH"'_'i li'ANNlfAl..

'.. ..nN :".-.11',).
..,

""

,

: 1. tW WANN''AI ;1ft N
...N,...,;y

t:I.:;"
:t'It:..,... .' ", W. ~tW'\"" f - .,

:.NI AI,WAY:'; n' ~

ANNII"!.nr v 11::.\101:
. In,.' .. : ,..~ ..
t A'''tN "Y .'1

.)

1

.

81

I-IE(;IN

(PF:AT'I If.'.
(

kt-;ATf-:r X. Y. ENt:R(;Y
)

if' t:F. R"k!lWfJ THEN
r'

RARRIT:> LOVE A ('ROWf) ')
Nt:k(;V t-:N!-:Rf;Y f}' RANN!IA.I,'

[Nil

I f-' F:Nrk'~Y TIfFN
ENf-.p!;V, 0;

Tf'
F:HF:k(;Y. RMAX THEN

[HUH";Y RMAX:

nt.y. EN'ERt;y RHA.X;

IF'
OI,y.

-
ENERf;Y THEN

OI.Y. ENERGY:

DELAYe OLY 1;

IJN1'It. SCREEN, OOfrrlE(X.
y, ENERGY);

F.NO:
(.. PROCE5~ RABRIT

0)

AYfJlrj RF:COMING A WOLF 0)

,ANNOT (J~f EXCESS ENERGY .)

{' RES" B"~En 11PON ENERGY '}

,. REST 0)
to DEe-lOr. WHETH£RSTTLL "ALIVE" ..)

PROCEDfJ'RE PROCREATE;
(.. CREATE RABBITS AND WOLVES")

vAIl
INTEGER;
INTEGER;
INTEGER;
((Jp. DOWN. l.£M'. RIGHT);
I tn'EGEfiI ;

(.
CREATOR'S C1.1RR£NT POSITION

.)x
y

ENERGY

01"
nlRs

RF.GIN

PO" Y
REGIN

.sCREEN _"S~IGN/ XWOLP. Y. wINI,.);

WOI.f'(X'WOLf'.Y. WI NIT);
.sCREEN .ASSIGN/ XRARBJT.

y, 'HNI,.);
filAJ\AJTf XRAAAIT Y. ~IHJ1')

[Hr):

:,1"'.
trp.

i'
,R£ATJrIN n;I<E,TJqN . 1

REPF.AT
(. n~EATF. 'lFF'SPP J NG A~ REQU I REO . \

'REATOft
_
:OTARTt1P(X. y, ENERGY \; (. OfITAIN OPERATION REVUE!';T ')

Jf' EHF:Rt.>y. .n 'MIEN RF.QUF.ST FOR 'R!:ATJnN . j

REG I iii
DJPS
REPEAT

If

(. CREATEO'5 INITIAL ENERGY .)
(..

CURR£N'I' DIREcTION
0)

(' 01 RF.CTION COUNTER . I

)
1'1'. Y'MAX

]
on /. INITIALIZE SCREEN.)

(0 A rOU.JMN Of' WOI.Vl::~ . \

A ("(H.IIMN OF RARAJT~ . \

4. (' TRY ALl. FOUR IJJRfl"TI{jN~

D!JLFtIGHT THEN
DIR lIP

F:J..;f.
It]R. :;"n'iOI~L

,A:-:t
PI'"

I)f"
1/1 n y. I THEN

IF' ;.('REF.N. I'HANf~f(X v 1 ENEJ.il~Y\ THEN

Rr';IN
nlFt:
y

F.NfI

i'
'(IN;.ln[~ NEXT nJRE{'TION

Y J

;;ET FLAG 0
j

i' ~JI'IIATE IdRf"'Y'lrIN

j..WN IF y'.'. YMAX TIfEN

iF' "I t:EN_'.HAN'r;t:IX.Y.J.ENF.RCY\
THF.N

Hr'
;IN

(I .~fT FlAG .!
YI] 1"'fIATt: r.;Rr:I'TI.IN

:.n'7

Y

ENI"
It' X. J THEN

: f-"
:-;I-Flt:t::N

ftF' ;IH
J, n.~ :

X
tN11

; t x..'. XMAX
It .: 'RF:.t:N

At', ;,N

: ;1<
x

t:Nrl

THEN
,'HAN(~'" x.; y t:Nrw{;y \ 'THEN

::rT fo'LA!; .

X ;
1Jl'i~ATt :']I-'f-,'TI'IN

'f':T f.',.AI;
"XI: .

':I':IATf' :':"'f"TJ'IN

:
'"

. H..
lI~r: i :.IH:,
;t

i'l
k; .1 THEN

: f t-.Nn,,(;y., i THt-:N

I-'AHHIT' x Y j<Nt:" .y,

...
I'

WI
'1.1': x.'r

t.Nn..,;y \:

If-' Ii 'ANN'}T
[1(1

Wt.A'rlIIN

f.,'YATt Hf"W f.."Ahll
j

T ')

'~t::ATf' NEW WI
'I.'"

.

~:NI
,

[NIl

IIN-;-';' f'NI
~.;y

H"'TI:I'
;1~Aj.

"
~'f<'O('F:lJilI"'t

"

::!I!ITIMIWN 1'h'IIYII,t'..

:111
rrl'" 'WN

IIAN! II.t

I Jo'(Jo'wt:AT1-" . I

.I'F'.IA!' '(1111" Fill< 'ITI<M:NATJiN
f-.XTkANf-:,)11 '...tATI,'N I-'t\11It:::1"

'

36

PROCESS SHUTDOWN; (. HANDLETERMINATIOII .)

VAIl
CM
X
Y
EHF.RGY

REGI"
CRTIRlIF'A .POPICH};
!;rRF.EN . J(ILl.:
,REA-TOR. (~Rf:"TE(0.0.0);

~H"J'T1P. WAIT:
flfPEAT (' HANnw: ANY EXTRANEOUS A'M'EMPT5 AT ('"REATloN

.)

ckfATflk .::TAHTT'P(x, Y ,ENERGY):
IINTI r. F.NF.RGY n:

fo:NfJ: (' pf.l()f'rS;i :iHU1"I)oWN .)

CHAR;
INTEGER:
rNTEGER;
INTEGER;

(. I NPUT CHARACTER .)
(. ABSORB EXCESS ATTEMPTS 1'0 PROCREATE .,

(. WAIT POR TERMINA.L INPl1J' . i
(0 NOTIFY ~("R.E£N MONITOR .)
(0 TERMINATE PROCEATIOH

.)

f'k''''f:l'IJRf PAF<AM:;' to I'HoM}>T II;.Et~ FOR INI'IM' 0\

TYPf:
::TRJN(;f, I'A(-J(fl) AkJ<A,Y II ,t.1 Of' "HAA':

I''''''I'-''J)111<1-"
l'AkAMIN/X Y !NTt~(;t:tI: M:;(;:STRINGf" VAk YAT,:JNTF.C;£R};

"...

r lNTfo';!-'~

'-II
. HA)o'

, firl: IN

".!HOf'-

1-';0' JI'!Tf1-'

I-';,r'AIJf"'

1-"1"
,H:W

(' V'J",;'> .111Mr ",I'!I"HI' IIkl fo:~;/',)

I'I::;IH'Y \

I'II:"':HI '-lik(Y
j

11 ~
I'

t'II';II' ,.t{I-'{ XI II I}

I T'i
f, [In

IJ'j'!II~11F I'\J~:HI M:;';II I \.

VAl

I-'Uf-.A'i
I-'TIHtn." 1'111'//'11 i,

i ~ . 'Ii
I) \

"NI ,'-H

RF.AI~ ANI, I1f-TIIPF: VALOr

"Ht:N
!U','!N

VA!
'''Ai,'

!I)I, IJRIIf 1"Ii, flkll('11' I)'
.

"'1'1.1-111" \'(f;:IHCH).

}-"NI'
I. .a

IF ,'H. .CHJ.lil')l) THEN (' !JNJ.lt., IIf;NJZt-:r, .
. t..1"'{.f-t1Jf"-1'11::11/"ItRI 1'11':! 1

'!~'''"
VI,:

k' "H HJo'r,'Jj\)
,,~~. .

1'1<' F't!J,'i- I ANA.MIN . \

't
,J N

i'/,J<AM:N. XMAX'r,

h',..AM ~N'
XMAX. f.f

IM.'AM r NI XMl,X II~
; f.,f.AM;N, XMA:;'~

'WINiT WINI7'1

I-'IN:T ~iNj1,

W''r'f.'' "otI"t'P
;.'y f.'V,".

I N I 1"1 AL ENrk(~y FnR wnl.V};r. . \

:NiTJAI, ENFNCY Fl." RAftI1JT~ . \

N:,J.>HAJ.
:.'''''''TIHF ""IR

WOLV!::~; . \

NI f.:MAJ i,: I-TT:MF: JO"oF< PAftRJT~;

',.;f,NN:
'A

WJ-n..'r!1.F'

w' "',
,WI

"",,X

\Ii: ~ :v wy..
,

,'.NNI.AL
,

'W;N;'r
. 'WIN:T

fII' ,'.I-" \/f\i.:n II,Rf po:-;ITIV'F
.)

10-[NIT ;.1NIT'

"'ANN!JAJ klNiT i'JY RYR::

Io-y,,"wn I.t
)

'UANNI11\1.
}.I.

kiWI' ~'f.,'!N;T

P'.',X '!-'INIT.
t:NI, .

I'F"I)'
'r:1qJ;>t l-'ANAjoI;,

(' RAHf-tJ'f YAI.II":~: ARE NI::I...ATIVF. . \

H~.:~ . II .,.J'.M i.AN:
Nt-w,. J.''I'1f'1l'I-)
j,]V,'iN 'RTIHrWI;
NEW(("f?TnHI1F'J;

/llyr,Jlrr('PTfll-lr,fo

~
'

("f<.t:ATt-:JNPUT
H' n:...

