
"

.-

1

..

Computer Graphic Design by

Catherine Del lito Number

27
November 83

ISSN 07JtJ..1980

$250

de\'e\opmt'n\ .

° °
software

... radical Idea
\t\S, witb~

Dn<>MI.\pr . s'Useful 1"--- otated source ~Sl~~piled cudc.. comp\ete. a;~ource code an c. Disk(S)
WIt

\' entation.User manuar~grammer dOcu~ a\gorithms',. Com\?\~te Pdata structUr
f
es a~odif\cation.

descnb\~g estions or .
nd givIng sugg

O n vour o"na
0nc\ude tbe\t\' J

Modih tbe~, ,
\ '

use tbe\t\o
svste\t\s, or s,\t\P ~

\s ~ou'\\ find hardftware tOO)

U'\ng \ibrar)' of sO
p.. gro"
to resist.

The Pa"'i.."al Data Manag~m('nt
S\'\lcm. .A. w.er-orientcd data
rnanagcmcm ...y\tem in whll'h

numeril.." and alphanumcri..: dal3
arc ..,Iored in laolc\ with named
(olumo... and numbered

TO"".
('urrently being u,('d for 00/1."0...
of different kind... of ow.ioe..., and
,(i('ntjfit.." application from in.

\cntor~ management (0 lahorato-
ry data analy...i Indude... o\('r.:!()

Pa"'i:al program...; more than

10.000 line, 01 ,'ode. .\laln
feature, indudr:. \1a,imum of J:!.767 TO\\'" per

file;.~1a\imum of .tOOcharacter,
per TO\\. and 40 l'()lumn...per
table;

. Full creen edlling of row...
and column with ,..:rolling,
windowin!Z-.global search
repla,e. and other editing
features:.Sort ing, copying. merging.

and reducing routine.~;.\Iaihng label program;.Report ing program generate.'
report~ with conlrol breal..;"
totah and ,ubtotab. and
...elech row, hy field value;
many ot her reporting
feature~;

. Cro.,.~-tabulalion, correla-
lion and muitiple regres~
,Ion;.Video-di\pla;-handhng

module;.D,,~-file-handhng module.

\lam other lealUre,. UCSD tor-
mat, onl!,

For more information, call 919-942-1411. To order, use form below or call <?~_~~~:fr_~_!!~~_~:_}:~QQ:~_:~~~_~f.¥.:__
C---h-eck

m m

t

bo
-- - (InN.C.us. 1-800-b42-0949J_ appropna exes:

RMAT

8' UCSD SSSD
5'/.

. Apple Pascal
51/4' UCSD IBM PC 320k
8" CP/M SSSD
5'/." IBM MS-DOS
5',.

"
CP 1M Osborne

The Te\! Pro,es;ing Language. ..
te\t-file runoff program ~on.
~Isting of a set of text-processing
primiIi\e .:ommands from whi.:h

more \.-'omple\ command~
(ma~rosl.:an be built (as in LogoL

Feature", include:.Complete wStomizatJon of
te\t pro(essing through
ma':ro definition and e\pan-
sian. looping structure~. and
(ondItional statements;.Adapts to any printer;.Pagination;.Tex! justificatIon and .:enter-
ing;

. Inde\lng and table, of ,on.
tents:

. Supers.:nph and subscriph;

. Bolding and underlining;

. \Iuhiple header' and (oote,,;

. End no!e, and 1'001note\:

. \\ido\\ and orphan suppre~.
.,Ion;

. Floating table' and '~eep'.'

$50

~,.~
,~..~ ~

§(\t.~ ~~..,.. at1S
CHRO"o1E

Blocked Keyed Data A"ess
\lodule. \1~lntains dis~ file, 01
~eyed data. Can be used for
bibliographies. glossarie\. multi-
key data base ~on~trUCl1on, and
many other applications,

o Variable-Iengt h keys;.Van able-length data;
o Sequential a"ess and rapid

keyed access:
o Single di\~ a"ess per opera-

tton 'Slore. find. delete) in
most ca~e",;. \lultipk files;.Dynamic memory allo(.:ation
for RA~I-resident index and
curren! "page" of entries:

o Includes demonstration pro-
gram and testbed program.

$50

Chromalograph~ data analy...!'"
program.. Graph!\.: di...pla~ of analog

uala,.Pannmg and Looming:.AUlUmath." pedl-findlng and

ha,chnr ..:akulatJon,
. tu!11n1eral't!\t peak editing;
. (

Dmpulallon 01 rea~ area,:.~!Tlr ..:harh on
(

Itoh and

lP"O' pnmer..

$100

Planlmetr~ program:.Bil-pad entry of ero..." .,el.

tlon\;.Real-time lunlegraphll"
dl\play:

. Calculation ot area,;

. Sa\e\ calculation, to le\t
tile .

$100

PRODUCT

DBX
PDMS
TPL
ZED
MINT
SCINTILLA
CHROME
PLANE

PRICE
5 50
5250
Sau
5au
550
5250
5100
5100

NamE'

U MasterCard
(Please include card #

and expiration date)

PUMS

$250

o VISA

~\,. ~
~\\t.!~~..t.. at. ZEDS

Full-\creen teXt editor; de,'gneJ
to be used ellher Wllh TPL or b\
,,,elf.

. Full I.:ursor contro!;

. In~ert mode with v.ord "rap;

. 'Pain!' mode;
o Single-~eY\lro~e or dual-

~eystroke command,;.Command svnon\'m\;
. Global search and repla,e;
o Bloc~ move. bloc~ cop;. and

block delete.

A log logit eurve fitttng program
for radio-immunologi.: data: mU"'1
be u\ed with PD\1S Ide,nibeJ
above)..Multiple protocol files;

o Quality .:antrol file\:
. Four.parameter non-linear

curve fit,

UCSD formal\ onl;.

MINT

A terminal emulation program for
communication between com-
puter~ of any size,

o User-configurable uploading
and downloading of files;.X-ON/X-OFF and

EOB/ ACK protocols;. Interrupt-driven serial input
(for Prometheus Versacard in
Apple III;

o Prinler -logging.

$50

o Check o C.O.D.

A.pplf' and Appw PeKalar" traMmerk. of.hE'APPLE CompulPt" Corp, IBM and IBM PC arE' .redemarks. of International Business
Met-hlnr" LJCSO PaKal i,.. .radrmark ollhE' Rrgt"nu. of IhE' Uni\lE'rsil!o' 01 California Osbornr is a trademark of Osbornt' Com-
VUI'" t:P~ON it>.. Ir.d..m..r~ uf rp~()N Amvrit'4. tnt l huh i,. a Iradt'mark of C hoh .Ei(>{"fronin , SIJ8VEUS.V.: A division 01 Pascal & Associates.

S T"'AR.: C 27514
135 East Rosemary St., Chap"1 Hill. N

f

About the cover:
1be cover computer graphics were created by
computer artist Catherine Del Tito. The pr0-
gram was written for an Apple lie and aVec.

trix computer system.

f

Formerly Pa.sctlJ News

Serving Pascal Users Group and the Modula-2 Users Group

November 1983

3 - EDITORIAL

5 - OPEN FORUM

8 - Two Pascal Devices
by Harley Fk1nders. Florida Atlantic University

9 - Zuse User's Manual .

By Anhur Pyster. University of California

33 - ANNOUNCEMENTS

37 - MODULA-2ANNOUNCEMENTS

41 - ORDER FORMS

Number 27

UCSD p.SYSTEM�
with UCSD PASCALTM

FOR THE

VICTOR 9000�
Standard Features·System Foundation:

Operating System . Single key commands
Filer . For file management
Screen Editor . Powerful text editor
Utility library . Fast development tools· UCSD PASCAL Compiler. Only requires 128K

· Utilities for the Victor:
Keyboard Editor
Character Editor
Config
Diskutil
Remote

. Define your own keyboard

. Design character sets

- Define machine parameters
o Disk copyfformat

o File porting

·Native Code Generator 0 For faster execution

·Turtlegraphics .800 x 400 pixel access·RAMDISKCapability . For RAMabove 128K·Assembler . 8086 with macros·Documentation:

Owner's Manual
User ManualfSupplement
Architecture Guide
Installation Guide Excerpts
DEMODOCdiskette -On line tutorial for

poSystem overview

Optional Features
·Hard Disk Support Software . For internal hard disk·FORTRAN 77 Compiler -Only requires 128K

·BASIC Compiler

·8087 Support Software

·Advanced Systems Editor

·Xenofile� -Convert CPfM files·Applications Software (call for information)

T D
I

TDI SYSTEMS, INC.
620 Hungerford Drive
Su ite 33
Rockville, Maryland 20850
(301) 340-8700

TDI LIMITED
29 Alma Vale Road
Bristol, U.K. BS82HL
0272 742 796

UCSD p-SYSTEMand UCSD Pascal are trademarks of the Regents of the University of California
Universal Operating System and Xenofile are trademarks of SofTech Microsystems, Inc.

Victor 9000 is a trademark of Victor Technologies, Inc.

2

Announcing a 510,000 Contest for the Best
Article or Application Voted by the Members

Dear Member:

By now those of you in the United States
have received a questionnaire and announce-
ment concerning "PascoJ News." The reader
survey is a very important element in our abili-
ty to contain the cost of this newsletter. When
we solicit advertisers, they want to know about
the members: Who we are, What we do, How
much we spend. I realize these are very pr0b-
ing questions and you may feel they are too
personal. To separate your name from your in-
formation, the subscription card is a self mailer
and the return envelope for the survey wiD
assure your anonymity. Thank you in advance
for your help.

Let me explain the announcement of our
name change from ''PasctJINews" to ''PasaJ/
& Modukz2." Pascal has encouraged and en-
dorsed rational programming. The language
aids in the segmentation of a job into smaU
partS through procedures and functions. I have
enjoyed learning and using this language, but
Pascal does have limitations.

Many limitations are part of the design of a
teaching language. Pascal is a very nice base, a
core, to which extensions have been added by
every implementor. We have accepted this and
published reports of large extension packages,
UCSD Pascal, Concurrant Pascal and Path
Pascal.

These extensions were added to a language
created for teaching programming principles.
This design goal allows a general purpose
language, but not an aU purpose language.
Niclclaus Wirth recognized these limitations
and created a language that would contain
Pascal's good features and satisfy the goal of
an aU purpose language.

Modula-2, created in 1977, is that language.
In this issue, you wiD read Modula-2 product
announcements. In these announcements, and
in other articles, claims are made that Pascal is
finished, that Modula-2 should replace Pascal
in aU cases. Maybe. I believe Pascal can and
sbouJd remain in the po5ition for which it was
designed. The premier teaching language is

Pascal. The easy transition from Pascal to
Modula-2 makes Modula-2 an excellent second
year language. Restrictions are necessary in
the introduction to programming and Modu-
la-2's flexibility does not focus a student to
basic principles.

Of course I may be "aD wet," but I believe
Pascal should remain.

Pascal's teaching tool strength, Modula-2's
all purpose ability, and the relatively painless
transition between them maIce Pascal and
Modula-2 proper subjects for the Pascal Users
Group. Pascal News should reflect this wider
interest in content and name. The new name,
"PascoJ& Modukz2. "keeps Pascal as the first
name and can be found in the same place in
periodical indices as "PasctJJ News." This
should make the libraries happy.

The new Joso places Pascal within Modu-
Ia 2, a reference to ModIa -2's ability for operat-
ing system programming, above Pascal, and its
ability for machine specific programming, be-
low Pascal. I hope you welcome the change
and contnbute to the di<icussionand promotion.

This brings me to the contest for SIO,OOO.It
really is a promotion. There are many ways to
promote this newsletter and I have tried a few.
One way is to keep the members we have now.
I have promised four issues per year and this is
the fourth of 1983. A renewal notice was sent
out in January and I thank you for your sub-
scripti<:ln. In October the reader survey and
subscription card were mailed and I hope you
renew promptly. I placed a smaU ad in "PC"
magazine. It is in their Blue Boolt section and
wiD run from September 1983 through March
1984 and should attract new members. An-
nouncement of our name cban8e and subscrip-
tion information was sent to ftfteen magazines.
Unfortunately there are many PascaIers who
do not know of the Pascal Users Group.

I am now very familiar with the costs of this
newsletter and can say that income closely
matches costs. I also know that if membership
exceeds 5,000, we will have a surplus. What
would we:do with this monc:y? Wen, I Pf'IJIDC
that it be used for a promotion, and I cannot

think of a better promotion than to vote for
the best article or application published in
"Prw:ol ct Modukz2.

~

I do not know whether the prize will be win-
ner take aJlor first, second and third place divi-
sion of the money . Your letters will help me
form the ru\c$.

The first rule is we must have 5000 mem-
bers. Fewer members and we cannot afford
this contest.

Now, you may recognize a little circularity
here. The promotion attracts members and in-
creased membership allows the promotion.
Because of my other responsibilities (wife,
home, job and country) I need your help to an-
nounce this contest in all quarters. If aU 4000
members will send one letter (i.e. to friends, to
users groups, to fellow students, to magazines)
to announce this contest and one new member
joins per letter, well, I think YO"get the idea.

Rule number two-aU contestants must be
members.

One more idea. If this contest generates
enough material and money the newsletter will
be published more often. Please send your
ideas.

-
3

A typesetting program called TeX, created
by Donald Knuth, is available for the cost of
distribution. 15,000 lines of Pascal code puts
TeX in the nontrivial category.

Basic information is available from two
sources. The book "reX and MET AFONT" is
available for $12. Digital Press, l2A Esquire
Road, North Billerica, MA 01862. A new
book, "TeX Book, "should be in print by the
end of 1983 from Addison-Wessley.

Continuing information is proyjded by the
TeX Users Group (TUG). Membership is 530.
TeX Users Group, do American Mathemati-
cal Society, PO Box 1571 Annex Station,
Providence, Rhode Island 02901, USA.

"Small Talk," a language from the Xerox
Palo Alto Research Center was revealed in the
August 1981 issue of "Byte" magazine. The
Small Talk virtual machine, a software inter-
face to the real machine, was given to four
companies. They agreed to debug the virtual

machine and share information.

I found it interesting that Tektronics imple-

mented the virtual machine in Pascal. I under-
stand that Tektronics internal programming

uses Pascal or Modula-2. The papers regarding

the Small Talk research are assembled in the

book "SmIlll Talk-SO Bits of Hisrory, Words of
Advice. " This book and ''Small Talk-SO The
LDnguoge and its Implementation" are avail-

able from Addison-Wessley.
Andy Michel informs me of a version of

"C," the Bell Labs language implemented in
Pascal. Very interesting_

A large part of this issue is devoted to a com-
piler creator. With a language specification

this program will write the compiler. I have

been told this program is very valuable. Using
it, a contract for a compiler was satisfied and a

handsome profit gained. (Sounds good to me.)

Robert Gustafson in a letter complains about
the typesetting of this newsletter. Expense,

time and tYJlO&l'aphical errors are his concern.
When printing more than 2500 copies, typeset-
ting reduces overall expenses. Typesetting con-

sumes 3 weeks' time, not an unreasonable
amount for a Quarterly.

Typographical errors are a problem and pro-
grams are photographed from originals to
avoid them. A better way to assure correct in-

formation and dark, clean type is to capture

the author's original keystrikes. Floppy disks

and mag tape will do the job, but I would have

to convert the many magnetic formats to one
the typesetter could use.

Computer networks may be a better solution.

Networks force all submissions to a common

format. From this, the typesetter will make on-
ly one conversion to his format. If there is a

consensus, I will establish a bulletin board and

file system on the most popular network.
P1ease send your ideas. This is a one-man

operation and I appreciate and need your help.

I hope you enjoy this issue.

Charlie

2903 Huntington Road
Qeveland, Ohio 44120

Publisher and Editor:
Charles Gaffney

General Consultants:
Studio Graphics Advertising

Production Manager:
Spence Coghlan

National Sales Representative:
John Bachmann

The Pascal & Moduk 2 is published for the
Pasca1 Users Group and Modula-2 Users
Group, 2903 Huntington Rd., Cleveland, Ohio
44120. Pascal & Modu/a2 is a direct benefit of
membership.

Membership dues are 525.00 U.S. regular,
other forms of members.hip please inquire. in-
quiries regarding membership should be sent
to the above address. Magazine correspon-
dence and advertising should be sent to the edi.
tor at the aforementioned address. Advertising
rates are also available from the above address.

4

I

t
II

August 22. 1983

Dear Charlie:

I have been a subscriber to Pascal News for

a long time. According to the date on my mail.
ing label, it looks like I will continue to be a

subscriber well into the distant (85) future.

I agree with many of the notes published in
PN #26 concerning your contributions to the

well being of Pascal News. particularly the
general management and timely publication.

However. I believe that PN is doomed to die

because of one change you have made. Previ-
ously, the magazine was printed using the orig-

inal letters submitted by PN correspondents.

This was an inexpensive method of getting the
information out to the readers. Your current
system of rekeyboarding all of the correspon'

dence can only be costing you dollars without
increasing the utility of the information. Also.

as people decide they can do without PN for
$25/year. your circulation will decrease. One

of the previous attractions of PN was that

since it was so cheap. it reached everyone. A

reduced circulation will cause contributors to

look for other distribution media. I realize you

are saving money on postage. but since PN is
sent out bulk rate. the savings are only a small

fraction of the cost of typesetting. Since these
typesetting costs are the same whether you

send out I copy or 3000 copies. I predict that
you will not be able to compete with other

publications in the field and PN will dic.

If you return to direct printing of correspon'

dent copy you will be in good company. The

DECUS special interest group newsletters
(RSX SIG for example} are printed from yechy

LA36 printer copy. I read them cover to cover

as soon as they arrive. "There are also a lot of
expensive stock market newsletters which are

printed from typewriter copy. These sell for big

bucks because the buyers are interested in

TIMELY information. not typography and art

work suitable only for decorating a coffee

table.
By concentrating on quick publication. I be-

lieve you will find advertisers willing to pay for
space in PN. Also. when it comes to selling ad-

vertising space, 3000 subscribers are much bet-

ter than 300! Another important criterion for

an advertiser is knowing that what is sent to
you will appear unchanged in the publication.

f

I have noticed that there are a number of
typographical errors in the typeset issues of
PN. These are inevitable in a keyed-ooce.
proof.read-once publication (I know the statis.

tics. one of our programming systems typeset')
approximately 40% of the municipal bond is-

sues in the U.S. Errors here are a no-no. As a
consequence, we have done quite a bit with

automatic proofreading and word processor

telecommunications). If you use advertiser
copy directly. there can be no problems later

with omissions of important parts of the copy

or inadvertent changs to prices. etc.

You might consider including a question-
naire in the next issue of PN. I'm sure that the
majority of your current subscribers would be

much more enthusiastic about paying $9/year

for the latest information from your corre-

spondents and advertisers printed "as isMthan

S25/year for the present "remassaged" format.

If you choose an even lower price, advertisers
will pay more for the resulting increased cir.

culation. Simple economics!

Sincerely,

Robert D. Gustafson
President
Simulation Specialists Inc.
609 West Stratford Place
Chicago. IL 60657

June 29. 1983

Dear Editor:
I enclose a short article, Two Pascal De-

vices. for publication in Pascal News. I shall
appreciate your acknowledgement and. if you
use the article. a copy of the issue in which it is
printed.

Sincerely yours.

Harley Flanders

Professor of Mathematics

Florida Atlantic University

Boca Raton. FL 33431

P.S. May I humbly suggest that you do not
print the output of line printers or dot matrix
printers_ It is just too hard to read.

July 5, 1983
Dear Mr. News:

This is to request address corm:tion from
that found on the label:
Jeff Davis (81)
135 Turtle Creek
#I Roper Mt. Rd.
Greenville, SC 29603
to the following:
Jeff Davis
6549 Quiet Hours Apt. #201
Columbia. MD 21045

I am entering this using an editor found in
"Software Tools in Pascal." 0fIC of the best
books on toolbuilding I've ever read, and print.
ing out using a copy of "ProseMfrom an early
copy of Pascal News recompiled on an Apple
II/! As you see. my interest is in learning by
building tools in Pascal.

By the way, there is a local bulletin Board
system (my next tool may be a spelling check.
er!) called Magus which is actually an operat-
ing system written in Pascal by Craig Vaughn
that is worthy of note. 111suggest that he sub-
mit an article describing it and see what his
reaction is.

As a last comment, I had been out of the
country for a few years and only recently re-
subscribed. How's Modula-2 doing in the
states? I've ordered their documentation but
version for my computer (Apple III)somewhat
tardy.

Thanks and it's great to be back in touch
with Pascal realit y again!

Sincerely.
Jeff Davis

May 31, 1983

Dear Mr. Gaffney:
We have purchased a Motorola EXORciser

development system for developing 6809 based
products. We contracted to an outside vendor

for the initial software development on a new
product. All software was written in HP64000

Pascal. We will be doing all software mainte-

nance and enhancement in house and we are
reluctant to do this in assembly language.

Therefore, I am attempting to find a Pascal
compiler to run on the 6809 EXORciser which

is as compatible as possible with the HP Pas.
cal. I would appreciate any help you can give

me on this.
We also have a Texas Instruments OS 990

minicomputer with a Pascal compiler which

we would like to use for electrical and elec.

tronic engineering support and development.
Any information on available Pascal electron.

ics packages would be helpful.

Very truly yours.

MILLER Electric Mfg. Co.

Bruce A. Casner
Project Engineer

P.O. IiJx 1079
Appleton. WI 54912

5

June 2. 1983
Could you send me any information you

have on Apple and JRT Pascal? Also, I would
be very appreciative if you could recommend
any books for someone who knows BASIC and
6502 Asembler.
Thank you.

Larry Houston

169 West 8th Street
Peru, IN 46970

December 10, 1982
Mr. Gaffney:

I read about Pascal News from a UNIX
NetNews (a network of UNIX installations
sharing news) article. Could you send me the
back editions containing the Lisp compiler.
interpreter (written in Pascal)? Enclosed is $15
for the year of back issues containing the Lisp
compiler. Send me a bill for shipping if $15
does not cover it all. I am glad to see you con.
tinuing this magazine.

Respectfully,

Fred R. Finster

8549 Evanston Ave. N.
Seattle. WA 98103

December 20, 1982

Dear Charles Gaffney (Charlie I.
I have been infomed that PUG (Australia'

has distributed its last issue (#24) of Pascal

News. and that the subscription list and

balance of funds has been transferred to the
US

According to my records, I was paid up

through 1984 (renewed for 3 years mid-198 It.

However. I understand that there will prob.
ably need to be an adjustment, so please could
you apply my outstanding subscription toward

whatever extension is appropriate.

Please. if possible, inform me what the final
position is; I am very keen to maintain my con.
tinuity of membership, as I think PUG is very

worthwhile.

Than ks a lot.

Yours sincerely.

G. A. Foster
5/138 aarence Road
Indooroopilly
Queensland. Australia 4068

February 15, 1983
Dear Mr. Shaw:

I know that your job keeping going the

PUG is a great one. As we create the Mexican
Wang Users Group with 200 members now.

after 4 years about 4 people do the whole work.

Our company wi,.. 32 people has an obliga.

tion to use an accumulative half hour daily to

do some investigation; that is why we are in.

terested in implementing the Pascal in our

machine. a Want 2200-VS-80.

I believe that our specifications were wrong

when we asked for the Portable Pascal P4, be.

cause we have not been able to get started.
Dr. Niklaus Wirth wrote me that the PUG

has an 360 IBM compiler. I would like to know
how can we be able to get it, because our com.
puter with very little modifICation can run

IBM assembler programs.
If I can do anything to help the PUG please

let me know.
Thanking you in advance for all the trouble

I may cause. looking forward to your answer.

Sincerel y ,

Miguel M. Soriano Lopez

Technical Director
Data, SA

Av. Homero No. 1425-120]

Mexico 5, D.F.

June 5,]98]
Dear Mr. Soriano,

It was a pleasure to hear from you after so
many years. I fondly remember that stay in

Mexico in 1963.

I guess the best way to "get in touch" with

me is by writing. as you did. However,l do not

see a chance for me to visit Mexico in the near
future. as I am Quite committed and busy at
my position here at ETH.

Good luck for your Pascal compiler project.
Are you aware of the compiler for the 360, al.

SO available from PUG? Perhaps it would be

easier to use that compiler instead of the p, be.
cause your machine is-as you write-similar
to the 360.

Sincerely yours.

Prof. Niklaus Wirth

Eidgenossische Technische Hochschule

Instit fur Informatik

ETH.Zentrum

CH-8092 Zurich

August 31. 1983

Dear Charlie:
I use Pascal at the National University of

Mexico in a Burroughs 7500 or on a PDp.]].
and at my work I am trying to install the Pas.
cal.P you send me last year.

Several doubts I had, I asked Dr. Wirth.
who answer me and recommended that will be
easy to implement the IBM-370 version. which

is more similar to my Wang 2200.VS-80

machine.
On the 25th Pascal News is a report about

an IBM-370 Pascal. I will like to know if
Joseph A. Minor of Cornell Computer Services

would like to work together with me. to give to

the PUG a Pascal compiler for the Wang VS.
Only in Mexico there are more than 200 in.

stallations; I believe that at the USA are

several hundreds who may be Pascalers, if the

PUG will have it.

I hope to hear from you soon. thanking you

for the trouble I may cause you.

Sincerely,

Miguel M. Soriano Lopez

May 26. 1983

Dear Editor:
I would appreciate it if you would publish

the enclosed announcement of the availability
of the Edison System Report entitled "Pro.
gramming a Personal Computer~ in the Pascal
News.

Yours sincerely,

Per Brinch Hansen
Henry Salvatori Professor of Computer Science

University of Southern California

University Park

Los Angeles. C A 90089

6

Pr... R......

FOR IMMEDIATE RELEASE: October 11, 1983

Cleveland, Ohio: The ten year old publication, Pascal News is changing
its format and name to Pascal and Modula 2, according to publisher,
Charles Gaffney.

For those unfamiliar with computer terminology, Pascal is a small and
general purpose computer programming language, originally designed 10
years ago by Professor Niklaus Wirth of Switzerland as a teaching
language. Because Pascal is easy to learn and read, and can be efficiently
translated by computers, it was adapted for use in business. However,
it does have certain restrictions. To meet the increased demand for an
all purpose programming language, Wirth designed Modula 2. The
structure of Pascal is included in Modula 2, affording simple and quick
transition for programmers.

Pascal News was origninally established to be a forum of correspondence
for the Pascal Users Group (PUG). Because of the close linkage between
these languages, and the rapid growth in the day to day use of computers,
Gaffney expanded the publication to include articles and correspondence
about Modula 2.

,.

I
I,
;

"Modula 2 is a newer language on the cutting edge of computer science,"
said Gaffney. "Its design allows Pascal to settle into original standards,
and removes the pressure to be all things to all people."

Modula 2, sold only under license, will be protected from incompatible
revision. The new availability of Modula 2 from at least 4 vendors
demands a forum for new users as well as Pascal users. Pascal and
Modula 2, sponsoring the Pascal Users Group and organizing the Modula 2
Users Group, will provide that forum.

Pascal News has over 4,000 subscribers in 41 countries, according to
Gaffney who is confident the new publication will continue to serve
these user groups. Pascal and Modula 2 will provide application
software, software tools, articles on programming philosophy, the use
of Pascal as a teaching tool, the promotion and application of each
language, as well as an important open forum where users contribute
informal correspondence of general interest to the group.

P.O. BOX 538, CHESTERLAND, OHIO 44026 · (216)729-3227

7

By Harley Flanders
F70ridtJ Atlantic University

1. THE FORW AID DECLARATION

It was brought to my attenUon by H. S. W1If
that the reserved word forwanl is not neces-
sarily included in all versions of Pascal. If we
examine Jensen and Wirth I, we ftnd rorwanl
discussed 011pille 82 of the U_ MalIIIl, but
not in Appendix C, Syntax, pagc;;S110-115, nor
in the railroad diagrams, pages 116-118; how-
ever, in Appendix E, Error Number Summary,
pqe 120, while nowhere in the Repon, pages

133-167.
Suppose we have a program in which several

procedures call each other recursively. The
usual way to handle this is via a series of for.
wanl declarations. It is possible to accomplish
the same thing without using rorwanl at all.
Suppose, for example, that we have the
declarations

prOCHure B; forward;

procedure C: forward;

Procedure ,,;
<declarations>
l>89in
;:~terr.enu. AI>; B: <stater:'lents. A2>

prOCedure B:
(declarations>
be9in
~:~telt.ents 81;.; C; <statetr.ents 82>

procedure c;
<declaratic.ns~
l>89in
;:~terreflts C1:-; A: "'sta.t~lT.ents C2>

The following sing1e procedure dec1araUon
does the same.