. \

i' "1'1\1-''1"1)1-'
r NI'!rr i'N{JI~r..';~; ')

i' 'h'EATl
()rrrPIM" RIWn:R

'!
';TAI-'TIJI' fllrrl'lrr

VN()(.t:~;~;

ENf).

rlt:PL~T
,

RTI)HI/F
,

f.'TIIHIW.

n;>ToRrw'

r'h'T~}fHW-

PARAMS:

~;I'REE:N . !';F.THP :
~~Htrr£)(IWN :

PR{}I"R£ATf. ;

CRF:A'I'flR."R£ATEi() {J.n\.

UNT! I. FAt.SE

(' PROGRAM J :-iI.AHr>
. \ PUG

¥T',l HOK}: oPt-:kATION . \PI1::I!(('HR(f-:::(,\
f'1!:~H(

.
H \

PII::H(('Hki P:I

prl~~HI
'.1' I:

(' \/'T0};l rLLAR ;;C'RJ::EN OPERATION ')

/ . ASf(II:-;ER FOR PARAKETERS .)

(' iNITIALIZf INTERNAl. SCREEN 01

I'
~ET{Jr Fn~ F.VENTtIAL TERMINATION .)

(' RETURNS WHEN ALl. TA~I<~ COMPL£TEO ')
(' TF.RMJ NATf. sHlrrOoWN ')

Articles

An Introduction to Modula.2
for Pascal Programmers

By Lee Jacobson and Bebo White
Jacobson, White, & Associates

San Francisco, CA

THE BACKGROUND AND ffiSTORY
OF MODULA-2

Modula-2 (like Pascal) was developed at the ETH-
Zurich under the direction ofNiklaus Wirth (Institut fur
Informatik). Its development grew largely from a prac-
tical need for a general purpose, efficiently implement-
able systems programming language. The first
production use of Modula-2 occurred in 1981. Dr.
Wirth's book, 'Programming in Modu/a-2' was pub-
lished by Springer-Verlag in 1982.

It is virtually impossible to examine Modula-2
without recognizing its roots in Pascal. In its original
design, Pascal was intended to be a language suitable
for teaching programming as a systematic discipline
based on certain fundamental concepts clearly and nat-
urally reflected within it. These concepts were largely
centered around stepwise refinement of problem solu-
tions and structured programming.

Inasmuch as Pascal is basically an academic lan-
guage, its widespread use for a variety of applications
has clearly exceeded its design intention. Hence, many
extensions to the original Pascal definition have been
designed. Likewise, it has attracted as many critics as
it has disciples.

Modula-2 has assumed all of the positive features
of Pascal, and has attempted to address its commonly
recognized shortcomings. The result is a structured,
modular, portable, readable, efficient, machine inde-
pendent, flexible language.

This paper will address the primary differences be-
tween Modula-2 and Pascal with particular emphasis on
some of those features which the authors consider quite
significant. Programming examples will be given in both
Modula-2 and Pascal.

MODULA-2'S DIFFERENCES FROM PASCAL

7

The Role of Modules in Modula-2

Modules are the most important feature distin-
guishing Modula-2 from Pascal. Relying heavily upon
the concepts of scope and block, modules address the
problem, usually found in large programs, of separating
visibility from existence. In block-structured lan-
guages, the range in which an object (e.g. a variable or
procedure) is known is called the object's scope, and
therefore, defines its visibility. However, an object's
visibility also binds its existence, in that objects are cre-
ated when the block in which they reside is entered and
destroyed when the block is exited. It should be pos-
sible to declare variables that maintain their values, but
are visible only in a few parts of a program. Concur-
rently, there is also a need for closer control of visibil-
ity. A procedure should not be able to access every

Articfes

object declared outside of it when it only needs to ac-
cess a few of them.

Syntactically, modules closely resemble proce-
dures, but they have different rules about visibility and
the existence of their locally declared objects. Consider
the following declarations:

PROCEDURE Outside.
YAR ...y...' INTEGER;

PROCEDURE Outside.
YAR ...y..: INTEGEII.

MODULEMod.
IMPO~T ..;
EXPORT ..PI;
YAR ..b.e, INTEGER;

(I no 80dule here I)

a,b.c: INTEGEI;

PROCEDURE PI;
BEGIN

a ::: . + 1;

PROCEDURE 1'1.
BEGIN

. := . + ti
X : z .;

END PI;

END Mod.

[ND Outside;

The only syntactic difference between the module
Mod and a normal Pascal procedure declaration are the
reserved word beginning the declaration (MODULE
instead of PROCEDURE) and the presence of IM-
PORT and EXPORT declarations following the module
heading.

The semantic differences are more interesting. The
objects declared within Mod (a, b, c) exist at the same
time as the variables x, y, and z, and remain so as long
as Outside is active. The objects named in Mod's IM-
PORT list are the only externally declared objects vis-
ible within Mod (x but not y or z). The objects declared
in Mod's EXPORT list are the only locally declared ob-
jects visible outside Mod. Thus, a and PI are accessible
from Outside, but band c remain hidden inside Mod.

Specifically, a module can be thought of as a syn-
tactically opaque wall protecting its enclosed objects,
be they variables or procedures. The export list names
identifiers defined inside the module that are also to be
visible outside. The import list names the identifier de-
fined outside the module that is visible inside. Gener-
ally, the rules for modules are:

I. Locally declared objects exist as long as the en-
closing procedure remains activated;

2. Locally declared objects are visible inside the
module and if they appear in the module's export list,
they are also visible outside;

3. Objects declared outside of the module are vis-
ible inside only if they appear in the module's import
list;

The following example demonstrates the essence
of modularity:

37

nODULE n.inprogr..; PROGRAn nainPro,ra..
VAR Saad I INTEGERI

nODULE Rando.Nu.bars:
InpORT Ti.aOfDay:
EXPORT Rando.:
COHST nodulus . 23~5:

Incre.ent. 7227.
VAR Seed , IHTEGER. FUHCTIOH Rando. , IHTE6ERI

CONST nodulua . 23a5.
Incr...nt . 7227.

IEGIH
Saed

"
(S..d+lncr...ntl
nOD nodulua.

a.ndo. t8 S..d.
EHD. (0 Rando. 01

PROCEDURE Rando.() , IHTEGER.
IEGJ~
Seed :-= (Seed+lncr..ent)

nOD nodulus.
RETURH Seed,
EMD Rando.;

IEGIN (8 Rando.Hu.ber 81

Seed :8 TiaeOfDay;
EHD Rando.Hu.ber,

IEGIH (8 nainprogra. 8) IEGIN (a nainPro,r.. 81
Saed ,. Ti.eOfD.p.

WriteInt(Rando.(). 7), Writaln(R.ndo.. 71.

END P1ainPrograa. EHD. (8 nainPro,r.. 81

The random number generator in these examples

uses a seed variable to generate the next random num-

ber. Thus, the seed must maintain itsvalue across func-

tion calls.The program on the right shows the classical

Pascal solution. Notice that Seed's declaration isat the

top of the program, while its initialization is forced to

the bottom. Two obvious disadvantages arise from the

scattering of Seed across the face of the program:

I. Its occurences become hard to find, especially

in a large program;

2. It becomes accessible to every other procedure

in the program even though it is used only by Random;

The example on the left demonstrates the useful-

ness of the module structure. The only object visible to

the ouside world is the procedure Random, while all

objects pertaining to the random number generator are

contained in one place. Note that the module
RandomNumber contains both declarationsand a
statement part. Module bodies are the (optional) out-

ermost statement parts of module declarations and serve

to initializea module's variables. Although subject to
the module's restrictive visibility rules, module bodies
conceptually belong to the enclosing procedure rather
than the modules themselves. Therefore, module bod-
ies are automatically executed when the enclosing pro-
cedure is called.

Relaxed Declaration Order

New Pascal users are often frustrated and con-
fused by theenforced declaration and definition block
structure required within the program skeleton. De-
spite the emphasis on modules, blocks still play an im-
portant part in Modula-2: implementation modules,
program modules, internal modules, and procedures are
all declared as blocks. Differences from Pascal include
relaxed order of declarations, termination of all blocks
bya procedure or module identifier, and the optional
nature of block bodies.

Pascal imposes a strict order on the declaration of
obje~ts; within any given block, labels must be declared

38

before constants, constants before types, and so on.
Modula-2 eliminates this restriction - declarations can

appear in any order. Programs containing a large num-
ber of declarations are easier to read and understand
when related declarations are grouped together (re-
gardless of their kind).

The following is an example of relaxed declaration
order:

nODULE Xlator;
COHST "axsSy. 8 102_;

TYPE Sy.luffer . ARRAY(I. .naxSy.1 OF CHAR.
VAR Sy.luffl. Sy.luff2, Sy.luffer,

CONST naxCode . 512:
TYPE Codeluffer . ARRAYI I. .naxCodel OF IYTE.
VAR Codaluff, Codaluffer.

END XI.tor.

This example easily demonstrates how various re-
lated declarations may be placed together in a Modula-
2 program, whereas in a Pascal program they may be
scattered due to strict block ordering. Relaxed decla-
ration order not only improves readability but enables
a logical ordering which may be very important in large
programs.

GOTO-Iess Programming In Modula-2

Inasmuch as structured programming is often
equated with elimination of the use of unconditional
transfers, Pascal was designed to de-emphasize use of
the GOTO statement. Still the GOTO statement and the
LABEL 'type' were supported to allow programming
cases where the Pascal logical structures were insuffi-
cient. This meant that a GOTO statement was available
for use in a situation which would otherwise have forced
restructuring of the program logic.

For example, consider the following two program
segments:

inder :- Alpha "OD let.;
WHILE R..alnder <> 0 DO

IEGIN
Alpha ,. lata,
leta :- Re..inder;
R...ind.r

"
Alpha noD leta

END.

10, Re.ainder ,. Al,ha nOD ,.t..

IF Ra.ainda. . 0 THEN
GOTO 120.

Alpha ,. 'eta.
8et. :- I...ind.c;
GOTO 10.

The example on the left avoids use of a GOTO by
duplicating an operation. The example on the right,
while using GOTOs is actually more explicit.

Modula-2 does not support Pascal GOTO and LA-
BEL. Instead it provides transfer mechanisms for uses
under particular controlled circumstances. One of these .

mechanisms is the EXIT statement which permits pre-
mature exiting of a loop. The following is a program
segment in Modula-2 performing the same operation:

LOO'
Re..inder ,. Alpha nOD lata,
IF .e..inder ,. 0 THEN EXIT'
Al,h. ,. let..

..t. !8 ind.r
END.

This example also illustrates the Modula-2 LOOP
construct which operates as a Loop-Forever structure.
When the EX:IT statement is executed, program control

Articles

will transfer to the statement following the END state-
ment which terminates the range of the LOOP.

Additional examples of unconditional transfers
supported by Modula-2 include the RETURN state-
ment which is used to prematurely exit a procedure,
and the HALT standard procedure which terminates
the current program.

Dynamic Array Parameters

Another important distinction between Modula-2
and Pascal involves the capability to declare dynamic
array parameters. Modula-2 allows formal parameter
types of the form:

ARRAY OFT

where T is an arbitrary base type. Note that the array
bounds are omitted defining a dynamic array type which
is compatible with all (one dimensional) arrays having
the same base type T.

The ramifications of this feature are widespread.
through it, procedures are able to pass to other proce-
dures (functions, etc.) arrays of un specified size. (Index
checking is accomplished by means of a new standard
procedure HIGH).

Perhaps the most important way in which dynamic
array perameters may be used is in the area of string
processing. This feature lifts the rigid Pascal restriction
concerning the value assignment and comparison of
string variables. No longer is it necessary that opera-
tions may only be performed on strings which have the
same length.

Separate Compilation

Separate compilation is allowed by the Modula-2
compiler through the use of the compilation unit. Mod-
ula-2 programs are constructed from two kinds of com-
pilation units: program modules and library modules.
Program modules are single compilation units and their
compiled forms constitute executable programs. They
are analogous to standard Pascal programs.

Library modules are a different animal and form
the basis for the Modula-2library. They are divided into
a definition module and an implementation module. Def-
inition modules contain declarations of the objects which
are exported to other compilation units. Implementa-
tion modules contain the code implementing the library
module. Both always exist as a pair and are related by
being declared with the same module identifier.

To understand the rationale behind dividing a li-
brary module into separate definition and implemen-
tation modules, consider the design and development
of a large software system, such as an operating system.
The first step in designing such a system is to identify
major subsystems and design interfaces through which
the subsystems communicate. Once this is done, actual
development of the subsystems can proceed, with each
programmer responsible for developing one (or more)
of the subsystems.

Now consider the project requirements in terms of
Modula-2's separate compilation facilities. Subsystems
will most likely be composed of one or more compila-
tion units. Defining and maintaining consistent inter-
faces is of critical importance in ensuring error-free

Articles

communication between subsY$tems. During the de-
sign stage, however, the subsystems themselves do not
yet exist. They are known only by their interfaces.

The concept of a subsystem interface corresponds
to the definition module construct. Thus, interfaces can
be defined as a set of definition modules before sub-
system development (i.e., design and coding of the im-
plementation modules) begins. These modules are
distributed to all members of the programming group,
and it is through these modules that inter-subsystem is
defined. Interface consistency is automatically en-
forced by the compiler.

Modula.2 Libraries
The library is a collection of separately compiled

modules that forms an essential part of most Modula-2
implementations. It typically contains the following
kinds of modules:

1. Low-level system modules which provide ac-
cess to local system resources;

2. Standard utility modules which provide a con-
sistent system environment across all Modula-2
implementations;

3. General-purpose modules which provide useful
operations to many programs;

4. Special-purpose modules which form part of a
single program;

The library is stored on one or more disk files con-
taining compiled forms of the library module's compi-
lation units. The library is accessed by both the compiler
and the program loader - the former reads the com-
piled definition modules while compiling and the latter
loads the compiled implementation modules when ex-
ecuting the program that imports library modules.

A dependency arises between library modules and
the modules that import them. Consider the example of
a single library module. The compiler must reference
the module's symbol file (a compiled definition module)
in order to compile the implementation module. There-
fore, the definition module must be compiled first. Once
an implementation module has been compiled, its ob-
ject file is tied to the current symbol file, as the object
code is based on procedure and data offsets obtained
from the symbol file. Similarly, when a program im-
ports a library module, it is assumed that the symbol
file offsets are accurate reflections of the corresponding
object file.

The Modula-2 language contains no standard pro-
cedures for I/O, memory allocation, or process sched-
uling. Instead, these facilities are provided by standard
utility modules stored in the library. Standard utility
modules are expected to be available in every Modula-
2 implementation. Thus, by using only standard mod-
ules, Modula-2 programs become portable across all
implementations.

The advantages of expressing commonly-used
routines as library modules (rather than part of the lan-
guage) include a smaller compiler, smaller run-time
system, and the ability to define alternative facilities
when the standard facilities prove insufficient. Disad-
vantages include the need to explicitly import and bind

39

library modules, and occasionally a less flexible syntax
imposed by expressing standard routines as library
modules (as opposed to their being handled specially
by the compiler).

REFERENCES

CONCLUSION
The examples cited above can only provide a clue

as to the power and flexibility of the Modula-2Ianguage.
It is the hope of the authors that they can pique signif-
icant curiosity and interest into this amazing new pro-
gramming tool.

1. Niklaus Wirth, Programming in Modula-2. Sprin-
ger- Verlag, 1982

2. Niklaus Wirth, MODULA-2. ETH Institut fur In-
formatik Report No. 36, reprinted by Volition Sys-
tems, Del Mar, CA, 1980

3. Rich Gleaves, Modula II User's Manual, Volition
Systems, 1982

4. Roger Sumner and Rich Gleaves, Modula-2 -A So-
lution to Pascal's Problems, Volition Systems, 1982

PUG

AVAILABLE ON
MICROFICHE

DIRECT INQUIRIES TO:

i
Art;I"'~"

Data Structures Using Pascal
by A.M. Tenenbaum and M.J. Augenstein
Prentice-Hall, 1981

This book is intended as a text for a first course in
data structures that is also a second course in program-
ming. It presents all of the major data structures in-
cluding stacks, queues, lists, trees, and graphs and
describes recursion, list processing, sorting, and
searching. An appendix provides a brief tutorial on Pas-
cal. The emphasis is on practical techniques as opposed
to theoretical concepts. All algorithms and examples
are presented in Pascal.

This book is excellent both for students and for
practicing programmers who want to learn how to apply
algorithms and data structures, whether or not they use
Pascal. However it would not be appropriate, nor was
it intended to be, for those merely wishing to learn
Pascal.

The authors employ several pedagogical tech-
niques which others would do well to emulate. First nu-
merous examples and sample programs are presented;
the authors do not merely rely on textual explanations.
In spite ofthis, there are very few typographical or al-

Book Report

gorithmic errors as so often is the case with multiple
figures. Second, the same basic figure is repeated sev-
eral times with each version successively updated to
show the intermediate results of an algorithm. For ex-
ample, an array is listed after each pass of a sorting al-
gorithm so the reader can follow how the sort
progresses. Third, algorithms are often presented as a
combination of Pascal and pseudocode, thus highlight-
ing the key points and not confusing the reader with
such irrelevancies as initialization or I/O. Fourth, al-
gorithms are presented several times with each new
version a refinement of the previous one.

My only criticisms would be that some of the al-
gorithms could be simplified, frequently by more ap-
propriate tests in "while" statements; and more use
should be made of enumeration types - certain algo-
rithms had a Fortran ring to them. However these are
nitpicks: the book is excellent and is highly recom-
mended to all PUG'ers.

Arthur Salwin
1405 Homeric Ct.

McLean, VA 22101

41

SOFfW ARE BUILDING BLOCKS, INC.
ANNOUNCES PASCAL COMPILER FOR THE

IBM PERSONAL COMPUTER~

ITHACA, NY - A new company, Software
Building Blocks, Incorporated, has been formed in Ith-
aca, New York. The founders of the company are Jeff
Moskow, author of the popular, highly acclaimed Pas-
cal/Z@ compiler marketed by Ithaca InterSystems, Inc. ;
Laurie Hanselman Moskow, formerly Software Prod-
ucts Manager at InterSystems; and William Kellner, a
software engineer who has worked extensively with
Moskow on the PascallZ compiler.

The first product to be released by Software Build-
ing Blocks, Inc. is a two-pass, locally optimizing Pascal
compiler for the IBM Personal Cornputer. The initial
release will run under PC-DOS@; and a CP/M-86@ ver-
sion is planned for the near future. Based on the Pascali
Z compiler, the Software Building Blocks implemen-
tation, SBB PascaI@ , closely follows the Jensen & Wirth
definition of the language, with extensions designed to
aid the professional programmer in serious software de-
velopment. Extensions will include: variable length
strings, direct file access, arbitrary precision BCD
numbers for business arithmetic, functions returning
structured values, separate compilation, exterenal rou-
tines, include files, symbolic I/O of enumeration types,
an ELSE clause for the CASE statement, overlays and
chaining.

The compiler package includes a sophisticated in-
teractive Pascal debugger, written in SBB Pascal, de-
signed to aid in isolating and correcting faults in Pascal
programs. Features of the debugger include the abilities
to set and display both absolute and conditional break-
points; set watches on variables, procedures or func-
tions; display and modify both global and local variables;
display the procedure/function stack, current state-
ment and module numbers, current run-time require-
ments, and the last ten statements executed; trace
through a program by statement number and proce-
dure/function entry/exit; and more.

Also included in the package is a screen editor,
provided in SBB Pascal source. The editor's capabili-
ties include: insertion and deletion of lines and char-
acters, finding and/or replacing of strings, copying lines
of text, autoindent for entering structured programs, and
many other features. The editor makes use ofthe func-
tion keys on the IBM PC to make editting as easy and
efficient as possible. The editor is provided in source as
an example of the advantages of programming in SBB
Pascal. The library routines are also provided in 8086
assembly language source, and many other example
programs are included as well.