VIr CO~I,!,p.CL: Char;

procedure MC'
"'decli;ratic.~$~
be9in
c.~ .

CO!:Tfo~ of

"':
begIn "stater-ents"1/;
CONTPOL

:"'
B; ABC:

stater.entf> A2.. end;
'e': be9in ":;taterrents 81...;

COUTi-'OL :- C; .a..sC;
"'stateJtf:nt!. 82 Fend;

'C': be-cJin "'statt'ltl:;ntf:. (]...;

CO!I'THiL
:"'

A; ".BC
;

~stCltt:lt.t:ntr: C2~ end
ead ; caf;~

)

end; i ABC j

The statement callin& ABC must initialize
<X>NTROL to the fU'Stentry value. OearIy,
many variations 011this theme are pc&ible.

2. THE EXIT PROCEDURE

UCSD Pascal restricts the goto statement so
it only allows jumps within a block. Hence
goto cannot be used to exit a nested sequence
of procedures. The Exit procedure was intro-
duced into UCSD to make up for this short.
ooming; however, it fails to do the job if the
nested sequence happens to include recursive
calls of a procedure. This can be quite inconve-
nient at times. Suppose, for example, one is
searching an array, and the searcb proceeds by
testing an element then, if unsuccessful, it par-
titions the array and tests the pieces recursive-
ly. or oourse, once the sought element is
found, the search should be stopped. But the
search procedure may be deeply nested at that
time.

A clumsy way out is to introduce a Boo1ean
variable FOUND and rewrite the body of the
search procedure as follows:

pl"ocedul"e SEARCH:
<declarations>
1>8910

~~i
aot POUND then <state81ents of SEARCH>

The (external) call of SEARCH must be
replacedby

FOUND; = False; SEARCH

This is oostly because it adds an extra test to
each call of SEARCH. The following is an
alternative using Exit. Assume that we are
searching for X and that A denotes a test
value.

pl"oced\tce DUMMY;
procedure S8ARCB;

bee] in
<stater.ents of SEARCH>

~~d;'" '"'
X tben Exi t (DUMMY) e18e... SEARCH

be9iD SEARCH end;

Remember the UCSD rule is that Exit (PROC)
is a jump to immediately after the I80It receat
call of PROC, passing through all more recent.
Iy called procedures along the way, and doing
some incidental housekeeping, like closing fdes
those procedures opened.

Refere8ce
1. K. Jensen and N. Wirth, Puc.J U_

MMlIIi.. lqon, '1Jc,Sprinacr'Ycrla&,
1978.

II

, ,

" ~Vvse
A Compiler Writer

..

8

ZUSE USER'S MANUAL
Unix bapl-.entation

Version 1.0

by
Arthur Pyater

Department of Coaputer Science
UGiyeraity of California at Santa Barbara

Santa Barbara. CA 93106

copyright (c): Regenta of the Un1yeraity
of California. May 1981

"Tbia work vaa in part aupported by a grant froa the Inatructional
Deyelop88nt progr.. of UC Santa Barbara.

1.0 Introduction

r
1.1 Background

Zuae is a translator writing system written in Pascal Which
produces translators which are theaselveswritten in Pascal. It
is quite simple to use and alleviates 8Uch of the tediua inherent
in writing a tranalator froa scratch. It is naaed after Konrad
Zuse whose visionary work on the progr888ing language Plankalkul
in the aid 1940s should be an inspiration to everyone.

This user'a ..nual assU88S that you are already faailiar
with the principles of translator veiting and syntax-directed
translation.Such tet'88as "IIIIF gr r..and "LL(1) parser" are
used freely without explanation. If you lack this background.
you should refer to one of the standard texts on translator writ-
ing (Aho and Ull_n, "Principles of Co.piler Design". Addison-
Wesley 1977; Lewis, Rosenkrantz. and Stearns, "Co.piler Design
Theory". Addison-Wesley1976; Pyster,"Co.pilerDesignand Con-
struction", Vsn Nostrand Reinhold 1980).

Zuse has been designed to be highly portable across dif-
ferent Pascal i.plementations. Only a handful of lines of code
have been written using i.plementation-dependentfeatures; e.g..
Zuse presU88s that type char is the ascii character set. This
_nual describes Zuse as it is i.pleaentedon Unix. A separate
docuaent describing any deviations froa this ..nual should be ob-
tained froa Whoever is responsible for Zuse"s installation at
your coaputer center.

1.2 How to use Zuse

Zuse actually consists of two progr...:generate.~ - an exe-
cutable progr.. which accepts a translationgr r as input and
generatea several files which will be needed for the translator
eventually produced; and skeleton.~ - a partial translatorwrit-
ten in Pascal Which 8USt be augaented by fUes produced both by
you and by generate.o in order to become a co.plete Pascal pro-
gr.. which can be coapUed. Figure I shovs the creation of a
translator. akeleton.o. Figure 2 shoV8 the execution of that
translator to translate source string x. When creating a trana-
lator. all of the files except for the user-defined translation
ar r. and LLaup.i are part of or generated by Zuse. When exe-
cuting the translator. only the source string which ia to be
tranalated needs to be provided by the user. LLgraa is produced
by Zuse. The particular ..nner in which Zuse creates the neces-
aary files is described in later sections of this ..nual.

Zuse's two pr-ogralls are used in th~ sequence listed b~tow to
create a transLatur:

I

I
~

1) Write ! ~-free grammar which sp~cifies the syntax of the
source language. '111e gramraar shuuld be vrepan.~d as a file us-
ing any text ~ditor. It can be st~)red under .:Joy file n3t1e.
~cause of the parsing rIIethod supported by Zuse, the gra_a!'
must be an extended LL(I) grammar. The permissible extensions
are specified in later sections. This graaaar will eventually
be used to produce a top-dovn left-to-right parser.

2) ~ ~ code into the gr r which specifies the steps
to be taken by the translator during parsing. A language de-
finition with both a syntactic specificationand action code
is relerred to as a "translation gra...r". The translaUon
gra...r apecifies the actions to be taken during the parsing

user-def1ned
translation
gra...r

-> Ilenerate.ol -> LLar..-----

"\I
LLact.i

skeleton.p LLvar.i
LLconst.i

II LLtype.i

II LUlle.i

" "\I \I

user-def1 ned

LLsup.i

II
II

"\/

Pascal coapiler

II

\/

skeleton.o

Fig. I Creating a Translator

--

--

LLgra. source
string

"
!I

\/
II

\/

skeleton.o

II
\/

t ranslaUon
of
"

Fig. 2 Executing a Translator

of a string.
aource string.

These actions produce a translationof the

3) Prepare Pascal ~ ~ ~ !!!.supporting routines
Which will be called by the action code, including the lexical
analyzer -- LLNextToken. these routines.which will be needed
when skeleton.p is co.piled. should be stored in the file
LLsup.i.

4) ~ generate.~.!!!!. ~ translationgr_r just prepared.
Generate.oexpectstbegr r to co..froathestandardinput
fileso youmust redirectyourfile:

generate.o < MyFile

Any errors it uncovers will be reported on the standard output
file. Generate.o creates several Pascal text flIes which .ust
be embedded into skeleton.palonl with LLsup.i. Skeleton.p
has been peppered with "include" directives so that these
files will aut088ticallybe included during its coapilation.

One additional file will be created - LLgraa. It is a
aodified version of the gr_r specified in step 2. which has
been co.pressed to facilitateuse by skeleton.o. the coapiled
for. of skeleton.p. Skeleton.o reads LLgra. before transla-
tion begins.

5) <;O-plleskeleton.~. If you are using the Pascal coapller
'pi", then just type:

pi skeleton.p; .v obj skeleton.o

If you have another Pascal compiler. tben invoke it in the
standard way. Auua1ng there vere DO errors in the specifica-

-

9

tion of the gra.-ar and the definition of the routines in
LLsup.i, the resulting object code, skeleton.o, will be a
working translator. If there are errors in the gra...r, then
all the steps just listed will have to be repeated. If the
translation gra888r is correct, but the support routines are
incorrect, then they must be corrected and skeleton.p must be

rec08piled. You 8USt repeat this process until you are satla-
fied that the translator is correct.

6) Add ~ processing capabilities. Skeleton.o will detect any
syntactic error in a source string. The detection and pro-
cessingof seaantic errors is left entirely in your hands as
the translator writer. Skeleton.a'sdefaulterrorrecovery1s
to terminate the translation, causing an appropriate message
to be printed. Zuse also supports optional sophisticateder-
ror processing facilities which allow you to specify a number
of possible recoveries when a parsing error is detected.
These are explained in section 7.

1.3 Manual organization

Thisuser8anualitselfis organizedintosectionsbased on
the steps just listed in section 1.2. A running exa.ple is used
throughout to illustrate concepts as they are introduced.

For further intor.ation about Zuse, the reader is urged to
contact the author at the Department of C08puter Science, Univer-
sity of California, Santa Barbara, California 93106, phone: (805)
961-3236 or x-4321.

2.0 Write A Context-Free Gra..ar

The first step in generating a translator .is to prepare a
context-free grammar which specifies the syntax of the language
to be translated. A context-free gra...r G classically has four
components:

8 nonterminals - the grammatical categories

8 terminals - the alphabet of the language

8 axios - a nonterminal which begins all derivations

. productions - the rewriting rules

In fact, Zuse uses a somewhat different structure dictated by the
need to distinguish between different types of ter8inals. Two
classes of terainals will be defined: "groups" and IIliteralsll.
Details about thea ate presented in section 2.3.

The gra.-ar specification 'is divided into declarations and
productions. Each vocabulary syabol used in the gra...r must be
declared, indicating what type of symbol it is. Just as in Pas-
cal, a symbol must be declared before it can be referenced. But
before describing how to write the gt r, the language which
will be the basis for a running exa.ple throughout the manual
will be described.

2.1 The language EXPRESSIONS

At this point the language which will serve as the running
example throughout the manual will be introduced. The language
EXPRESSIONS contains possibly empty sequences of arithmetic ex-
pressions terminated by semicolons. Its grammar is called
G EXPRESSIONS. The operators are four basic arith8etic opera-
tions on integer values:

+ - * /

Operands are unsigned integer literals. So.e sample strings of
EXPRESSIONS are:

(3+4)*(5-6); 4-6; 4 / 6;

12 / 3;

3'

The arithaetic:operators follow co~n precedence rules; i.e., *and I are performedbefore+ and -, withoperationsbeingper-
for~d left to right within precedence. Parentheslzation can
override any default precedence.

Th@rran81arlon of a ..ber 'If EXPRESSIONS wl11 bf HI
nU8eric value. Kence, the translator in this caMe vill be an ez-

pression interpreter. For the three examples above, the transla-
tions are:

-7 -2 0

4

You will type in an expression from the terminal, and your inter-
preterwillprintits value immediately below your input. If you
type an invalid expression, then an appropriate error message
will be printed just below the incorrect input. Hence, in this
casetherereally is no "objectcade"for the translation,since
the display of the expression's value on the terminal is the only
desired output.

2.2 Lexical structure of Zuse grammars

2.2.1 Tokens

Zuse grammars have much the same lexical structure as Pascal
programs. Within a gralllll8.Ta IItoken"is a sequence of printable
characters which has no embedded blanks, tabs, or newlines. In
certain cases it may be necessary to surround a token with single
quotes:

token .. '
because the unquoted token is part of the metalanguage used by
Zuse to specify the gra...r. For example, each production ends
with a semicolon. Hence, it is impossible to have a literal
seaicolon as a terminal syabol on the right-hand side of a pro-
duction unlesa it is surrounded by quotes:

x
In other contexts where there is no ambiguity, the se.icolon can
be used without quotes.

Tokens may start in any column.
are token separators. Blank lines
where 1n 8 grammar. For convenience
word "spacer" will be uniformly used
of blanks, tabs, and newlines.

Blanks, tabs, and newlines
may be freely inserted any-

in later discussion, the
to mean any positive number

Zuse is sensitive to upper and lower case letters. For ex-
a.ple, the following three symbols could all be declared as dis-
tinct n011terainab in yourIr_r:

PROGRAM progr.. PrOgRaM

ao be ..ery careful. e.pecially if your Paacal coapiler doe. not
..ke .uch diatinction. for identifiers declared in Pa.cal pro-
ar ben if your coapiler would treat the three syabol. writ-
ten abo..e a. the .&8e identifier. Zu.e viII not.

The ..:d_ peraisdble lenath of a syabol is 12. If you
write a aJ8boI lonaer than the peraitted _>4-_. generate.o v1~1
print 811error _a.age all4 disgard all chara2Grs of that ayabol
beyond the ..:d_.

2.2.2 c.-ents

A co.aent ..y be inaerted anywhere a spacer is allowed. In
Zuae c nts have the form:

(*

this is one of the two foraats for c nts uaed in Paacal. th@
other form of P.scal c088ent, { .. }, is not allowed in Zu.e be-

caU8e tbe curly bracketsareuaedforotherpurposeaas deacribed
later.

2.3 Declar.tions

Every syabol used in tbe Ir_r ...t be declared. ~though
tbe order of declaration is not .ilnificant. A aJ8boI C811 only
be decl.red once. ZU8e will tell you if you declare a syabol
80re chanonceor refer.neean uDdeclared.yabol1n a production.

!be basic fOr88t is uaed for all decl.rationa:

10

. (E)

IIITEGEJ. (a pusbopand(SI.operand)}

Aaop - + {a SO .operator :- '+'};
{a SO.operator '. '-'};

Mdop
*

{a SO .operator :. '*'};
{a SO .operator :. 'f'};

Iv toptorstk: integer; (* top of optorstk *)
topandstk: integer; (* top of opandstk *)

Iv opandstk: array[i..stksize]of integer;
optorstk: array[i..stksize)of char;

3.0 !abed Actioa Ioutiaea

3.1 Ponat

ODce the gr_r haa beea defiaed. you ...atadd actioa code
~ch apecifiea bow the tranalatioawill proceed. Althougb tbia
ate, caa be doae ~le the gr r ia being written. it ia often
80re cODveaient and 8Qre reliable to firet develop the gr r.
..beddina action code only after the gr r ia coaplete.