Software Building Blocks, In,c. intends to release
the PC-DOS version oftJ1e compiler in June. For more
information, contact Laurie Moskow, Software Build-
ing Blocks, Inc., P.O. Box 119, Ithaca, New York,
14851-0119, (607) 272-2807.

I
«'8 CP/M-86 is a trademark of Digital Research, Inc.

42

@
IBM and IBM Personal Computer are registered
trademarks of International Business Machines
Corporation@
PascallZ is a trademark of Ithaca InterSystems, Inc.@
PC-DOS is a trademark of International Business
Machines Corporation@
Software Building Blocks and SBB Pascal are trade-
marks of Software Building Blocks, Inc.

SAGE OPENS BOSTON DIVISION

Sage Computer Technology, headquartered in
Reno, Nevada, has announced the opening of its Bos-
ton division.

The purpose of the new facility is to provide re-
gional support for dealers and users of the Sage line of
16-bit microcomputers, and to expedite delivery of new
units throughout the Eastern United States.

A complete inventory of Sage II's, Sage IV's, parts
and literature is stocked, and a fully-equipped and
staffed service department is maintained on the
premises.

According to Rod Coleman, Sage president, plans
call for a total of nine such offices to augment the com-
pany's domestic sales and support activities. "Regional
support for our dealers and OEMS is a critical part of
our marketing plan."

Sage's Boston office is now open to dealers &
OEMS, and is located at 15 New England Executive
Park, Suite 120, Burlington, MA 01803. The telephone
number is (617) 229-6868.

More information about Sage micros is available
from either Boston office or corporate office at 4905 En-
ergy Wgy, Reno, Nevada 89502. Telephone (702) 322-
6868.

If agency contact is required, phone or write The Schraff
Group, 18226 W. McDurmott, Suite E, Irvine, CA
92714. Telephone (714) 540-8977.

NEW, 16-BIT SAGE IV
HAS WINCHESTER PLUS

MULTI-USER CAPABILITY

RENO, NEVADA - Sage Computer Technology
has announced availability of the Sage IV, 16-bit (68000)
supermicro.

The new multi-user computer, which accommo-
dates up to 6 simultaneous users, surpasses the consid-
erable capabilities of the Sage II introduced in March,
1982.

Both machines are based on the 8 MHz 68000 pro-
cessor, and both are capable of performing 2-million
operations per second. According to Rod Coleman, Sage
president, they offer performance comparable to that
of high-end mini-computers at a mid-range to high-end
business micro price.

The ~age IV comes standard with 128K of main

Announcements

J

1

memory which is expandable, optionally to a mega-
byte. This represents an enormous jump from the 128K
to 512K expandability ofthe Sage II, which in turn of-
ters far greater capacity than the typical 64K, 8-bit
computer.

In addition, a 5 to 30Mb Winchester disk, either
fixed or removable, is built into the Sage IV next to a
5~ inch floppy backup. Since there are no wait states,
a 20K program loads from the floppy in 1 second, and
from the hard disk in lito second.

The cabinet, though about 1~. inches taller than
that of the Sage II, is still deceptively small, measuring
only 6W' high, 12W' wide and 1~/I deep.

"There aren't any tradeoffs with either of these
machines, said Coleman, "the user doesn't have to give
up software support to get high performance, because
the Sages' p-System standard operating system is able
to run hundreds of popular programs developed for 8-
bit micros. "

More information may be had by contacting Sage
Computer Technology, 35 North Edison Way, Suite 4,
Reno, Nevada 89502. Telephone (702) 322-6868.

If agency contact is required, phone or write The Schraff
Group, 1325 Airmotive Way, Suite 175, Reno, Nevada
89502. Telephone (702) 348-7339.

NEW MODULA.2 MANUAL FEATURES
TUTORIALS, STANDARD LIBRARY

DEL MAR, CA, Jan. 21 - A 264-page Modula-2
user's manual, featuring a language tutorial and stand-
ard library definitions, is now available from Volition
Systems here.

Modula-2 is a new programming language designed
by Niklaus Wirth to replace his earlier language, Pas-
cal, in a wide range of real-world applications. Together
with Wirth's own specifications of the language, this
manual provides a complete description of Volition's
implementation of Modula-2, according to its author
Richard Gleaves of Volition Systems.

The manual is designed to be used with Wirth's 48-
page monograph which defines Modula-2 in a concise
but informal style. The monograph is included with the
manual~ Wirth's newly published book Programming
in Modula-2 is also available from Volition.

The manual contains a tutorial for Pascal program-
mers that can make them comfortable with the language
within a few hours and proficient within a week, Gleaves
said.

The name Modula-2 comes from MODUlar LAn-
guage. It uses modules to facilitate the development and
maintenance of large, complex systems. The language
is especially useful in large industrial and commercial
applications where it can save software developers both
time and money.

Modula-2 is designed to utilize standard software
modules, which are defined in the new manual. These
modules provide access to the facilities normally pro-

Announcements

vided by an operating system, such as program and pro-
cess control; console and file I/O, including random
access files and disk directory operations; and storage
management. The standard .software modules also in-
clude utility routines for format conversion, strings, 19
digit BCD arithmetic, and other facilities.

The manual is divided into six sections. The Mod-
ula-2 tutorial for Pascal programmers comprises about
one-third of the book.

In addition, there is an introductory section and
sections defining the standard library modules, the util-
ity library, a system document that describes the im-
plementation of Modula-2 for UCSD Pascaf1!Dand a
machine-specific implementation guide which includes
information on machine specific library modules, in-
terrupt handling, and machine-level data representation.

The Modula-2 User's Manual, including Wirth's
Modula-2 report, is immediately available from Voli-
tion Systems, P.O. Box 1236, Del Mar, CA 92014 for
$35 per copy. Wirth's book, Programming in Modula-
2. published in 1982 by Springer- Verlag, can be ordered
for $16. Further information about the programming
language is also available from Volition Systems.

Volition Systems concentrates on systems soft-
ware development and on research and development in
hardware and sotware. Since the company was founded
in 1980, it has been a leader in the implementation and
dissemination of the Modula-2 language and other high
level languages and in the design and development of
advanced computer architectures.

For further information, contact:

Volition Systems
P.O. Box 1236, Del Mar, CA 92014
(619) 481-2286

@
UCSD Pascal is a trademark of the Regents of the
University of California.

MODULA-2 USER'S MANUAL from Volition
Systems (Del Mar, CA) describes Niklaus Wirth's new
programming language in a 264-page loose-leaf format.
document contains a complete tutorial for Pascal pro-
grammers, sections defining the standard library mod-
ules and the utility library, and an implementation guide.
The manual comes with a copy of Wirth's 48-page tech-
nical report on Modula-2.

Modula-2 is particularly useful in large industrial
and commercial applications where using standard
modules facilitates development of large, complex sys-
tems, according to Volition, which has pioneered in
commercial implementations of the new language. The
Modula-2 User's Manual is immediately available from
Volition Systems, P.O. Box 1236, Del Mar, CA 92014
for $35.

For further information, contact:
A. Winsor Brown
(714) 891-6043

43

usus FALL MEETING SET
FOR WASHINGTON,D.C.

WASHINGTON, D.C., June 3 - USUS, Inc., the
UCSD Pascal User's Society, will bold its semi-annual
national meeting at the Crystal City Hyatt Hotel here
October 14-16, according to Robert Peterson, USUS
president.

In conjunction with the meeting, USUS will spon-
sor two free tutorials - an introduction to the p-System
and an introduction to UCSD Pascal, including Apple
Pascal. *

u The meeting will feature technical presentations,
hardware and software demonstrations, language tu-
torials, special interest group meetings and software li-
brary exchange. Also planned are expert user and major
vendor panels. Election of officers will be held.

"Non-USUS members are welcome to register and
attend any or all of the meeting programs," Peterson
noted.

USUS (pronounced use-us) represents users of the
UCSD Pascal System and its derivatives including the
UCSD p-System and Apple Pascal. It is the most widely-
used, machine-independent software system. The so-
ciety is non-profit and vendor independent.

The UCSD Pascal System has more than 100,000
users and is capable of running on nearly any computer.
It was developed at the University of California San
Diego to facilitate software portability.

Among the special interest group meetings sched-
uled for the Washington meeting are those for users of
IBM Personal Computers, Apple, DEC, Texas Instru-
ments, NEC Advanced Personal Computer, the IBM
display writer and Sage Computer Technology
computers.

Also meeting will be those interested in application
development, graphics, communications, file access,
Modula-2, UCSD Pascal compatibility and the Ad-
vanced System Editor.

The software library, with significant recent ac-
quisitions, will be available for reproduction on various
diskette formats. Members at the meeting will be able
to copy the library onto their own disks for $1.00 each.

Those registering for the meeting before Septem-
ber 23 will qualify for the pre-registration price of $25.
Checks should be made payable to USUS and mailed
to USUS Meeting Committee, P.O. Box 1148, La Jolla,
CA 92038. Registration at the door will be $35 and will
begin at 10 a.m. Friday, October 14.

Hotel reservations should be made directly with
the Crystal City Hyatt hotel (adjacent to Washington
National Airport), 2799 Jefferson Davis Highway, Ar-
lington, VA 22202, (703) 486-1234. Additional meeting
information is available from Thomas Woteki, Infor-
mation Systems Inc., 3865 Wilson Blvd., Suite 202, Ar-
lington, VA 22203, (703) 522-8898.

USUS was created to promote and influence the
development of the UCSD Pascal System and to pro-
vide users and vendors with a forum for education and
information exchange about it. Annual membership in
the society is $25 for individuals and $500 for institutions.

, · Apple Pascal is a trademark of Apple Computer, Inc.

"A

UCSD PASCAL USERS FORM
TEXT EDITOR INTEREST GROUP

SAN FRANCISCO, CA, June 15, 1983 - A spe-
cial interest group (SIG) for users of the Advanced Sys-
tem Editor (ASE) for the UCSD Pascal System has been
formed by USUS, the UCSD Pascal System User's So-
ciety, according to Robert W. Peterson, president of
the society.

The new SIG will be chaired by Sam Bassett, of
San Francisco, CA. "The ASE SIG will be open to any
USUS member who is using or thinking about getting
the Advanced System Editor." Peterson said.

The new ASE SIG allows members to share com-
mon problems and solutions and will serve as a clearing
house for information relating to implementation, op-
timization and use of ASE on a variety of systems which
have the UCSD p-Svstem installed.

The SIG has established a liaison with Volition
Systems of Del Mar, CA, the creators of ASE. It will
coordinate relevant contributions to the USUS Soft-
ware Exchange Library and to USUS News, the soci-
ety's quarterly newsletter, Bassett said. Furthermore,
SIG members may communicate via electronic mail un-
der USUS sponsorship.

The next ASE SIG meeting will take place at the
USUS semi-annual national meeting in Washington,
D.C., October 14-16. In addition to the ASE and other
SIG sessions, the USUS meeting will feature tutorials
on UCSD Pascal and the UCSD p-System. Also on the
agenda are technical presentations, software exchange,
hardware and software demonstrations and an expert
user panel.

Membership in the ASE SIG is free of charge to
any member of USUS, the vendor-independent, non-
profit user's group for the UCSD Pascal System. An-
nual membership in the society is $25 for individuals
and $500 for institutions.

USUS (pronounced use-us) was founded in 1980
to promote and influence the development of the UCSD
Pascal System and to provide a forum for education and
information exchange about it. Further information on
USUS is available from the Secretary, USUS, P.O. Box
1148, La Jolla, CA 92038.

PASCAL USER'S SOCIETY
FORMS MODULA.2 GROUP

SAN DIEGO, CA, May 26 - USUS, the UCSD
Pascal System User's Society, has formed a special in-
terest group (SIG) for users of the new Modula-2 pro-
gramming language, according to Robert W. Peterson,
USUS president.

The new SIG will be chaired by David Ramsey of
Corvus Systems, Inc. (San Jose, CA). The group was
formed when USUS held its semi-annual national meet-
ing here last month. Modula-2 runs on Version II based
UCSD Pascal Systems.

"The Modula-2 SIG will be open to any USUS
member using or wanting to investigate this language,"
Ramsey said. "It is, .to my knowledge, the first user's
group devoted to communication about Modula-2."

The new language was created by Niklaus Wirth
to answer difficulties encountered with his earlier lan-
guage, Pascal. "As people discover the. benefits of
working in this new language, we expect this SIG to
expand repidly," Ramsey said.

Implementations of the Modula-2 programming
language are available for the Apple II, lIe and III com-
puters, the IBM Personal Computer, the 68000-based
Sage 2 and 4, the Texas Instruments 9900, the Scenic
One and Z80/8080-based systems, according to Joel J.
McCormack of Volition Systems (Del Mar, CA).

Volition is the only current supplier of the language
for use on microcomputers and supplies systems as well
as the Modula-2 language to run on them.

"Because the language is modular, users spend less
time writing and maintaining code," McCormack said.
"Standard library modules provide Modula-2 with a
standard operating environment, and programs created
within it are portable across all Modula-2 systems."

The new Modula-2 SIG will enable users to share
experiences with others using the language or devel-
oping applications in it, Ramsey said. "We expect to
serve as a clearing house for user information in this
fast-changing area."

One of the first goals of the SIG is creation of a
user's library of Modula-2 programs that will be in-
cluded in the USUS library, Ramsey noted. It will be
compiled by Curt Snyder of Allergan Pharmaceuticals
(Irvine, CA).

Membership in the Modula-2 SIG is free of charge
to any member of USUS, which is the vendor-inde-
pendent, non-profit user's group for the UCSD Pascal
System. Annual membership in the society is $25 for
individuals and $500 for institutions. Further informa-
tion on USUS is available from the Secretary, USUS,
P.O. Box 1148, La Jolla, CA 92038.

For those wanting to know more about the Mod-
ula-2 SIG, Ramsey can be reached at Corvus Systems,
2029 O'Toole Avenue, San Jose, CA 95131, (408) 946-
7700, extension 267.

Volition Systems has pioneered in the implemen-
tation and dissemination of the Modula-2 language.
Further information about Modula-2 and available im-
plementations may be obtained from Tracy Barrett,
Volition Systems, P.O. Box 1236, Del Mar, CA 92014,
(619) 481-2286.

PASCAL USERS, VENDORS GATHER
FOR USUS SAN DIEGO MEETING

SAN DIEGO, CA, May 2 - USUS, the UCSD Pascal
System User's Society, formed five new special inter-
est groups (SIG's) and made plans for a first regional
chapter at its well-attended, semi-annual national meet-
ing here last week, according to Robert W. Peterson,
USUS president.

In addition, two vendors ofUCSD Pascal products
- Apple Computer, Inc. and Volition Systems - chose
the occasion to reveal new offerings.

"Record meeting attendance reflects the users'
commitment to increased knowledge about use of the
UCSD Pascal System," Peterson said. "More than 240

Announcements

l
f.

attended and actively participated in special interest
group and committee meetings, panel discussions and
the four tutorials. " .

Keynote speaker for the event was Andrew Green-
berg, designer and co-author of the popular Wizardry
games. He told how he had solved the challenge of put-
ting a very large program like Wizardry on a microcom-
puter with limited disk and main memory storage.

"Greenberg offered members valuable insights into
program design, structure and implementation," Pe-
terson noted.

The new special interest groups are for application
developers and for users of the NEC Advanced Per-
sonal Computer, the IBM Display Writer, the Ad-
vanced System Editor from Volition Systems, and the
Modula-2 programming language. In addition, plans for
the national organization's first local group in Southern
California were discussed.

USUS already has SIG's for users of Apple, DEC,
Texas Instruments and Sage computers, the IBM Per-
sonal Computer and for those interested in communi-
cations, word processing and UCSD Pascal
compatibility.

Of particular interest to those attending the meet-
ing was the demonstration area, where the latest ad-
vances in UCSD Pascal hardware, software and
applications were demonstrated on 20 different ma-
chines, Peterson said.

At the meeting, Apple Computer, Inc., which has
an installed base of some 82,000 Pascal development
systems on its Apple II and Apple III computers, an-
nounced that updates of Apple II Pascal and Apple III
Pascal will be available this year.

Apple revealed that Version 1.2 of Apple II Pascal
will be available in the fourth quarter of 1983 and will
provide support for all features of the Apple lIe includ-
ing extended memory support for the 128K lIe. Version
1.2 also makes available facilities for integrating into
the UCSD Pascal environment in a natural way addi-
tional mass storage devices such as hard disks.

Apple also confirmed that Version 1.1 of Apple III
Pascal will be available at the end of June 1983. Its most
notable feature is the Standard Apple Numeric Envi-
ronment that fully implements the IEEE standard for
floating point arithmetic.

Volition Systems demonstrated the new Modula-2
programming language running for the first time on an
IBM Personal Computer. USUS members formed a
Modula-2 SIG at the meeting to exchange information
about the language. It will be chaired by Dave Ramsey,
Corvus Systems (San Jose, CA).

The chairman of the newly formed application de-
veloper's SIG is Dennis Gallinat, Apple Computer (Cu-
pertino, CA), and Samuel Bassett, Bassett Information
Processing (San Francisco, CA) is chairing the Ad-
vanced System Editor SIG.

Lane Sharman, Resource Systems Group (Del Mar,
CA) will head the Special Interest Group for the IBM
Display Writer, and the NEC Advanced Personal Com-
puter SIG will be chaired by George Symons, TICOM
Systems, Inc. (Marina del Ray, CA).

The fall USUS meeting will be held in Washington,
D.C., at the Hyatt Regency Crystal City, October 14-
16, 1983. Further information is available from the Sec-

45

II
i
Ii
I
i
I
I

J

,
-

,-
.-' - - ~~"-",--""""""""""', . -~ '-"''''''''''''''''''------, '-' .-. - - .-.

-
"

retary, USUS, P.O. Box 1148, La Jolla, CA 92038.
USUS (pronounced use-us) is a vendor-independ-

ent, non-profit user's group for the most widely used,
machine-independent software system - the UCSD
Pascal System, and its successors such as the Apple
Pascal System and the UCSD p-System.

USUS was created to promote and influence the
development of the UCSD Pascal System and to pro-
vide a forum for education and information exchange
about it. USUS has institutional as well as individual
members in more than 20 countries. Annual member-
ship in the society is $25 for individuals and $500 for
institutions.

VOLITION DEMONSTRATES
MODULA.2 FOR IBM PC

DEL MAR, CA, May 3 - Volition Systems here
has demonstrated Niklaus Wirth's new Modula-2 pro-
gramming language running for the first time on the IBM
Personal Computer.

The new implementation was demonstrated for
members of USUS, the UCSD PascaP System User's
Society, at its semi-annual national meeting in San Diego
last week. Modula-2 will be included as part of Voli-
tion's complete software development system.

"Modula-2 is proving especially valuable in large
industrial and commercial applications where standard
software modules can save time and money in program
development and maintenance," according to Joel J.
McCormack of Volition Systems.

"Now our new implementation will make these
savings possible on the IBM PC. Our software devel-
opment system will even run efficiently on 64K PC's,"
he continued. "And the availability of Modula-2 on the
IBM PC should make the language even more attractive
to application developers. "

46

The IBM PC implementation will significantly ex-
pand the availability of Modula-2. Current Volition ver-
sions are based on the 6502 (including Apple IF and
Apple III computers), the 8080/Z80, TI 9900, and the
68000.

.

Niklaus Wirth developed Modula-2 (from MOD-
ular LAnguage) to replace his earlier language. Pascal.
Whereas Pascal was intended as a teaching language,
Modula-2 is expressly designed for use in a wide range
of real-world applications, and it offers great flexibility
in the development of large, complex systems.

The implementation for the IBM PC is expected to
be available in the third quarter of 1983, McCormack
said. The system will include Modula-2 and Pascal
compilers, the modula library, the powerful ASE text
editor, V-NI}(@ command shell (that provides a UND(3-
like programming environment), and a complete set of
utility programs for file manipulation and electronic mail
communication.