&etion code ..y appear anywbere 880ng tbe liat of vocabulary
ayabola on the right-hand aide of a production. The code ia ac-
tually a aequence of Paacal state.-ntsenclosed by curly brack-
et.:

'{a' Paacal state..nta '}'

The firat character after '{' ...atbe an 'a' to indicate that it
ia action code. Other charactera. diacuaaed in aection 7. are
uaed for other typea of code.

lawTitina the Ir r productiona for G EXPIISSIORS to in-
clude action code yielda:

(* .-pty productioa *)

{a init} I (a writeln(popopand);}

';' Az (* note the uae of a quoted *)

I - T I-Uat

I-liat - Aaop (a puahoptor($l.operalor)} T
(a r :- popopend;

1 :- popopand;
popopt or(op);

if op - '+' then
puahopand(l+r)

elae
puahopand(l-r)}

I-Uat ;

(* &aother .-pty productioa *)

T - . T-Uat

T-liat - Mdop (a puahoptor($l.operator)}.
(a r :- popopaad;

1 :- POPOpaad;
popoptor(op);
if op - 'a' then

puahopaad (1 *r)

el..
puahopaad(l div r)}

T-Ust

Several aspects of this revised gra88&r'warrantexplanation.
For tbe 808ent ignore tbose strange looking identifierswbicb be-
gin witb "$". They refer to special variables whicb will he ex-
plained in section 3.5.

Action code specifies how tbe translation is to take place.
All aapects of that specificationare left in your han~s. You
can either write all of your code directly in th~ gr r or you
can call separately declared proceduresand functions froa within
the action cod~. or aix the two styles. The gr r above is
written in a a1xed styie. The action code in the first alterna-
tive for T-list has two assignment stateaents followed by a pro-
cedure call, followed by an if-then-elsestateaent. The action
code for tbe second alternative of P has just a single procedure
call. You aust decide which ~ routines (as those user-
defined routines called froa action code are called) to define
and what they viII dn. G EXPRESSIONShas five support routines
refereneed in the aetion eode:

init pushopand popopand pushoptor popoptor

The declaration of tbese five routiaes ...at be included in
LLaup.i. which contains the support routines. before skeleton.p
can be coapiled. Hovever, at tbis point you only need to know
what these routinesdo so that you can properly write the action
code.

The action code will..p tbe infix expressions into two
stacks "opandstk" (operand stack) snd "optorsd," (operator
stack) -- where the operands and operators of the expression vill
be held, respectively. The algoritha to evaluate infix expres-
sions using two stacks is quite standard. snd it is assuaed that
you are faailiarwitb it. The code defining these five functions
is specified in secUon 4. "Init" initialhes tbe two arrays
which represent tbe stacks and two integer variables, "topopand"
and "topoptor"t whichpoint to thetop of "opandstk"and "op-
torstk"t respectively. "Popopand" and "pushopand" pop and pusb
ele18l!ntsonto opandstk, while "popoptor" and "pushoptor" are the
analogous routines for optorstk.

3.2 Variable. constant. type, and file declarations

3.2.i Variable declarations

Two variables sre referenced in the action code -- "1" and

"r". These variables bold teaporary values of tbe left and rigbt
operanda of S088 operator. Because 'ascal requires the declara-
tion of each variable which is referenced, tbere aust be S088
provision for declaring these variables. Note that Zuse itaelf
cannot have already declared thea because the particular set of
variables needed for tbe action routines will vary frna transla-
tor to translator. To perait user-declared variables. an addi-
tional declaration type is pera1~ted in gr rs in tbe declara-
Uon section:

Iv Pascal variable declarations

If a 'v' (or 'V') specifier is used in a declaration. tben the
variable declaration is copied verhatia into file "Ltvar.i".
Note that each declarationends with a seaicolon. If acre than
one variable is declared, they are copied in the order in which
tbey appear in tbe gra...r.

G_EX'RESSIONSneeds several declarations:

Iv op: char; (* tbe operator popped froa
optorstk *)

Iv l.r: integer; (* teaps *)

These six variable declarstionscan appear anywhere in the de-
claration section. Since the order of variable declarations is
not iaportsnt in Pascal, tbey can be declared in any order. NOte
that several variables can be declared using a slngle "Iv" as in
the declaration of toptorstk and topandstk.

3.2.2 Constant declarations

The integer constant "stkshe" is referenced in the declara-
tion of opandstk and optorstk above. !his constsnt and any oth-
ers wbich you need ~or your action code can be specified through
a constant declaration in the gr r. A 'c' or 'c' is used to
specify a constant declaration. G_EXPRESSIONS needs:

%c stksi.e . 20; (* aaxiaua depth of stk *)

Constant declarationswill be placed into tbe file "LLconst.i"
for inclusion into skeleton.p. They will appear in LLconst.i in
the same order as they appear in your grammar. It is your
responsibility to guarantee that a constant is defined before it
is referenced.

3.2.3 Type deciarations

Although they are not needed

clare new types using the 't' or
we wanted our interpretor to only

aight deelar~~

for this exa.ple, you can de-

'T' specifier. For exaapie, If
work on nonnegative nuabers, we

%t NonNegative. O xint;

13

and substitute NonNegative for integer in the variable declara-
tions:

%v toptorstk: NonNegative; (* top of optorstk *)
topandstk:NonNegative; (* top of opandstk *)

Type declarationswill be placed into the file "LLtype.i" for in-
clusion into skeleton.p. They will appear in LLtype.i in the
S88e order as they appear in your gra8Dar. It is your responsi-
bility to guarsntee that a type is defined before it is refer-
enced.

3.2.4 File declarations

The purpose of skeleton.o is either to interpret the input
or to map it into some object code. It therefore must have a
file from which the source string is read and, in the latter
case, a file where the object code is placed. In addition, a
complex co.piler 88Y also need several other files. The file de-
clarations themselves can be handled as ordinary variable de-
clarations. For exaaple, if we wanted a to write a C compiler,
the object code could be placed in a file called "object" which
was declared by:

%v object: file of char;

The action code which produced the object code would write t(
this file.

An additional problem arises, however, because Pascal also re-
quires that each file be listed in the program statement. Hence
a %f declaration is introduced. The program heading fo.
skeleton.p has the form:

program skeleton(input, output, LLgram
'include LLfile.i

);

if you wish to augment skeleton.p with new files, their naaes
should be listed in a %f declaration, begun by a C0888, and
separated by C0888S. If we wanted to add an object and a message
file to skeleton.pwe would declare these variables by:

%v object: file of char;
.essage: file of char;

and also declare the files by:

%f ,object,message

The foraer would be included into the variable declaration sec-
tion of skeleton.p, while the latter would yield the progr..
state.ent:

progr.. skeleton(input, output, LLgr.m
,object,mess.ge

);

3.3 N.ming conventions

Bec.use P.sc.l is . block-structuredl.nguage, the scope of
decl.rations in skeleton.p is very i.portant. You might acciden-
tally select. D88e for one of your variables, types, CODstants.
or support routines which already has been decl.red in skeleton.p
at the sa.e lexic.l level. This would cause a compile-ti.e error
when you tried to co.pile skeleton.p. To minimize the risk of
such collisions all identifers in skeleton.p which are at the
same lexical level as those identifierswhich you will declare
for inclusionwithin it begin with the characters "LL". For ex-
ample, the uin procedure of skeleton.p is called "LLMain". If
you simply avoid declaring identifierswhich begin with "LL" you
should never encounter any difficulties.

3.4 P.rsing .ction

Skeleton.owill construct . p.rse tree for the source string
in . top-dovn left-to-rightunner. The .xiom you decl.red in
the gr r will be the root of the parse tree. It will compare
the first token of the source string .g.inst the selection .ets
of the alternative productions for the .xiom. Assuming it finds
a productionvith the required selection set ele.ent, it will ex-
p.nd the .xIom by haneing tr~e nodes froe.it correspondins to tbe

right-hand of the .elected production. It viII then exa.ine the
leftmost child of tbe axiom which w.s just .dded. There .re

tbree types of nodes that child can be, depending on the kind of
symbol fro. the right-hand side of . production which it stands
for nonterainal, terain.l, and .ction. The tr.nsl.tor's
response will depend on which type of node it finds.

If the child is . nonterain.l node, the S88e process which
was just applied to the axiom will be repeated for the child.
The alternative productions of the nonterminal will be scanned to
find one whose selection set matches the current token. Failure
to find such an alternative indicates that the source string has
a syntactic error, and error processing as detailed in section 7
will be initiated.

On the other hand, if the child is a terminal, the parser
will compsre the first token of the source string against that
terainal.If they"aatch"; i.e, they are equal, the parser will
advance to the right sibling of that node, and advance to the
next token in the source string. At this point the whole process
will be repeated with the particular action taken depending on
whetherthe treeDode is a nonterainalactloncode,or a teral-
nal.

If the child is .ction code, th.t code will be executed.
presuaably this code will aanipul.te the variables declared in
the gr r by "%v" declarations in order to effect the desired
translation. Once this code co.pletes execution, the parser will
advance to the right sibling of that tree node, but will not .d-
vance to the next token in the source string since nothing in the
parse tree has been "aatched"against 1t.

When the right-aostchild of a parent nonterminal has been
visited in the aanner just described, the parsing of that nonter-
minal is considered complete. Parsing continues with the right
sibling of that parent node. This process iterates until an er-
ror is uncovered, in which case the error recovery policy dic-
tates what then happens, or until the end of the source string is
reached, or until the entire parse tree has been constructed. If
the end of the source string is reached before the entire parse
tree has been constructed or conversely, the string 1s not 1n the
source language and error processing is initiated.

The order in which nodes are added to the tree and then ex-
amined dictates when action code will be executed. For example,
in G EXPRESSIONS if the second production is selected when ex-
panding axiom Ax, then the first thing the parser will do is call
init, the action routine which initializes the data structures
necessary to compute the value of the expression. Once initiali-
zation is complete, the parser will attempt to expand E into a
complete expression. Based on the other action code which will
be executed during that expansion, the value of the expression
will be on the top of opandstk when E has been completely expand-
ed. At that point other action code is executed which causes
opandstk to be popped, and the value to be printed. The p.rser
then moves on to the se.icolon,and finally to Ax. If this in-
terpreter is to operate correctly, the other action code embedded
in the remaining productionsmust ensure that the value of the
string derived from E is stored atop opandstk. To understand how
this is done, the use of synthesized attributes to pass informa-
tion throughout the parse tree must be examined.

3.5 Attributes

The last feature of the action code which warrants explana-
tion is the appearance of those strange variable naaes witha "$"
in them. They arise from the use of attributes to pass informa-
tion through the tree.

Each node of the parse tree has associated with it a vari-
able or "attribute"which can be used within action code to com-
pute the translation of the source string. For G EXPRESSIONS
this attribute will be used to pass inforaation about integers
and operators in the source string. Because th~ use of the at-
tribute will vary so grestly with the source language and its in-
tended translation, it would be awkward to predefine the data
type which the attribute has. Therefore, each graaaar writer
must declare the attribute data type using a type declaration:

%t LLattribute. type-declaration

The reserved nalle "LLattrlbute"8USt be used for this purpose.

Since any Pascal type declaration can be used, a record can
be declared to .ctuslly provide leveral d1lt1n't ottr1butea.
Hence, the restrictionto a single attribute per parse tree node
is not actually a hindrence. For example, G_EXPRESSIONS needs

1.4

S088 vay to store both integer values and char values, leadlng to
the declaration:

%t LLattr1bute record
operator:
operand:

end;

.:har;
integer

In fact, if you would prefer different nodes to have dlfferent
attrlbutes, rather than having each node have all attributes,
this ls readily achleved through a varlant record:

%t LLattribute . record
case selector-typeof

se~ectorl: (fleldl);
selector2: (fleld2);

selectork: (fleldk)
end;

In order to refer to an attribute, the actlon code .ust use a
speclal n..ing sche_ involving "$". "$" has a special _aning
vhenused lnsldeactioncode. If n ls an unslgned posltive In-
teger, then "$n"refersto the attributeof the n-thvocabulary
syabol on the right-hand slde of the productlon ln which the "$n"
appears. "$0" refers to the attribute of the left-hand 91de of
the productlon. In other contexts, "$" has no special _aning.
For exa8ple, the first alternatlve for E-llst:

E-list . Asop
la

la pushoptor($l.operator)} T
r :. popopand;
1 :. popopand;
popoptor(op) ;

if op . '+' then
pushopand(l+r)

else
pushopand(l-r);}

E-list ;

has "$l.operator" ln it. In this
to the value of the operator fleld of
ls the flrst syabol on the right-hand

contains actlon code which
case, $l.operator refers
the attribute of Asopvhich
sideof that production.

To better understand the way ln whlch lnforaatlonls passed
up the tree, consider the parsing of ")+4;". The derivatlon will
begln constructing the parse tree:

Ax
I

--
I
E

I
la !nit}

I I I
la wrlteln(popopand)} ; Ax

Init viII be called to lnitiallze the data structures, ln this
case, settlng toptorstk and topandstk to be zero showlng that no
ele_nts have been stacked yet. Then the parser will expand E, T
and P ln turn giving:

Ax
I

--
I
E
I

I
la lnit}

I I I
la wrlteln(popopand)} ; Ax

I
T
I

I
E-list

I
P

I

I
T-list

I

INTEGER
I

la pushopand($I.operand)}

At this point the parser will vlslt the node labeled INTEGER and
_tch lt against the current token ")" in the source string, The
lexical analyzer should classify")" as an INTEGER so that tbe
_tcb will succeed. The current token also has an attribute.
The lexical analyzer viII assign the lnteger value) to the
operand field of that token's sttribute.

"xt the parser adva~es to Yisit the action code which is
to the rilht of tilenode labeled IlITEGEI.. This acUon codewill
be executed causing $l.operand to be puahed onto tile operand

suek. The first vocabulary syabel naruna fr_ tileleft end
-na its siblings is tbe node labeled IIITBGR whicb _s juet
_tclled apinet ")" in tilesource strina. Bence, the inteaer
value) is JlU8l1edonto the operand stack.

At this point tbe riabt-.ost child of the node labeled P has
been processed. Rence, the parser would next visit the node la-
beled T-list. The second alternative for T-list viII be selected
causing T-list to expand into the .-pty production.