Volition Systems concentrates on systems soft-
ware development and on research and development in
hardware and software. Since the company was founded
in 1980, it has led in the implementation and dissemi-
nation of the Modula-2 language and other high-level
languages and in the design and development of ad-
vanced computer architectures.

For further information, contact:
Volition Systems
P.O. Box 1236, Del Mar, CA 92014
(619) 481-2286

I UCSD Pascal is a trademark of the Regents of the
University of California.

2 Apple II and Apple III are trademarks of Apple Com-
puter, Inc.

3 UNIX is a trademark of Bell Laboratories.
PUG

Announcements

r
,

.I~~

o. DATE
Apr. 28,1983

,. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (' Giv. . p.,son. eddl.SS .nd phon. numb., ./

Robert Reimiller
OMeqaSoft
P.O. Box 842
C~Marillo, CA 93010
(805) 987-6426

2. MACHINE ISYSTEM CONFIGURATION ('Anv 'mown limit.on the t:onf;gu,.tion0'
.uppon ,ohw.,. '."ui,.d.....

o.1C F;809 Processor op.,.tin..vst.m.oJ
Running Moos, OS-g, or Flex os
Re CTUire s 48 K to 5 f)K (Rp.~orunended)

3. DISTRIBUTION (.Who touk. how Itcomes. In whet options. end et whet pllce 'J

;'lorth AInerica: FrOM OMeCfa Soft
International: FrOM OT'1~qaSoft or distributors in r.erMC'my, Switzer-
land, r.reat Britain, Austr.:\lia, S\-lf>den,and the netherlands. Pri~e
is $425 to $475 for Conpiler, DehuqCTer, and RuntiMe.
Relo~at~ble AsseMbler/Linker available ~or $125 to S15~.

4. DOCUMENTATION (' Whet is eve"ebl. and whe/e .J

220 pq. Pascal Manu.:\l with complete syntax and installation
instr~ctions.

5 MAINTENANCE (' Is it unmemteined. fully meintained. ete' .J

Yearly Maintenance is $100 to $125

6. STANDARD (' How do.s it musule up to stendeld Puce" Is it e subs.t' E..tend.d' How. .1
Conplete ISO standard except pAcked variables .:\ndprocedural para-
neters. Scored 92% on conforMance section o~ vali~~tinn suite.
ISO report in n.:\nual.Extend~d for re~l tiMe and industrial
control ar~lications.

7. MEASUREMENTS (. Of its spt!ed or spece .1
\~ars~alls ~lqorithM: procenure size=27n hyt~s,
Execution tip1c=9.7 seconds

8. RELIABILITY (. Any inform.tion .bout field use or sites mst.lled
'/

Over 40n sites installed.
Over 4000 sites installed.

9. DEVELOPMENT METHOD I. How wes It developed .nd whet w.s It wntten in' ./

FrOM scratch in asseMble lanCfuaqe.

10 LIBRARY SUPPORT I' Any other support for co"'pder 1M the form of IIM~ages to other languages source Ilbr.nu. etc .1

Optional libraries to handle AHD9511 APU CHIP ,.'md ~~ulti-Taskinq
PriM?tives.

Implementation Reports 47

~ n!/uik ~ j/~!/uik ~ j/~!/uik ~ j/~!/uik ~ j/~
"

OmegaSoft Pascal Version 2
Pascal Processor Identification

Host Computer: Smoke Signal Broadcasting Chief-
tain 9522812WlO running the OS-9 operating system.

Host Computer Requirements: MC6809 processor,
minimum of 48K bytes of memory, 2 or more disk drives,
running the OS-9, MDOS, XDOS, DOS69, or FLEX
operating system.

Processor: OmegaS oft pascal version 2.10

Test Conditions

Tester: R.D. Reimiller
Date: June 1982
Validation Suite Version: 3.0

General Introduction to the OmegaSoft Implementation

The OmegaSoft Pascal compiler was developed to
provide the users of the 6809 processor with a fast and
efficient way to develop code capable of running on the
host development system or installed into a target system.
The compiler is aimed primarily at industrial applica-
tions such as process control and instrumentation. Due
to the nature of these applications many extensions were
added such as byte arithmetic, long integers, dynamic
length strings, modular compilation, and versatile vari-
able addressing. As a secondary requirement it was de-
sired that the compiler be able to accept a Pascal program
written in ISO standard Pascal wherever possible.

CONFORMANCE TESTS

Number of tests passed = 144
Number of tests failed = 12 (9 reasons)

Details of Failed Tests

I

Test 6.4.2.3-3: If an enumerated type is defined in
the index declaration part of an array its values cannot
be referenced until the array declaration is complete.

Test 6.4.2.3-4: If an enumerated type is defined in
a record its values cannot be referenced until the record
declaration is complete.

Tests 6.6.3.1-4, 6.6.3.4-1, 6.6.3.4-2, and 6.6.3.5-1:
Procedures and functions cannot be passed as
parameters.

Test 6.6.5.4-1: Pack and Unpack procedures are not
supported.

Test 6.7.2.2-3: Failed on MOD using a negative
dividend. The Jenson/Wirth "remainder after divi-
sion" method is used rather than the method specified
in the ISO standard.

Test 6.8.2.4-1: Non-local GOTO's are not allowed.
Test 6.8.3.9-1: Assignment to the control variable

of a FOR loop occurs after the evaluation of the first
expression.

48

Test 6.9.3-1: Standard I/O devices may not be re-
defined if declared.

Test 6.9.3.5.1-1: Real numbers written out in float-
ing point format always have six digits to the right of
the decimal point.

DEVIANCE TESTS

Number of deviations correctly detected = 83
Number of tests showing true extensions = 45 (22
reasons)
Number of tests not detecting erroneous deviations =
9 (6 reasons)

Details of Extensions

Test 6.1.5-4: No digits are needed after the decimal
point in a real number.

Tests 6.1.6-4 and 6.1.6-5: Labels may be a positive
integer constant.

Tests 6.1.7-5,6.4.3.1-3,6.4.3.1-4,6.6.3.3-5,6.9.3.2-
2: All variables are packed at the byte level, the re-
served word "Packed" is ignored in any type
declaration.

Tests 6.1.7-6, 6.1.7-7, 6.1.7-8, 6.4.3.2-5: Strings,
characters, and arrays of less than 127 elements are all
compatible.

Tests 6.1.7-11 and 6.4.5-12: Strings are dynamic
length, allowable length is from 0 (null string) to 126.

Tests 6.2.1-8 and 6.2.1-10: Label, const, type, and
var declaration sections can be in any order and re-
peated multiple times until a procedure/function dec-
laration or "begin" is encountered.

Test 6.3-9: In any context where a constant is ac-
ceptable an expression with a constant value may be
used.

Test 6.4.2.3-5: All enumerated type values are
compatible.

Test 6.4.3.3-8: The values of the case constants in
a record variant declaration are not used, access is pro-
vided to all variants at all times.

Test 6.4.5-7: All subranges of the same type are
compatible.

Tests 6.4.5-8 and 6.4.5-13: Arrays ofthe same size
are compatible. (

Tests 6.4.5-9 and 6.4.6-7: Records of the same size
are compatible.

Test 6.4.5-10: All pointers are compatible with other
pointers or the type .. Hex" .

Test 6.6.2-5: Any type with a size of less than 128
bytes can be used as a function return type.

Test. 6.6.6.3-2: Trunc and round can have integer
or longinteger parameters.

Test 6.7.2.3-2: Logical operators are valid for char-
acter and integer expressions.

Test 6.7.2.5-6: Arrays of the same size can be com-
pared. Records of the same size can be compared.

Validation Suite Reports

Test 6.8.2.4-2: Ooto between branches of an If
statement are allowed.

Test 6.8.2.4-3: Ooto between branches of a Case
statement are allowed.

Tests 6.8.3.5-7 and 6.8.3.5-8: Subrange Case state-
ment constants are allowed.)

Tests 6.8.3.9-5, 6.8.3.9-6, 6.8.3.9-7, 6.8.3.9-10,
6.8.3.9-12,6.8.3.9-13,6.8.3.9-14, 6.8.3.9-15, 6.8.3.9-16,
and 6.8.3.9-17: No restrictions are placed on For state-
ment control variable.

Tests 6.8.3.9-8 and 6.8.3.9-9: If a For statement is
entered and exited normally the control variable willbe
valid and contain the final value. If a For statement is
not entered then the control variable will be valid and
contain the initial value.

Details of Deviations

Test 6.1.8-5: A number can be terminated by a letter.
Tests 6.2.1-5 and 6.2.1-6: Multiple siting for labels

is not checked. nor are labels required to be sited at all.
Tests 6.2.2-8, 6.3-6, and 6.4.1-3: Error in scope

rules.
Test 6.6.1-7: Unresolved forward function or pro-

cedure declaration is not detected.
Test 6.6.3.3-4: Use of a field selector as a parameter

is not detected.
Test 6.10-4: No check is made for duplication of

program parameters.

ERROR-HANDLING

Number of errors correctly detected = 19
Number of errors not detected = 31 (13 reasons)

Details of Errors Not Detected

Tests 6.2.1-11, 6.4.3.3-11, 6.4.3.3-12, 6.4.3.3-11,
6.5.4-2, and 6.6.2-9: No checking is made to verify
whether or not a variable is accessed that has an un-
defined value. Instead the variables are guaranteed to
contain garbage unless initialized.

Tests 6.4.3.3-1,6.6.5.3-8,6.6.5.3-9, and 6.6.5.3-10:
Any tagfields or selector variables in a record variant
are irrelevant to which variants can be accessed.

Test 6.4.6-10: No subrange checking on parameter
passing.

Tests 6.4.6-12, 6.4.6-13, and 6.7.2.4-4: Overflow
checking is done on sets based on byte count - not per
element.

Tests 6.5.4-1, 6.6.5.3-4, 6.6.5.3-5, and 6.6.5.3-11:
Pointer value is not checked before use.

Tests 6.5.5-2, 6.5.5-3, 6.6.5.3-6, and 6.6.5.3-7: There
are no restrictions on the use of pointers or file buffer
variables which are currently parameters or elements
of a with statement.

Test 6.6.5.2-5: To support random files a "get" is
not executed until called as a procedure or when ac-
cessing the file buffer without a valid element - not at
the time of "reset".

Test 6.6.6.4-7: Char and Hex variables "roll over"
from maximum value to zero - it is not considered an

.error.
Test 6.6.6.5-7: If eof is true - so is eoln - it is not

Validation Suite Reports

considered an error to check eoln if eof is true.
Tests 6.8.3.5-10 and 6.8.3.5-11: !fno match in case

statement, falls through with no error.
. Test 6.8.3.9-18: No restrictions on the control var-

i.able of a For loop.
Test 6.8.3.9-1: At the completion of a For loop the

control variable is valid and has the final value.
Tests 6.9.3.2-5 and 6.9.3.2-5: Writing of real num-

bers with no digits past the decimal point is permissible.

QUALITY MEASUREMENT

Number of tests run = 52
Number of tests incorrectly handled = 5

Results of Tests

"Synthetic Benchmark" - execution time 1 min-
ute, 10 seconds.

"OAMM measure" -execution time 1 minute, 40
seconds for N = 1000

procedure calls - execution time 40 seconds
identifiers are significant up to 120 characters.
source lines may be up to 120 characters.
no reasonable limit on number of real literals

allowed.
no reasonable limit on number of strings allowed.
if a line of code is incorrectly part of an unclosed

comment the compiler will signal that no code was gen-
erated for the line.

at least 50 types may be declared in a program.
no reasonable limit on number of labels, but there

can be a maximum of 8 forward referenced goto's in a
block.

at least 128 constant definitions are allowed per
constant declaration part.

at least 128 procedures are permitted in a program.
maximum size for an array or record or for any var-

iable section is 32750 bytes.
at least 8 index types can appear in an array type.
at least 128 case-constant values are permitted in

a variant record.
at least 50 record-sections can appear in the fixed

part of a record.
at least 30 distinct variants are permitted in a record.
"WarshaW s algorithm" procedure size = 270

bytes. execution time = 9.7 seconds.
considerably less than 300 indentifiers are allowed

in a declaration list (actual number depends on length
of identifier). ..

at least 8 dimensional array is allowed.
procedures may be nested to at least 15 levels.
at least 30 formal parameter sections can appear in

one parameter list.
the dispose in the standard heap manager is a

dummy, a more complex heap manager is available.
deeply nested function calls are allowed (at least

6).
deeply nested compound statements are allowed

(at least 25). .
a procedure may have at least 300 statements.
deeply nested if statements are allowed (at least

25).
at least 256 case constants are allowed.

49

at least 300 constants are allowed in a case-con-
stant list.

case statements can be nested to at least 15 deep.
repeat loops can be nested to at least 15 deep.
while loops can be nested to at least 15 deep.
for loops can be nested to at least 15 deep.
with statements can be nested to at least 15 deep.
recursive I/O can be used with the same file for the

second I/O action.
at least 30 variable-accesses can appear in a read

or readln parameter list.
at least 30 write-parameters can appear in a write

or writeln parameter list.
data written on the output field appears regardless

of the omission of a line marker.

IMPLEMENT ATlON-DEFINED
Number of tests run = 12
Number of tests incorrectly handled = 1

Details of Implementation-Defined Features

Tests 6.1.9-5 and 6.1.9-6: alternate symbols are
available for comments, array indices, and pointers.

Test 6.4.2.2-10: Maxint is 32767
Test 6.4.3.4-5: maximum range of set elements is

0..1007
Test 6.6.6.2-11: Base = 2, Bits of mantissa = 24,

not rounding, minimum value = 2.710506E-20, maxi-
mum value = 9.223372E+ 18

Tests 6.7.2.3-3 and 6.7.2.3-4: Boolean expressions

I 50 -'

are fully evaluated.
Tests 6.8.2.2-1 and 6.8.2.2-2: In an assignment

statement evaluation of the expression is done before
the selection of the variable.

Test 6.8.2.3-2: When a procedure is called the pa-
rameters are evaluated in forward order.

Test 6.9.3.2-6: Default field widths are: Integers =
10, Boolean = 6, Real = 16, Longinteger = 16, Hex =
6.

Test 6.9.3.5.1-2: Real values written in floating point
format have 2 exponent digits.

Test 6.9.3.6-1: Boolean values written in the de-
fault fieldwidth have the format as shown (between
quotes)" TRUE" and" FALSE".

Details of Tests Incorrectly Handled

Tests 6.6.6.1-1: Functions are not allowed to be
passed as parameters to a procedure.

Levell Tests- Not applicable

EXTENSIONS

Extension present = 1

Result of Extension

Test 6.8.3.5-16: An otherwise clause is allowed on
a case statement.

PUG

Validation Suite Reports

l
Membership July 1983

Pascal News
, 2903 Huntington Road

Cleveland, Ohio 44120

Please enter my

o New or o Renew

membership in Pascal Users Group. 1understand I will receive "Pascal News" whenever It is published in this
calendar year.

Pascal News should be mailed
1 yr. 0 in USA $25
3 yr. 0 in USA $50

o outside USA $35
o outside USA $80

o AirMail anywhere $60
o AirMail anywhere $125

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $_.
on check number

(Invoice will be sent on receipt of purchase or-
ders. Payment must be received before news-
letter will be sent. Purchase orders will be billed
$10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction here is myoid address label:

Coupons 51

j

JOINING PASCAL USER GROUP?

. Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

. Please enclose the proper prepayment (check payable to "Pascal User's Group").

. When you join PUG any time within a year: January 1 to December 31, you will receive all issues Pascal
News for that year.

· We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

. Please renew ear1y(before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING BACK ISSUES OR EXTRA ISSUES?

. Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for back issues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

. Issues 1 . .8 (January, 1974 - May 1977) are out of print.

. Issues9. . 12, 13. . 16, & 17 . . 20, 21 . . 23 are availablefrom PUG(USA) all for $25.00a set.

· Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL FOR PUBLICATION?

. Your experiences with Pascal (teaching and otherwise), ideas,letters, opinions, notices, news, articles, con-
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 em. wide) form.

. All letters will be printed unless they contain a request to the contrary.

f

52 Coupons

i

t

II

,

I

,
t
.

Back Issues 1983

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

$25 0 set 1 Issues 9 . . . 12 (September 1977 - June 1978)

$25 0 set 2 Issues 13 . . . 16 (December 1978 - October 1979)

$25 0 set 3 Issues 17 . . .20 (March 1980 - December 1980)

$25 0 set 4 Issues 21 . . . 23 (April 1981 [mailed January 1982] -
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US $ _'_
on check number

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

Coupons 53

APPI.ICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:

(Company name if requestor is a company)

Phone Number:

Name and address to which information should

be addressed «write "as above" if tbe same):

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the case of a company, the requestor aerees
that:
a) The Validation Suite is recognized as being the copyrighted, proprietary property of The British Standards
Oreanization and A. H. J. Sale, and
b) The requestor will not distribute or otherwise make available machine-readable copies of the Validation
Suite, modified or unmodified, to oy third party witbout written permission of tH copyright Itolden.

In retura, tbe copyright bolden ennt full permission to use the programs and doc8meDtati08 C08taiHd in the Validation
Suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative reports and
similar purposes, and to make available the listings of tbe results of compilation and execution of the proenms to third
parties in the course of tbe above activities. In sucb documents, reference shall be made to the original copyright notice
and its source.

Distribution Charge: $300.00
Make checks payable to:

Software Consulting Services
in US dollars drawn on a US bank.

Remittance must accompany application.

Mail Request and Check To:
Software ConsultinK- Services

901 Whittier Dr,
Allentown"" P A. 18103 USA

Attn: 1\. J. Cichelli

SOURCE CODE DRIVERY MEDIUM SPECIFICATION

I M'11IIIe II,.
9-Track. 8d4 parity. 1/2"x600'. SII8cIDtulty:

1 1800 bpi 1 11600.
1ANSI.STANDARD.Ealltlal "'1

80cllanct«em EIcII,.,..
rIC8I'1IUs , ~1ociIIizI 8140 lllial

rarU, Select CUncItr CMI:

1 1ASCII 1 1EIC8IC

1... DEe SyItt8 All Ftr8III:

1 1 ISX-IAS PIP I"'. AUlIIA8ta,. RSXSYSGENI.

1 1 DOS-ISTSFU,

I I" 01111I111

1 1II Dtulty
1 I"'~ DtIIIty

F.-I
1CP/M

1UCSO II. IV

1 DEC.RSXFilii 11

s,.ctII FII'IIII

I
'

1 I 11-211

1 1 SIc.. 11-251

1 UCSD IIIIW. D. MicrHqlHI

I DEe..,.1_ Dlultyl1. 3740 I Dlllity ElCDlCI

Office Use ODly

Silned :

Date:

I

Richard J. Clchelli

08 BeIIalf of A, H. J. Sale ad B. S, I.

64 Coupons

--

UCSD Pascal System User's Society ;UOSD jrSystem User's Society

u
n

GET MORE FROM YOUR PASCAL SYSTEM
. . . . JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used, machine-independent
software system.

If you use UCSD Pascal", Apple Pascal or the UCSD p-System, USUS will Iink you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and Influence the development of
UCSD Pascal and the UCSD p-System and to help them learn more about their systems. USUS is non-
profit and vendor-Independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS. you have formal and Informal opportunities to communicate with and learn from other
users via:

. NATIONAL MEETINGS. USUS NEWS AN 0 REPORT

. ELECTRONIC MAIL

. SOFTWARE LIBRARY

. SPECIAL INTEREST GROUPS

'UCSD Pascal ana the uCSD p-System are traaemarkS of Ihe Regents of the un,verslly of California.
"Apple Pascal,s a traaemark of Apple Computer Inc

USUS MEMBERSHIP APPLICATION
,Please complete both sldesl

I am applYing tor $25 individual membership
$500 organization membership
$ _ air mall service surcharge

Rates are tor 12 months and cover surface mailing of the newsletter. If you reside outside North
Amenca. air mall service is available tor a surcharge. It IS as tollows: $5.00 annually tor those in the
Caribbean. Central America and Columbia and Venezuela: $ 10.00 annually for those in South America.
Turkey and North Africa: and $1 5.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. otfice.