Redrawing tbe parse tree, elia1nating nodes already visited
wbich can play no furtber role in the translation aives:

AI:

I
--

I
E
I

I
{a init}

I I I
la writeln(popopand)} ; AI:

I
T

I
E-list

E-list and Asop now expand to yield:

AI:

I
--

I
E
I

I
la init}

I I I
la vriteln(popopand)} ; AI:

I
T

I
E-list

I

I

Asop

I
I I I I

{a pusboptor($l.operator)}T la .. } E-list

I I
+ la $O.operator :. '+'}

The first alternative production 18 selected for Asop because tbe
current token is "+". The action ~ode in that production assigns
$O.operator the character value '+'. $0 refers to the attribute
on the left-band side of the production, which corresponds to tbe
node labeled Asop. When that action code i8 executed, the opera-
tor field of the node labeled Asop ls assigned the value '+'.

The ne
_

nodevlsitedls theaction~ode to the right of
Asop. It refers to $l.operator. Thls ls the value just assigned
to tbe operator fleld of Asop's attribute.

This scenarl0 continues a while longer until the entire
parse tree ls fOr8ed, but by now the baslc lnformatlon passing
..chanis. using attributes should be clear.

There ls a si.ple restrictionon the use of attributes ln
action code which is dictated by the order in whlch the parse
tree is constructed. An attribute must have a value before it
can be referenced in action code. Since skeleton.o parses top-
doVD left-to-right,$n ln action code A only has a value lf the
n-th vocabulary syabol occurs to the left of A. For exa.ple:

x . Yl la .. x :. $2 ..I Y2 Y)

would be nonsenslcal because the value of $2; 1.e" the attrlbute
of 12, will not be known when the action code referencing it is
executed.

Although the reference to $2 makes no sense in the above
production, the very similar:

x . Yl la .. $2 :. x ..} Y2 Y)

which asslgns a value to $2 is perfectly re~son~ble. The attrl-
bute of Y2 wouldbe assigneda valuewhlchcouljthenbe passed
down the parse tree when Y2 was expanded (assuming it were a non-
teratnal). Thlsglvesyou thepowerof bothsyntheslzedand In-
herlted attrlbutes.

In fact, there ls no loglcal reason why you should not be
able to assign a value to the attribute of any vocabulary ~ysbol
anywhere ln the production fro. any actlon code ln the produc-
tion. However, generate.o has a restriction on assigning values

15

to attributes forced by design decisions for generate.o.
asaign a value to the vocabulary symbol to the i.-ediate

the action code which contains the assignment -- but not

symbol further to the right. Hence, the production just
legal, but the similar:

You can
right of
to any

above is

x
-
YI {a .. $3 :- x..} Y2 Y3

is not legal because the symbol to the immediate right of the ac-
tion code is the second vocabulary symbol, not the third one.

4.0 Define support routines

The support routines referenced in the action code sust be
defined before akeleton.p can be compiled. They can freely
reference any variables, constants, types, or files declared by
the translator-writerin the gra...r. For the exaaple, the five
routine. are:

.

procedure init;
begin

topandstk :- 0;
toptorstk :- 0;

end;

function popopand: integer;
begin

if topandstk - 0 then begin
writeln('operand stack underflow');
LLFatal; {terminate translation}
end

else begin
popopand :-opandstk[topandstk];

topandstk :- topandstk - I;
end;

end;

procedure pushopand(element:integer);
begin

if topandstk - stksize then begin
writeln('operand stack overflow');
LLFatal; {terminate translation}
end

else begin
topandstk :- topandstk + I;
opandstk[topandstk] :-element;

end;
end;

procedure popoptor(var result:_~har);
begin

if toptorstk - 0 thenbegin
writeln('operator stack underflow');
LLFatal; {terminate translation}
end

else begin
result :- optorstk[toptorstk];
toptorstk toptorstk - I;
end;

end;

procedure pushoptor(element: char);
begin

if toptorstk - stkaize then begin
writeln('operator stack overflow');
LLFatal; {terminate translation}
end

else begin
toptorstk :- toptorstk + I;
optorstk[toptorstk] :- element;
end;

end;

These five function and procedure declarationsshould be placed
in LLsup.i.

These routines reference a procedure
described:

not previously

LLFatal

Watal is a
tran81ation

pre-de£ined procedure which will terminate the
after printing an appropriatesessage. It is used

16

when a catastropic translation error occurs, such as overflowing
optorstk. It is also called as the default error recovery when a
syntactic error is detected by skeleton.o and no user-defined
recovery has been specified in the gra...r. You can freely call
it within your action code. It takes no arguaents.

5.0 Lexical Analyzer

Once the support routines are complete, the lexical analyzer
LLNextToken must be constructed. The lexical analyzer

needed for translating EXPRESSIONS bas been broken down into two
routines, LLNextToken and nextchar. The latter is called by
LLNextToken to obtain the next character from the source text and
to take care of bookkeeping chores such as writing the lines of
source text out to a listing file and updating a line counter.

Several pre-defined error processing routines will need to
know the linenuaber of the sourcetextwherethe erroroccurred.
This informationmust be kept in the pre-defined integer variable
LLLineCount. Skeleton.p will initialize this counter to 0 for
you before parsing begins. It is the your responsibility to up-
date it properly through LLNextToken.

procedure nextchar; {assign next character from source
to curcbar}

begin
if not eof then begin

if LastWasEoln then begin
LLLineCount :- LLLineCount+l;
LastWasEoln .. false;
end;

if eoln then
LastWasEoln true;

read(curchar);
end {if not eof}

else
curcbar .- '@'

end; {nextchar}

procedure LLNextToken;
var

i:
begin

{get next token from candidate}

integer;
with LLCurtok do begin
{curchar should become the first non-blank}

whilecurcbar- '
,

do nextchar;
{clear PrintValue field}

for i :- I to LLStringLength do
PrintValue[i] : - ' ';

if curchar in ['0' ..'9'J then begin
{token is an integer}

i :- 1;
Tablelndex :- LLFind('INTEGER',group);
PrintValue[i] :- curchar;
attribute.operand :-

ord(curchar) - ord('O');

nextchar;
while curchar in ['0'..'9'] do begin

i :- 1+1;

PrintValue[i] :- curchar;
attribute.operand :-

attribute.operand*IO +
ord(curchar) - ord('O');

nextchar;
end;

end
else if (curchar

PrintValue
Table Index
end

else begin
PrintValue[l] :- curcbar;

attribute.operator :- curcbar;
Tablelndex.- LLFind(PrintValue,literal);
nextch.r;
end;

end; {with}
end; {LLNextToken}

- '@') and eof then begin
'end-of-file';
LLFind('@'. group);

There are a handful of simple conventions which must be followed
in constructing LLNextToken so that it communicates with the
parser properly.

First. despite its appearance above LLNextToken does have a
para.eter. lecause this routine must be referenced within
skeleton.p long before the point where LLsup.i is inserted into

it, LLNextToken.fas a forward declaration in skeleton.p:

procedure LLNextToken(var LLCurTok: LLTok);

forward;

All direct comaunication between the
parser is through the para8eter
pre-defined in skeleton.p to be:

lexical
LLCurTok.

analyzer and the
The type LLTok is

LLTok . record
PrintValue: LLStrings;
attribute: LLattribute;
TableIndex: integer

end;

LLStrings is pre-defined to be:

LLStrings . packed array[l..LLStringLength]of char;

where LLStringLength is a pre-defined constant equal to 12.
LLattribute is the user-declared type discussed in section 3.5.

LLNextToken has one ..jor function -- to fill-in the three
fields of LLCurTok. LLNextToken should assign a value to the at-
tribute associated with the current token. The particulars of
this assignaent will vary with the declaration of LLattribute,
the particular token encountered, and the translator being i.ple-
8ented. LLNextToken should assign to the PrintValue field of
LLCurToltthe string which you want to be printed when the built-
in error-processing routines are called. For ordinary literals
aDd groups, this is usually the characters of the candidate
string. For non-printable ter81nals, such as an i.plicit end-
of-state8ent ..rker as is fouad in FORTRAN, the string 'end-of-
st.t' 81ght be assigned to LLCurTok.PrintValueinstead.

LLNextTolten8Ust also assign a value to the "TableIndex"
field of the current token. Slteleton.phas an internal syabol
table (not to be confused with any syabol table which you .ight
produce for your translator) to keep inforastionabout the ter.i-
oal sTabols of the gra...r. This table is designed to 81ni81ze
parsing ti... The table structure is hidden fr08 you and is ir-
relevant to what you have to write in LLNextToken. All of your
c088Unication with that table will be through the pre-defined
routine "LLFind":

function LLFind(ite.: LLStrings; which: LLStyle): integer;

Its first arguaent is the literal or group naae which this token
corresponds to. For literals this value nor.ally equals
LLCurTok.PrintValue. For groups, LLFind should be called with
the group n rather than the literal value of the token. The

seco"" arguaent 18 either the enuaeuted constant "group" or
"literal" depending on the toltentype. LLFind returns the index
into the syabol table where that arguaent can be found. If the
token cannot be found, the index value 0 is returned, indicating
that the toltenis illegal. You can process an illegal token at
the lexical level if you prefer or pass the responsibilityon to
the parser. In any event, whether LLFind returna a positive or
zero integer, this index should be assigned to
LLCurTolt.Tableindex.

The special case when the end of the source string is
reached is handled quite si.ply. LLFind should be called with
the firstcharacterof it..equalto "II" and the re..iningchar-
acters blank. "II" is a group. The value returned by LLFind
should be assigned to LLCurTolt.TableIndex. LLCurTok.PrintValue
could be assigned the string 'end-of-file'or so..otherap-
propriate string, and LLCurTok.attribute should be left unde-
fined.

Hote that there are two user-defined variables referenced in
nextchar. They .ust be declared in the gra...r along with the
other variables used for the other support routines in LLsup.i:

%v LastWasEoln: boolean;
curchar: char;

In order for LLNextToken to work properly the first ti8e it
is called, curchar and LastWasEoln .ust already have a value.
Hence, an action routine which assigns these two variables a
value 8Ust be called before skeleton.o referencesLLCurTok. To
do so a apecial uaer-defined procedure, LLInitial1ze..will al-
waya be executed before parsing really begins. After LLlnitial-
lIe baa been executed, LLNextToken wl11 also be call@d autoaatl-
cally causing LLCurTok to bec08e defined so that parsing can be-
gin. LLInitialize can also be used to reset the sourcefile if it

is not that standard input, or to reset or rewrite any suppleaen-
tal files declared in the gr r.

Since LLlnitialize will aut088tically be called, you should
be sure to include a declaration for it in LLsup.i, even if it
doesn't really do anything useful in your translator.

procedure LLlnitialize;
begin

LastWasEoln :- true;
nextchar I.ust be called to ensure LLNextToken works'

end;

All support routines including LLNextToken are placed into
LLsup.i.

If you are using a true Pascal co.piler such as Berkeley's
"pen "hleh supports separatecoapilationand linkage to routines
written in C, (as opposed to "pi" which produces P-code, not
..chine code, and hence does not support separate co.pilation),
you ..y want to consider writing a 58811 C progra. to do the ac-
tual reading and writing and linking that with the co.piled ver-
sion of skeleton.p. Depending on the nature of the i/o, a C ver-
sionof "nextchar" could perfot'1l significantlyfaster than a Pas-
cal version. Since such a large percentage of the total ti8e is
spent reading and writing, this could dra.atically affect the
overall run-ti8e of skeleton.o. Whether this particular strategy
will, in fact, i.prove skeleton.o's perfor8ance depends heavily
on the quirks of your Pascal c08piler and the i/o perfor8ed in
skeleton.o.

"

6.0 Execute generate.o and co.pile skeleton.p

6.1 Nor881 tranalation

At thia point all piecea necessary to construct the tranala-
tor are c08plete. Generate.o should now be executed redirecting
the input fr08 your gr r file:

generate.o < MyFile

Generate.o will print a few infor88tional ..ssages aa it
processea. In particular, it will tell you how ..ny vocabulary
syabols and productions are in your gr r. It has extensive
error checlting capabilities;for exa.ple. it will flag a refer-
eace to an uadeclared vocabulary syabol, a aecond declaration of
the s... syabol. or the appearance of an ill-for..d production.
When .e~rate.o finishes, it viII return to the shell fr08 which
it vas called.

At this point you should c08pile slteleton.p using the Pascal
co.piler:

pi slteleton.p; .v obj skeleton.o

All files escept LLaup.i that 8Ust be included in skeleton.pwill
have been generated when you executed generate.o. AssU8ing there
are no fatal error ..ssagea froe the Pascal co.piler, the object
code should be an executable version of your translator.

Tbe Pascal c08piler ..y issue warnings that certain pro-
cedures vb1ch begin with "LLSkip" have not been referenced--
LLSltipToken,LLSk1pHode. and LLSk1pBoth. Do not be bothered by
these warnings. These three procedures are pre-defined for error
processing. If you use the default error recovery, they will not
be referenced (which should be the case for G EXPRESSIONSnow).
Later when you add error recovery inforastion into your grs...r.
you will probably reference one or 80re of the routines, in which
casethewarningswilldisappear.

You ..y receive two other warnings as well which you can
safely ignore. The c08pller ..y warn you that fields "table" and
"gr r" of LLgr..- are not referenced. It is just a quirk of
pi's analysis routines that it thinks these fields are never
referenced. They, in fact. are referenced.

If other warning or error ..ssages appear. they probably in-
dicate a proble. with your action code. or posaibly with s gra.-
..r declaration for a varisble, constant, or type. Fortunately,
the Berkeley Pascal co.piler pinpointa which included file it was
e08p11lng when the error va. deteeted. You should use the fol-
loving strategy to isolate errors produced during the c08pilation
of slteleton.p:

-

17

rUe IMre Probable Probl..
Error Ocean

LLcoa8t.i illeaal Ie declaration in ar....r

LLvar.i illeaal %v declaration in gr_r

LLtype.i illegal %t declaration in gr....r

Wile.i illegal %f declaration in gr_r

LLact.i illegal action. patch. or aynch code

LLaap.i illepl aupport routine

Errora in the action. patch. and aynchronizationcode will abow
up aa probl,...in the file LLact.i which vaa producedby
aenerate.o. (Patch aad aynchronizationcode are ueed in error
recovery. aad bave a fOr8 atailar to action code. For .ore in-
foraetion on thea alOeaection 7.2.) For convenience in diacueaing
LLact.i. VI! viII refer to any action. patch. or aynchroniz.tion
code aa "eabecldedcode".

LLact.i ia actually the declarationof procedure
tion vb1ch atructurea the calla to all eabedded code.
tion baa the following .tructure:

LLTakeAc-
LLTalteAc-

proceciure LLTakeAction(ea.elndex: integer);

healo
c.ae eaaelndex of

1: healo eabeddecl-cocle-aequence-l ead;
2: heglo eabeddecl-code-aequence-2 eDel;

n: begin eabedded-code-aequence-o eDel;
end;

lOad;

vhere tha i-th eabeclclecl-coda-.equeoceia a copy of the i-th ea-
bedded_ coda.aquence10 thegra_r begioaingthecountfroathe
firat production. So. for exaapla, if the coapiler reportI .n
error in eabeclded-code-.equence-2in LLact.i. then the erroneou.
code can be found in the 2nd ..bedded code aaquence in your gr..-_r.

If you diacover any errora in your tranelator. the correc-
tive action neces.ary viII depead on the severity of the error.
An arror in the gr r will require you to aodify it. reeucute
a.nerate.o. and recoapile akeleton.p. Bovever, if the gr r is
corract, but one of the aupport routinea or LLllextTokenbas a bug
in it, then only .keleton.p need. to be reco.piled after the bug
i. corracted.

ODca akeleton.p 1a coapiled without error. you
cute .kalaton.o. The .0urCe string ahould co.,.
file you .pecified in LLllextToken.For our ex..ple
.t.ndard input. so ve would type either:

.hould exe-
froa whatever
th1a 18 the

Ikeleton.o -- work inter.ctively

or

.kaleton.o < MyFile - read fr... file

Sinc., in th1a ea.e. .keleton.o writea to the .t.nd.rd out t. ..
you coaplete an eaprel.ion and type a carriaae return. the inter-
preter will dilpley the eapres.ion'avalue on the .creeD. An er-
ronaoul eaprellion will c.uae aD error ., g. to be di.pl.yed.
aDd the iDterpreterto tera1nateexecutioD.In thenext.ection
you vill learn how to apecify any of .ever.l differeDt erro;
recovery policiel inate.d.

6.2 Verbo.. aocIe

For convenience in debu&llng your tr.n.l.tor. there ia a
ver.ioD of the .keletal tr.nel.tor which include. f.cilities for
tracing the paraing .ction. it takes in tran.lating . candidate
ItriDa -- akel.debug.p. Theae tr.ce feature. .re Dot .v.ilable
in .k.leton.p. Seaple. of the "verbo.e" output of .kel.debug.o
which ba. the tracing features on are given in both Appendicel A
.nd I.

7.0 Error proceasing

A traDalator cODltructed
pr..ented ao far villproce..
if a .tring which i. not in the

accord1ng to the 1Dltruct1oDI
correct inputproperly.Hovever.
.ourcelanguagei.given to it,

the tr.nalatorwill l18ply report the error .nd halt. Beeau.eof
the viable prefix property of LL(l) parlerl. . syntactic error il
detected at the leftao.t po.ition in the .ource Itring for which
thereil no legit~te continuation.In ao.t circU81tancea.uch
poor error recovery (i quitting) il unacceptable. Zu.e has .
nuaber of other pre-defined error recovery .trategiea which you
can .pecify in the gr r. Theae fall into two _jor
categoriea: patche. and synchronizationa.

7.1 P.tching errors

When . .ynt.ctic error i. di.covered, there are three ea.y
recoverystrategiesother than quitting whichcan be tried:

skip past the current token fr... the source atring, but con-

tinue the pane froa the .a.,. place in the pane tree.

akip paat the current node in the parse-tree. (consider it
to have been _tched), but continue the pane vith the
token in the .ource .tring.

akip past both the current token and the current nod. in the
par.e tre..

Mone of the.e ..y prove adequat., in vb1ch eaae the aore .ophi.-
tieated recovery .tr.tegy of .ynchron1z.tion t be used. Bo_
ever, local patching is often .ufficient.

In order to .pecify . recoveryItrategy other than quitting.
you _.t includewhat 18 c.lled"patch"code in thegr r. A
patch routine looka exactly like an action routine except that
instead of begioaing with "(a". it Itarts vith nip".

A patch routine can follow .ny tera1nal syabol. and applie.
to the syabol vhich precedea it. In our exaaple. one of the al-
ternatives for "P" can be patched quite nicely:

P -
(

E
) (p LLSkipToken} ;

During norasl paraing, patch routines are not executed. In this
reapect they differ froe action routines which are alvaya execut-
ed when it is their "turn" in the derivation. The p.rser si.ply
skips over p.tch routines becauae they are not needed for norael
proce88ing.

The parser can det.ct a Iyntactic error in one of two vay..
If the next .yabol 10 the .entential fOr8 18 a tera1nal and the
current token doea not ..tch it. that ia an error. Si81l.rly. if
the next syabol ia a nontera1nal. but no alternative production
for tbat syabol haa a aelection aet which includea the current
token, that is alao an error. Patching addre.aes only the firat
type of error. aynchronizationaddreaaes both.

When the paraer detecta an error during the _tching of a

tera1nal in the sentential fOr8 .gainat the current token in the
source atring, it checka whether there ia patch code aa.ociat.d
vith that tera1nal ayabol. Patch cod. is .lvays a.sociat.dvith
thetera1nalsyabol it follows. In th18 exaaple, patch code 18
asaociat.d with the right parenth.ats .ince the "{p ...} code
follows ")" in the production.

If there is no patch cod.. the paner quita vith a fat.l er-
ror .,.ssag.. 00 the other hand. if a patch is pres.nt, the
parser .x.cut.s the patch code. This should alter the .ource
string by reaoving the curr.nt token. or treat the t.ra1nal in
the sentential fo.. as if it bad been ..tched and .dvance it, or
both. The parse th.n r.aUMS. The patch code in the production
above states that wh.n a closing parenthesis is expect.d in an
.xpr.ssion but none is found, then the current token should be
skippedand thenextone.xaained.Theov.rall.ff.ctof this ia
to reaove tokensuntila rightpar.nth.sisis found in the .ource
string. If the ead of the source string18 r.ached before ")",
the translatorviII quit vith a fatal error ..ssage.

LLSkiploth, LLSkipToken,and LLSkipMocie are thr.e paraaet.r-
less pre-defined procedures deaigned to facilitate patch
recovery. They are declared in akeleton.p by:

procedure LLSkiploth

procedure LLSkipToken

procedure LL5k1pnode

LLSkipToken just reaoves the current token. LLSkipMode l.aves

18

tbe culrent token in the source string unchanged, but advances
the pointer to the current node~n the parse tree, essentially
ignoring the node in the parse tree which did not ..tch the
current token. LLSkipBoth skips past both the current token and
the current node of the parse tree. All routines cause s ..ssage
to be printed both to LLMessageFile and to the terainal explain-
ing the nature of the error and the recovery taken.

LLSkipBoth can be helpful when you encounter a token vhich
is often aisplaced. For exaaple, the following Pascal constant
declarations are both incorrect:

canst
x false;
y :- 3;

After the identifer being declared, the progra..er should have
written ".", but baa written":" and II

:-" inatead. 'l1t.eae are
likely errors, especially for a beginning progra...r. Assuaing
that the original production for a constant declaration is:

ConatDcl - Ident '-' Literal

the translator-writer can perfor8 special checks for these two
likely errors by replacing that production with:

ConatOeI - Ident

-
{p vith LLCurTok do

1£ (TableIndex
(TableIndex
LLSkipBoth

else
... }

LLFind(':', literal» or
LLFind(':-', literal» ther

Literal

Patches are li81ted because they are a highly localized
recovery. Only that part of the source string i..ediately sur-
rounding the current token is affected. Further80re, parsing al-
ways resu.es in the sentential fOr8 where it left off before the
error was detected. Even if an entire section of the sentential
fOr8 haa been "conta.inated" by the error, it is not possible us-
ing a patch to skip forward in the sentential fora to a aore ap-
propriate point such as that correspondingto the beginning of
the next state8ent. The need to synchronizewith s point later
in the sentential fOr8 .otivates the recovery strategy described
in the next section.

7.2 Synchronization

Synchronization is a aore sophisticated recovery strategy
which allows you to skip arbitrarily 88ny tokens in the source
and past arbitrarily 88ny syabols in the sentential fora before
resu8ing the parse. It is needed when an error is so severe that
local patching is inadequate and the whole "area" surrounding the
error 8Ust be abandoned as non-repairable.

Synchronization recovery is specified in the gr r. As
with action and patch code, synchronizationinforaation is sur-
rounded by curly brackets, except that it begins with "{s". The
productions for "Ax" can be aodified fr08:

Ax

{a init} E {a writeln(popopand);}

. Ax;

to:

Ax

{a 1nit;} E {s ';' -) 2}
{a vriteln(popopand);} ';' Ax %any

Although only a ter8inal can be associatedwith patch code, any
vocabulary syabol can be associated with a synchronization
specification by placing the specificationi...diately after it.
For our exa.ple nonterainal E is associatedvith the synchroniza-
tion specification.

Besides including synchronizationrecovery, the second al-
ternative production has been changed so that the selection set
ele_nt "any" has been specified. It has been added to ensure
that the second alternative production for Ax viII always be
selected whenever Ax 8Ust be expanded and the end of the source

string has not yet been reached (the selection set of the first
alternative is {@}). This is necessary because error recovery

(both patch and synchronization)specified in a production only
applies if that production has been previously selected. An er-
ror in the token used to select a production will cause error
recovery inforaation specified for the first vocabulary syabol on
the right-hand side of that production to be ignored -- unless
the selection set of that production has been augaented by "any".
"any" viII cause the synchronizationrecovery which follows the E
to be applicable, even if the token used for selecting fr08 a.ong
the alternatives for Ax is erroneous.

Synchronization inforaation is not written in Pascal, but in
a special foraat specificallydesigned to express that fora of
recovery. The general foraat is:

reeove ry fl.", Pascal_code "}If

where each clause of the recovery specification, separated by
C0888S, haa the fora:

token n_>" integer

or

token fI..>" fl."

The Pascal code which follows the se.icolon will be described
shortly, but firstthe siaplerforaused in G EXPRESSIONSvhich
has only one clause and no Pascal code viII be explained.

Synchronization eleaents are just like patch code in that
they do not affect parsing until a syntactic error is detected.
The synchronization inforaation is siaply ignored until then.
However, when the parser detects a syntactic error, one of
several things can happen depending on the circU8stances. If
there is no user-defined recovery'governingthe parser's actions
at this point, the parser treats the error as fatal and si.ply
ter8instes execution. On the other hand, if the parser was at-
te.pting to aatch a ter.insl syahol against a terainal in the
sentential fora which has patch code associated with it, then
this local recovery viII be taken whether synchronization is
specified or not. Under all other circuastances, synchronization
recovery Is activated.

To illustrate how synchronizationworks, suppose you vere to
atte.pt to parse the expression "3++5". which has an extra "+".
Whenthe parserlooksfor an operand after the first "+",it will
find the operator "+u instead. The parse tree at thispoint,
with uninteresting portions elided will be:

Axioa
I

I

la init iaHze}
I

Ax

I

I

la init}

I

la ..

I

Ax
I

E Is' ;' -) 2}
I

I

T
I

I

E-list
I

I I I I

la ..
} T {a ..

} E-list
I

Asop

I

I

+
I

la SO.operator :a '+'}

The parser will have successfullyexpanded Asap, have executed
the action code following it, and be attempting to expand T when
theerror is detected. The current token value is "+" but the
selection set for the sole alternative production for T is ['(',
lNTEGER]. Since T is a nonterminal,no local patch is possible.
However, synchronizationcan be performed even though there is no
synchronizationspecificationdirectly following T.

T is a descendent of E-list, which in turn is a descendeht
of E. E is followed by a synchronizationelement. ~e synchron-
ization policy of a nonterminsl is implicitly inherited by its
descendents. Any descendent nont~rminalcan explicitly override
that synchronization policy by establlshing one ot lts own, and
any descendent terminal can override that synchronizationpolicy
through patch code, but by failing to establish a recovery of its

19

own, a .,.bol inherit. ita recovery policy froe ita parent.

The effect of thia aynchronizationia to inatruct the paraer
to eraae that part of the parae tree hangina under the E, and to
akip tokena in the aource atrina until a seaicolon ia found.
Failure to find s aeaicolon before the end of the source string
ia reached ia fatal. Bovever, if a sea1colon ia found, the
par.er viII reaynchronize the parae with the node in the parse
tree corresponding to the aecond vocabulary syabol 880ng the si-
blinga of E, aince it is the E where the governing synchroniza-
tion ia located. In thia caae the second vocabulary a,.bol is
;. The parse then reaU8eS aa if all nonterainah to the left

of that aeaicolon had been expanded and all terainals to its left
had been ..tched.

The total effect of the aynchronizationis to skip over to-
kena until the end of an expression is found and to resU8e para-
ing at that point in the parse tree where the end of an expres-
sion is expected. This decision is based on the pre.ise that if
an error ia diacovered in an expresaion for which no local patch
ia defined, then the best policy is to ai.ply skip past the rest
of that expreasion and reauae parsing with the expression separa-
tor.

In the anre general case there will be several clauses in
the synchronizationapecification:

token! II.)" intI .. II, token "_)" 1ntk "In

i

.!

Baving aeveral clauses allows the paraer to resynchronize at dif-
ferent places depending on the sequence of tokens encountered in
the source atring. When synchronizationrecovery is initiated,
the paraer will skip tokens in the source atrina until it finds
one which ..tches one of tokenl through tokenk. When it does so,
it will use that clause for synchronization,continuing the parse
at the point indicated by the integer in that clause.

The advantage of being able to synchronize in different
placea becoaes clear when we conaider error recovery for a Pascal
co.piler. When an error occurs in a stateaent, the translator-
writer ..y wish to skip to different points in the source strina
and parae tree depending on the circuastances. For exaaple the
variable declaration:

I

var
t,3u . integer;

contains two syntax errors. The illforwed token '3u' appears
where an identifier is required, and '.' is used where ':' is ex-
pected. If the only error were the appearance of 3u, then one
reasonable recovery would be to skip to the ':'. However, aince
that syabol is aissing, we shou~4 skip to the ';' inatead. Aa-
susing the production in effect for the paraing of these type de-
clarations originallywere:

VarStmt . IdL1st TypeConstruc

It should beco.e:

VarStmt. IdList {s ';' -> 4, .> 2} TypeConstruc

to implement this strategy.