Name/Title

Affiliation

Address

Phone (TWX/Telex

Option' Do not pnnt my phone number tn USUS rosters
Option: Pnnt only my name and country In USUS rosters
Option: Do not release my name on mailing lists

Coupons 55

USUS MEMBERSHIP BENEFITS

. NATIONAL MEETINGS twice a year let you learn from experts and tryout the newest products.
Meetings feature hardware and software demonstrations. tutorials. technical presentations and
information. reduced-cost software library access. special interest group (SIG) meetings. and a chance
to query "major" vendors.

.USUS NEWS AN D REPORT brings you news and information about your operating system four times
a year. It contains technical articles and updates. library catalog listings. SIG reports. a software
vendor directory and organizational news.

. ELECTRON IC MAl L puts USUS subscribers in touch with a nationwide network of users. Compu-
Serve MUSUS SIG is for data bases and bulletin board communications. GTE Telemail accommo-
dates one-to-one messages.

. SOFTWARE EXCHANGE LIBRARY offers an extensive collection of tools, games, applications,
and aides in UCSD Pascal source code at nominal prices.

. SPECIAL INTEREST GROUPS zero in on specific problems. represent member interests with
manufactu rers.

For more information. contact: Secretary. USUS. P. O. Box 1148. La Jolla. CA 92038, USA.

Computer System:_ Z-80 _ 8080 _ PDP/LSI-11 _ 6502/Apple _ 6800 _ 6809_ 9900 _ 8086/8088 _ Z8000 _ 68000 _ MicroEngine _ IBM PC

Other

I am interested in the following Committees/Special Interest Groups (SIGs):

_ Advanced System Editor SIG_ Apple SIG_ Application Developer's SIG_ Communications SIG_ DEC SIG_ File Access SIG_ Graphics SIG
_IBM Display Writer SIG
_ IBM PCSIG

_ MeetingsCommittee
_ Modula-2SIG
_ NECAdvancedPCSIG
_ PublicationsCommittee_ Sage SIG_ Software Exchange Library_ Technical IssuesCommittee_ Texas Instruments SIG_ UCSD Pascal Compatability SIG

Mail completed application with check or money order payable to USUS and drawn on a U.S. bank or
U.S. office. to Secretary. USUS. P.O. Box 1148. La Jolla. CA 92038. USA.

58
Coupons

,

f
.

Membership July 1983

Pascal News
2903 Huntington Road
Cleveland. Ohio 44120

Please enter my

o New or o Renew

membership in Pascal Users Group. I understand I will receive "Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed
1 yr. 0 in USA $25
3 yr. 0 in USA $50

o outside USA $35
o outside USA $80

o AirMail anywhere $60
o AirMail anywhere $125

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $_.
on check number

(Invoice will be sent on receipt of purchase or-
ders. Payment must be received before news-
letter will be sent. Purchase orders will be billed
$10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction here is myoid address label:

Coupons 57

JOINING PASCAL USER GROUP?

. Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

. Please enclose the proper prepayment (check payable to "Pascal User's Group").

. When you join PUG any time within a year: January 1 to December 31, you will receive a/l issues Pascal
News for that year.

. 'We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

. Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING BACK ISSUES OR EXTRA ISSUES?

. Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

. Issues 1 . .8 (January, 1974 - May 1977) are out of print.

. Issues9. .12, 13. .16, & 17. . 20, 21 . . 23 are available from PUG(USA)all for $25.00a set.

. Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL FOR PUBLICATION?

. Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con-
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 em. wide) form.

. All letters will be printed unless they contain a request to the contrary.

Coupons
I
.fI

58

i

Back Issues 1983

Pascal News
2903'Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

$25 0 set 1 Issues 9 . . .12 (September 1977 - June 1978)

$250 set 2 Issues 13 . , . 16 (December 1978 - October 1979)

$25 0 set 3 Issues 17 . . .20 (March 1980 - December 1980)

$250 set 4 Issues 21 . . .23 (April 1981[mailedJanuary 1982]-
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US $_'_
on checknumber

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

Coupons

t

59

Back Issues 1983

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

$25 0 set 1 Issues 9 . . . 12 (September 1977 - June 1978)

$25 0 set 2 Issues 13 . . . 16 (December 1978 - October 1979)

$25 0 set 3 Issues 17 . . .20 (March 1980 - December 1980)

$250 set 4 Issues 21 . . .23 (April 1981[mailedJanuary1982]-
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US $_'_
on check number

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

I 60 Coupons

UCSD Pascal System User's Society UCSD p-System User's Society

u
n

GET MORE FROM YOUR PASCAL SYSTEM
... . JOI N USUS TODAY

USUS is the USER'S GROUP for the most widely used. machine-independent
software system.

If you use UCSD Pascal*, Apple Pascal** or the UCSD p-System, USUS will link you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and Influence the development of
UCSD Pascal and the UCSO p-System and to help them learn more about their systems. USUS is non-
profit and vendor-independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS, you have formal and Informal opportunities to communicate with and learn from other
users via:

. NATIONAL MEETINGS

. USUS NEWS AND REPORT

. ELECTRONIC MAIL

. SOFTWARE LIBRARY

. SPECIAL INTEREST GROUPS

'uCSO Pascal ana tne ucso o-System are traaemarks 01Ine Regents 01 tne Untverslty of CalifornIa.
-Apple Pascal,s a traaemark 01 Apple Computer Ine

USUS MEMBERSHIP APPLICATION
,Please complete both sides I

I am applYing for $25 individual membership
$500 organization membership
$ _ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. If you reside outside North
America. air mail service IS available for a surcharge. It IS as follows: $5.00 annually for those in the
Canbbean. Central Amenca and COlumbia and Venezuela: $1 0.00 annually for those in South Amenca,
Turkey and North Afnca: and $15.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. office.

Name/Title

Affiliation

Address

Phone (TWXlTelex

Option: 00 not print my phone number In USUS rosters
Option: Pnnt only my name and country In USUS rosters
Optron: Do not release my name on maIling lists

Coupons

1

61

UCSD Pascal System User's Society UCSD p-System User's Society

us
na

GET MORE FROM YOUR PASCAL SYSTEM
JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used. machine-independent
software system.

If you use UCSD Pascal*. Apple Pascal** or the UCSD p-System. USUS wililink you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and Influence the development of
UCSD Pascal and the UCSD p-System and to help them learn more about their systems. USUS ISnon-
profit and vendor-Independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS. you have formal and Informal opportunities to communicate with and learn from other
users via:

. NATIONAL MEETINGS

. USUS NEWS AND REPORT

. ELECTRONIC MAIL

. SOFTWARE LIBRARY

. SPECIAL INTEREST GROUPS

'UCSD Pascal ana IPle uCSD e>-System are IraaemarkS of IPIe Regents 01 tPle University of California.-Apple Pascal IS a traaemark 01 Apple Computer Inc

USUS MEMBERSHIP APPLICATION
(Please complete both sides)

I am applying for $25 individual membership
$500 organization membership
$ _ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. If you reside outside North
America. air mail service IS available for a surcharge. It IS as follows: $5.00 annually for those in the
Caribbean. Central Amerrca and Columbia and Venezuela; $1 0.00 annually for those in South Amerrca.
Turkey and North Africa; and $1 5.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. office.

Name/Title

Affiliation

Address

Phone (TWXlTelex

Option: Do nol pnnl my phone number," USUS rOSlers
Option: F>nnt only my name and country In USUS roslers
Option: Do nOI release my name on mailing IrSIS

I 62 Coupons

f

I

!

Membership July 1983

Pascal News
2903 Huntington Road
Cleveland. Ohio 44120

Please enter my

o New or o Renew

membership in Pascal Users Group. I understand I will receive "Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed
1 yr. 0 in USA $25
3 yr. 0 in USA $50

o outside USA $35
o outside USA $80

o AirMail anywhere $60
o AirMail anywhere $125

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $_.
on check number

(Invoice will be sent on receipt of purchase or-
ders. Payment must be received before news-
letter will be sent. Purchase orders will be billed
$10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction here is myoid address label:

Coupons 63

JOINING PASCAL USER GROUP?

. Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

. Please enclose the proper prepayment (check payable to "Pascal User's Group").

. When you join PUG any time within a year: January 1 to December 31, you will receive all issues Pascal
News for that year.

. We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
.

events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

. Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING BACK ISSUES OR EXTRA ISSUES?

. Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

. Issues 1 . . 8 (January, 1974 - May 1977) are out of print.

. Issues 9 . . 12, 13 . . 16, & 17 . . 20, 21 . . 23 are available from PUG(USA) all for $25.00 a set.

. Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL FOR PUBLICATION?

. Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con-
ferenceannouncements,reports, implementationinformation,applications,etc.are welcome. Pleasesend
materialsingle-spacedand in camera-ready(use a dark ribbonand lines 15.5em.wide) form.

. All letters will be printed unless they contain a request to the contrary.

, 84 Coupons t
t

-
"
,

I'~.

f

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:

. teaching programming concepts

. developing reliable "production" software

. implementing software efficiently on today's machines. writingportable software

Pascal implementations exist for more than 105 different computer systems, and this number increases every
month. The "Implementation Notes" section of Pascal News describes how to obtain them.

The standard reference ISO 7185 tutorial manual for Pascal is:

Pascal- User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active
members in more than 41 countries.

~., .. --

Return to:

Pascal News
BULK RATE

U.S. POSTAGE

PAID
WillOUGHBY, OHIO

Permit No. 58

2903 Huntington Rd. . Cleveland, Ohio 44120
"

Return postage guaranteed Address Correction requested

This is your last issue if you have not renewed for 19831

.J

.' ,

--.-..-....