Occassionally,you will not wish to synchronize on a syabol
which occurs in the production in which the synchronizationele-
ment appears; rather, you will want to skip past the whole
right-hand side, as if the parser had completed the derivation of
the entire right-hand side. To indicate this, a '*' is used in
place of an integer in a clause of the synchronizationelement.
For example, if the synchronizationelement of the alternative
production for Ax were replaced by:

{s @
-> *, -> 2}

then the string:

3/4

would cause the parser to recover by terainating nor.al1y even
though no semicolon is present in the source. All of the chil-
dren of Ax would be skipped. Since Ax is the rightmost child of
Axio.t the entire parse tree would be considered generated by the
parser at this point. Henc~, the translation would terainate
nonaally. Us1na the or161nal synchronizationele.ent. the parser
would have terainatedexecution with a fatal error when it was
unable to find a semicolon.

An i.portant synchronizationfeature is the ability to op-
tionally include Pascal code after a se.icolon in the synchroni-
zation specification. This code is occasionally n~cessary in
order to "clean up" any data structures which would otherwise be
left in an inconsistent state by the aynchronizstion. For exam-
ple, if action code on the right-hand aide of a production is
skipped during resynchronization,then attributes snd variables
which that action code would have assigned values will not have
the proper values. This Pascal code will be executed after
deter.inina which clauae of the synchronization specification
will be used. It can assign values, clear stacks. reset
counters, and perfora any other housekeeping chores so that when
parsing resuaes, all data structures are in a consistent state.
Different clean-ups are possible depending on which clause is
selected. The code can examine LLCurTok to deteraine which
clause was selected and then take the appropriate action. For
exaaple, the synchronizationspecification:

TypeDcI -
TypeID -

Is ',' -> 2, ':' -> 3, any -)
*

;

with LLCurTok do
if Tabieindex . LLFind(',' literal) then

recovery appropriate for ','
'"else if Tablelndex . LLFind(':', literal) then

recovery appropriate for '.'

J\

else
otber recovery...}

TypeDenoter;

peralts the translator to take different action when recovering
from quite different situations:

type

speed : integer;
high,low - real;

{should be '-' -- assuse it is}
{only one type identifier can be
declared per declaration -- but
can set up syabol table to accept
high and low anyhow}
{perhaps this is an e.bedded
in type identifier -- don't
know what to do, so skip to
dec~aratlon and "throw out"
identifier g found so far}

g 123 - cbar; blank
really
end of
type

There is one final e.bellishment on the specificat~n of syn-
chronization inforution which is often quite useful. Consider a
production for a Pascal Program:

progra.
Header LabelPart ConstPart TypePart VarPart FuncProcPart
ExecSt.t. ;

One reasonable synchronizationrecovery strategy is:

prograa -
Header

{s PROGRAM -> I, LABEL -> 2, CONST -> 3, TYPE -> 4,
VAR -> 5, FUNCTION -> 6, PROCEDURE -> 6, BEGIN -> 7}

LabelPart
{s LABEL

-> 2, CONST -> 3, TYPE -> 4, VAR -> 5,
FUNCTION -> 6, PROCEDURE -> 6, BEGIN -> 7}

ConstPart
{s CONST -> 3, TYPE -> 4, VAR -> 5, FUNCTION -> 6,

PROCEDURE -> 6, BEGIN -> 7}
TypePart

{s TYPE -> 4, VAR -> 5, FUNCTION -> 6, PROCEDURE -> 6,
BEGIN -> 71

VarPart
{s VAR -> 5, FUNCTION -> 6, PROCEDURE -> 6, BE~IN -> 7}

FuncProcPart
{s FUNCTIOR -> 6, PROCEDURE -> 6, BEGIN -> 7}

ExecSt.t

J

.,

Tbissynchronizestbe progr..on each ..jor block section aa
deterained by a keyword. Although this apecification is ade-
quate, it appears bighly redundant. To abbreviate the specifica-
tion of recovery inforution c.-on to several vocabulary a,.-
boIs, Zuse allows you to write synehronization code whicb ia glo-
bal to the entire right-hand aide. This code, written in tbe
saae syntax as other synchronizationspecificationa,8Uat appear
as the firat s,.bol on the right-hand side of the production:

Progra. -
{a PROGRAM -> I, LABEL -> 2, CORST -> 3, TYPE ->

(,

20

vb. -> 5, FUHcnOR -> 6, PIIOCEDUU -> 6, BEGU -> 7}
aeader LabelParc ConscParc Typeparc VarParc FuncProcParc
hecScac . ;

\
The synchronizaCion specified in this producCion appliea co each
vocabulary syabol vich che following sCipulation. lecall that it
ia ille.al to acceapt co synchronize to the left of the vocabu-
lary ayabol where che error is detected. Consiatent with thia
viev, when aCceapCing Co synchronize baaed on a global synchroni-
zacion, skelecon.o viII ignore a synchronization clause vhich
vould cause it to reaynchronize to the left of the current voca-
bulary syabol. Par exaaple, the text:

......

PBOGRAMtest(input,output);
LABEL10;
CONST

pi : 3.14159;
LABEL 20;
TYPE

speed real;

containa an error in the declaration of the constant pi and er-
roneously baa a second label declarationsection.Assuaing the
error recoveryjuatapecifiedwaa applicable,skeleton.owould
akip pascthe reatof the constantdeclarations,~ the second
label seccion, and resynchronize on the keyword TYPE. The second
label declaration section would be skipped because when the error
vas detected, the paraer would be processingConstPart, which is
the third vocabulary syabol on the righC-hand side, buc LABEL
causes resynchronlzation on Che second syabol.

Of course, there is noC always a slngle synchronlzaclon
atracegy chat ia appropriate for every vocabulary syabol in a
production. To acc0880date thls fact, you can overide global
aynchronizaclon by explicitly speclfyingeither patch or another
aynchronizacion code afcer any vocabulary syabol:

prograa .
Is PROGRAM-> I, LABEL -> 2, CONST-> 3,

VAK -> 5, FUHCTION -> 6, PROCEDURE ->
Header LabelPart ConstPart TypePart VarPart
ExecStat

Is . ->
8}

TYPE -> 4,

6, BEGIN ->
7}

FuncProcPart

. ;

If an error would occur in ExecStac, then skeleton.o would sklp
tokens until it found a period. It would then resynchronizeon
che eighch vocabulary syabol. The recoveryof all other vocabu-
lary syabols wouldstillbe governedby theglobalsynchroniza-
tion apecificaclon.

Zuse Installacion Instructions
Version 1.0

Arthur Pyster
May 1981

Zuse is very easy to inscall if you are running Unix with the
Berkeley Pascal coapl1ers (pi or pc). It was designed to be
highly portable so that if you do not have these coapilers, I ex-
pecc you wl11 still be able to coapile Zuse without too 8Uch dif-
ficulty. Every 11ne of Zuse which is (as best as can be decer-
ained) not standard Pascal has been ..rked with a comaent brack-
eced by (* .. *). All other coa.ents use the curly bracket del-
iaicers (..}. Hence, it should be quite easy to browse through
the source code wich a texC editor and exaa1ne each non-standard
feature.

Zuse consists of two Pascal programs generate.p and
skeleton.p. GeneraCe.p should be coapiledwith the resulting ob-
je~t code saved under the na8e generate.o (or whatever suits your
fancy). Skeleton.p is a skeletal Pascal progra. which is aug-
aentedby a personwritinga translatorin the manner described
in the luse Users' Manual. Hence, a user of Zuse will need ac-
cess to generate.o and skeleton.p.

To create Zuse in the current directory, just type:

tar xv
pi [options] generate.p
.v obj generate.o

where [options]are whatever coapiler options you deslre. You
asy need to qualify the tar co...nd with the tape drive nuaber
you .aunt the distribution tape 00. When you execute tar, a
nuaber of files other than generate.p and skeleton.p will be
placed in your current directory. In particular, you will also
find:

skel.debug. p debugging version of skeleton.p

RawInstall pre-nroff fora of this document

Install post-nroff fora of this docuaent

RawUser pre-nroff fora of Users' Manual

UserManual post-nroff fora of Users' Manua.

FortGra-.ar gra...r for structured FORTRAN preprocessor

FortLLsup.i support routines for FORTRAN preprocessor

ExpGr r gra...r for arithmetic expression evaluator

ExpLLsup.i support routines for expression evaluator

The pre-nroff docuaents do not use elther the -ae or the -.s
nroff ..cro libraries. They are entirely self-contained, so you
can recreate either docuaent by typing:

nroff RawInstal1 > MyInstal1
nroff RavUser > MyUser

To creaCe the FORTRAN preprocessor under the naae Scruct.o, jusc
cype:

generate.o < FortGr r
cp FortLLsup.i LLsup.i
pi [options I skeleton.p

av obj Struct.o

To create the expression evaluator under the Da8e express. 0, just
type:

generate.o < ExpCra...r
cp ExpLLsup.i LLsup.l
pi [options I skeleton.p

av obj express.o

A word of ~aution 1s necessary. Whenever you run generate.o, the
fl1e LLgraa is created. It contains a crunched version of the
gr r inpuc to generate.o and is peculiar to the particular
tranalacor belng created with Zuse. When a translator created
wich Zuse (such as Struct.o or express.o) Is executed, it reads
in LLgraa in order to initialize its parser. Hence, LLgraa aust
be in the current directory. Thia also means that you cannot
readily have anre than one translator produced by Zuse in the
s... dlreccory, since each one wl11 require its own version of
LLgraa. For the dassroDa enviromsent for which Zuse was
developed, thls is no probl... However. for 80re varied applica-
tlona, this restrictioncan be Inconvenient. With a aodest bit
of surgery, this restrictionis readily reanved. Renaae LLgr..
to whatever file n.-e 1s convenient after running generate.o, and
change the 11ne:

reset(LLgraa);

in skeleton.p to

reset(LLgra., YourNaae);

where YourNaae Is the Unix file name where you moved LLgra..

la prograa skeleton(input .output. LLgra.
2a 'include 'LLftleai'
J. (* UNIX ')
4.);

5a {skeletal c08ptler tu pars~ d candidate:> string}
6.
7. May 8, 1981
8a Ver8ion: l.O
9. Author: Arthur pyster

lOa Copyright (c): Theblents of the University of California
11a Purpose: This prograa is a skeletal coapiler ..,hich is
12. fleshed out by the inclusion of . fUe supplied
13.. by the user:
14.
15. LLaup - support routines called directly

16a or indirectly as action routines
17. including LLNextToken

21

It
Ii

11.
19.
20.
U.
22.
23.
24.
2S.
26.
27.
28.
2'.]C).
31.
32.
33.
34.
3S.
36.
37.
38.
39.
40.
41.
42.
43. label1000;
44. conat
4S.
46. LlJIaaStack . 200;
47.
48.
49. , include ~LLcoD.t.l'
SO. (" OIIU ")
SI.

~;:
type

LLStrlllll . packed array [I..LLStrlolLelllth] of char;
S4.
SS.
S6. l10clude 'LLtype.I'
S7. (" OIIU I)

S8.
S9.
60.
61.
62.
63.
64.
6S.
66.
67.
68.
69.
70.
71.
72.
73.
74.
7S.
76.
17.
78.
79.
80.
81.
82.
83.
84.
8S.
86.
87.
88.
89.
90.
91.
92.
93.
94.
9S.
96.
97.
98.
99.

100.
101.
102.
103.
104.
10S.
106.
107.
108.
109.
110.
Ill.
112.
113.
114.
liS.
116.
117.
II~.
119.

and 5 fl1e. provided by ",emerate". the
parler lenerator:

LLf1le -

120.
121. procedure LLMextToken(var LLCurTolr.: LLTok); forward;
122.
123.
124.
12S.
126.
127.
128. I.bel
129.
130.
131.
132.
133.
134.
13S.
136.
137.
138.
139.
140.
141.
142.
143.
144.
US.
146.
147.
148.
149.
ISO.
lSI.
IS2.
I S3.
IS4.
lSS.
n6.
1S7.
IS8.
IS9.
160.
161. procedure LLPnStrlng(5tr: LLStrings)i
162. {print non-blank prefix of str}
163.
164.
16S.
166.
167.
168.
169.
170.
171.
172.
173.
174.
17S.
17..
117.
178.
179.
180.
181.
182.
183.
184.
18S.
186.
187.
188.
189.
190.
1'1.
192.
193.
194.
19S.
196.
197.
198.
199.
200.
201.
202.
203.
204.
20S.
206.
207.
208.
209.
210.
211.
212. procedure LLS1ttpllode; {Ikip over I.Dtenttal fora Docie le 1.. curreDt
213. token .. tll
214.
2IS.
216.
217.
218.
219.
220.
221.

function LLFind(itea: LLStrinaSi which:LLStyle): inteaer;
{Find itea In 818001 table -- return index or 0 if Dot
AsSU8es 8yabol table 1s sorted In ..cendina, order.}

10;

found.LL..ar - var del. required foraction
routinee

vat
low t .idpoint, high: integer;

begin
LLFind :- 0; {assU8e failure}
low :. I;
high :- LLTableSize;
If (itee >. LLS}'IIboIT.ble(low).key) and

(itee <. LLS}'IIboIT.blelhigh] .key) then
whlle low < high do with LLS}'IIboIT.blellow] do bealo

if key -ite. then begin
if kind -which then

LLFind low;
loto 10
end

ebe begin
.idpolnt :- (high+lov+l) div 2j
If LLS}'IIboIT.bleleidpointl.key < itee then

low :- .idpolnt
else if LLS)'8IbolTable(.tdpoint] .key > 1te. then

high :- 81dpolnt-l
else 1£ LLSY8bolTablel.idpoint] .kind - which then begin

LLFind :- .1dpolnt;
loto 10

end
else {not In table}

goto 10
end;

end;

10: {e8ergency ex.it}
end; {LLFind}

'1

!

LLconlt con.t dcle .pecified In
gr.--ar aad aile. eanat.aU

l.bel 10;
'OAr

t8llp: char;
i: inte.er;

bello
wrlt.('''');
for i :- 1 to LLStrlqLeoatb do

if orr(l] . . . tbeo
loto 10

e18. _110
t_ :. .tr(l];
wrl te(talp);
aDd;

10:
write('''');

end; ILLPrtStrllll}

{print header e}procedure LLBeader;

".r
i: inteler;
t_LLCurTok: LLStr1I11.;

bello
for i :- 1 to LLStrlD1Leqtb do

t_LLCurTok(11 :. . ';
if LLCurTok. T.blelndeo . l.I.LocBOS then bealn

t_LLCurTok(l] :. 'e'; t_LLCurTok(2J :. '0';
t_LLCurTok(3J :. 'f';
.D<!

al.e if LLCurTok.PrlntValue(IJ 10 [' J than
t88pLLCurTolt :- LLCurTok..PrlDtValue;

if t_LLCurToklll 10 [.,.
..'-'J then (" ASCII D)

LLPrtStr1l11(t_LLCurTok)
el..

vrlte('Unprintable token _a11m1na with
"'ord: '. ord(tnpLLCurTok(l» :3);

eDd; ILLIIe.der}

(0 ASCII D)

,

LLtype type del. .pecHiedin Ir r

{r..,.e current tokeD}procedure LLsk.ipTok.ea;
bello

LLadvaace :- fal.e;
write(LLLineCount: 3

t

LL8eader;
wrltelo(. 10 .klpped.');
LLNntTokeo(LLCurTok);

end; I LLSki pToken}

J

LLact LLTak.eActioa procedure which
ca118 8ctlO11 routine. a. dictated
by Ir__r rule.

');

The file LLar.., produced by lenerate.o, 8IJ8t be read In.
It cODtaina 80. encoded fOr8 of the 11'_1', error data, aDd tbe
.,.bol ~able.

Error el are written to tbe ItaDd.rd output un.lt.}

t_x nuaber of .eatentlal forw ele8entl in par...
tree at any ODe ti8e.}

LLGr81lEntry .
record ca.. boolean of

true: (t.ble: LLStrlol');
falle: (Ir.-r: Integer);

eed;

LLTok .
record

printValue: LLStrina.; {the literal token .alue}
Tablelndex: inteler; {index where token II in a,.bol
attribute: LLattribute;

tvalue a..ociated with the token by
LLNextTolten - can be u.ed by an actioa routine}

t.ble}

belin
vrite(LLLlneCount: 3, . -- ');
LLPrtStrIIllCLLS,.boIT.blel LLSt.ckI LLSeotPtr) .data. T.blelndeo).key);
write(' in.erted before ');
LLBeader;

writeln;
LLSentPtr :- LLSentPtr + 1;

end; ILLSkipNode}

,

end;

LLSty1e (literal, nonterainal, Iroup, action, patch);
{literal: a teralnal which ataodl for it.elf.}
{aroup: a ter81nal which i. a lexical .rouP of u,strlq..

but .yntactlcally ju.t . o1l11le .}'IIbel}

{action: an actton routine call}
{patch: an actior. routine to patch .yutactie error.}

LLI1lht .
record

ea.elndex: Int8.erj
.ynebin.dex: inteler;
WhichChl1d: intelerj
ca.e kind: LLStyle of

action, patch: ();

noaterainal: (Prodstart: integer);
literal. group: (Table Index: inteler);

endj

LLSentential -
record

LaatChild: boolean; {ia this the rlaht80et
Top: intelerj {point to La.tChl1d}
parent: integer; {ptr to parent of tb1a
attribute: LLattribute;
data: LLR.1ght;

end;

chUd?}

node}

Vat, lnclude 'LL..r.l'
C" UNIX

"J(var deh produced by parler lenerator)
LlAdvance: boolean; {advance LLSentPtr to next node!}
LLStartT18e: real; {clock. tilH at start of c08pUation)
LLl.t>cEOS: integer; {location of end-of-aouree In SY8boITable}
LLSentPtr: integer; hententlal for. el...nt currently beina proce.aed}
LLLineCount: Integer; {line n\8ber of source text}
LLara.: file of LLGraaEntry; {",here gra-.r Is atored)
LLCurTl)k: LLTok; {tb.e current token}
LLSyabolTable: arrayll..LLTableSiae} of

record
key: LLStrlngs;
k.ind: LLStyie

end;
LLStatk, atr.yll..LLMuSt.ckJ ~f LLS.~t.ntial; ht..k IIIIi.. r.pr..eftt.

the parse tree)
LLTl)p: Inteaer; Itop I)fstack pointer}

22

,

J

,
j

222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
120.
321.
322.
323.

procedure LLSltlploth; {Ikip over both ..De8ntla1 fora 110de aM curT.aC
tok... used when replee._nt 1. ...U88d to be
correct, ... attribute of r.pi.c__at dcM:.- ROt d
to be .et; otherwise ua. LLReplace}

bella
wrlte(LLL1uCount:3. . - ');
LLBaader;

It.(' r.p1ated by .);
LLPrtStr1D1(LLS,.bo1Tabl. [LLStatk(LLSeatPtr J .d.ta. T.bleladuj .ke,);
writ.ln;

LLSentPtr :- u.SentPtr + 1;
LlJlutTokeD(LLCurTok) ;

.Dd;

procedure LUetal; {to recover fr08 .yntactic error, cera1118te c08pllatlon}
bellD

wrlte(LLL1neCount: 3. .
- ');

u.a r;
vrlteln(' fOUDd. TraDal.tion tera1uted.');
Iota 1000;

.ad; {LLPaUl}

, lDdud. 'LLaup.l'
(D 1IIIU D) t8upportiDI routi.a}

324.
325.
326.
327.
328.
329.
HO.
331.
332.
333.
334.
335.
336.
337.
338.
H9.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.

kt.. :. _t.notal;
ProdStAl't:- Ucr... ..~;
..t(Ucnah
Cuel_ :. ~_" .I&_r;
..t(1.I.8t_h
.Y8C..1 :- Ll.81'....&"_1';-;

'I': balla
ClaUde-t ,. ClaUde-t+l;
IIb1tlla.1ld :. CltUde-t;
iii... :. aroup;
T.bl.I :- LLar.".,.._1';
l.t(LLer_) ;
ea.. lade.. :- Uoar.'" e,r_r;
l.t(LLer_>;
.yachi :- LLcr elr.-r;
aDd;

'p': ba81a
kind :- patch;
CaaelMe. :- LLcr..'" "1'-'-1';ead;

...t; {ca..}

.Dd {wltb lbeArr.,}
01.. ballD {Ire_r Ia LLer_ h acr up}

writela('Cata.trophic: error - !be '1'--'1' to ");
writela('Ienerate thi. c08pil.r pro"'I, laM _ .0'0'1'.")
writela('Cbeck to ..ke .ure that -Ieaerate.o. .1. ..t ")
writeln('produc:e any error _a...e. whee. it 'roc ")
writela('your gr r. ");
loto 1000
end;

ead; {with procluctioQ8}

eDd; {Bu1ldltilbt}

procedure luilIiSelect(vb1chprod: iDteler); (build .electioa ..t)
.ar

i: inteler; (loo, counter)
Tableladex: iateler; {where in Table caD el...nt be fouadT}

be8lD wltbprodutUoaa(vblcbpro'H do be810
aelec:t :- (];
for i :- 1 to carel..l do belln

let(!.Lar_) ;
Taltl.I'Dd.ex :- Uar." ..r r;
.elect :- 8elect + [Tablelodex];
ead; {for l}

end; (vith.1''').ad; {BuUdSeleet}

bello {r..dlr_}
{reed Ia .,.bol table}

re.et(LLer_>;
if LLTableSh. > 0 tbeD bello

LLS,.bolT.bl.UJ .ke, :. !.Lar_" .tabl.;
l.t(LLera);
if !.Lar_" .tabla(l) . 'I' tbao

LLS)'8bolTabl.(l).ktad :. Iroup
el..

LLS)'8bolTableU) .k1ad :. Uteral;
ead;

for 1 :. 2 to LLTabl8Sh. do ball0
..t(!.Lar_>;
LLS,.bolTablaU!.ke, ,. !.Lar_".table;
l.t(!.Lara) ;
if !.Lara".tabl.U) . 'I' tbeD

LLS,.bolT.bl.(I) .klDd :. Iroup
el..

LLS)'8bolTabl.(I] .klDd Ut.rel;
endi (for 1}

{read 10 Ir_r}
Thi.De :-0;
.et(LLar_> ;
..i08 :- LLcr r-.r;
for 1 :- 1 to LLProdSi.e40with production.It] do beaia

l.t(LLer..); lh. :- LLar ..1' 1';
..t(Uaraa); c.rdrb. :- LLar r r;
Bu1ldltilbt

(1) ;

l.t(LLar_); c.rd.el :- LLar ..1' 1';
Bu1ldSelatt(l);
eDd; {wUbI

{now re.d in .YDchroniz.tlon info}
for i :- 1 to LLSyuchSize do bella

l.t(!.Lara> ;
.yocbdataU) .token :- LLar ..&1' 1'; (LLSyabolTable locatloa)
let (LLer_> ;
.JDtbcl.taU]...ot ,- LLar..- .Ir_r; {wbere do I .klp to?}
ead; { for 1}

eDd; (reedlra}

{p.ree the candid.te}procedure p.r.e;
YDr

te8p: LLStrlncl;
LocOfAa.y: inteler;
i: inteler;

(location of "aDY" io LLS,.bolT.ble)
{loop counter}

, loc:lude '!.L8tt.I'
(D OIIU D) {action code produced by par..r leDl:rator}

procedure er..e;
{baa rha of prod ba. been _tcbed? if .0 thea el"_e rb8}

label 10;

procedure LUlaioi
COD.lt

LocOf..ll - 0; {loc.tion of D.ull .trioa ia .,.a.o1 table)

type
iat..t - ..t of .. LLTabl.Slz.;

.JDCbtype .
r.eord

tok.D: inteaer.
..at: iot...r;

-.
{ladn to T.ble 8Dtry for toke.'
{bow far 1D LLSeDteDt1al fon to IOtO}

prod-
record

lba: latelet; {Tablelade" of lba}
rite: int..er; {index ioto Ib8Arraywhere rha be.l..}
urdrba: iat..er;
..lect: 1nt..t;
card..1: iote.er;

eDd;

YDr

't'bt.lh8: iate,.r; {tad.. IDtO Ih8Array}
IbaArra,: err.,(l..LLabaSh.1 of LLI1lbt; {rba o1_au of produtU }

.JOt t.: err.,[O..LLSJDtbShe] of .JDtbtype;
axi08: iat...r; (potater to flrat product loa who.. 1_ 1. the aU_)
produc:U0D8: arra,(l .. LLProdSh.) of prod;

procecture reMlr.; (read 11'_1' fr08 di.t)
YDr

i: iat...r;

proe"." Ia1ldltilbt(vbltbprod: lat...r); {..tablbbtOBt8DU of rba}
.ar

CIt1lde-t: Iateler; {vbltb , tb1ld 10 rbe 1. tbi.?}
1: 1ate.er;
t...: iat.cer;

bellD v1tb prDdutUoDII(vb1tbprod) do bello
rba :- tb.l.lha+l;
Cla1lde-t :. 0;
for 1 :- tblelb8+1 to Thl.Rh8-tc.rdrb. do

if 1 <. LLlbaSh. tbea v1tb IbaArra,(1) do bel1a
Thialb. :- Thlllh8+1;
let (!.Lara);
t_ :. LLer_" 'Ir_r; {tbe tJP8 of .,.bol}
..t(LLer..). {Iato for tbat part1tular .)'8bol type}

tbr(tnp) of
'1': bel1a

ChildCount :- Ch1ldCount+l;
IIbltbCh1ld :- ClaUde-t;
kiod :- literal;
TableIDdex:- LJ..cr alr.-r;
let(LLer..);
eaeeIndex :- Uoar a

11'''''1';l.t(LLar..);
.J1Ichlnde.:- LL&r .11' 1';
end;
: bella

kind :- &ctlon;
easelndex :- L4:ra agr r;
end;

'n': beain
ChlldCount ChildCount+ 1;
WblthChlld ChlldCount;

23

beaiD ionly eraee if at fartheet po1nt to tbe riaht in a production}
1f LLStaeltlLLSeotPtrJ .La.tChUd tbeo bello

""Uo
LLStaelt[LLSeotPtr] .La.tChUd do bello {era.. rha}

LLS,entPtr :- LLStack[LLSentPtr}.pareut;
1f LLSeotPtr - 0 tbeo belln {otad 18 ..pty}

LLTop ;- 0;
LLadvance ;- fa18e; {don't try to advance beyODcl axioa}
80to 10;
endj

end;
LLTop

426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
.43. procedure teeteyach; forward;
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
48!.
482.
483.
484.
485.
486.
487.
488.
489.
490.
49!.
492.
493.
494.
495.
496.
497.
498.
499.
500.
50!.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
S13. procedure teltlynch;
514.
515.
516. procedure .ynchronlze;
517. {synchronize tok.en andLLSententlalfot8 to recover froa ayntactic

error)
518. label 10:
519. .ar
520. OldCurTokIftdeJt: Inteler i
521. 1: 1ntelerj
522. tellp: LLStrirt.lj
523. LocOfAny: inteler.
HI.. bel1ft
~25. vrlte(LLL1neCount:).' - ');
52'. LLReader;

LLStack[LLSentPtr] .Top: {.., LLTop
'0

be tbe La.tChUd
of currentrhl}

10:
end;

end; ier.ee}

procedure expand; {expand DOnteminal in 8eoteotia1 fora}
var

i: lnteler;
where: lnteler;
OldTop: lnteler;

(loop counter}
{produetion belna ouaJ.ned}
{top of etack ptr before eEPanlion}

fUDCtloa ..tch(..nttndex: lnteler): tnteler;
{doe. a production whoa. lh. t8 .entiadex and who.e

.electlon eet Inc.lude. token exiat!
If .0, return index to that production a. value of _tcb;
otherwiae, .et ..tch to o.}

label10;
var

i: inteler;
bello

aatch
for 1

1f

1100p eounter}

tben

527.
521.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
5)0.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574. bello{t..rayneb}
575. whila LLStaelt(LLSeotPtr] .data..ync:bl_ - 0 do {no .:meb lnfo tbere}
576. 1f LLStaelt[LLSeotPtr] .parent <> 0 t_ {tbero ..ally 10 a parent}
577. LLSeotPtr :- LLStad[LLSe.tPtr] .pa t
571. e1.0
579. LLFatal;
580. ayaehroniae;
511. end; {te.t.yocb}
512.
583.
584. 1. {par..}
585. LLSentPtr:- 1;
586. LLYnp:- I;
587. witb LLStaelt[LL8entPtr). dara do bello
588. ProdStart :- ai08;
589. La.tChUd :- true;
590. kind:- nont.ra1nal;
591. .ync:hindex :- 0;
592. end;
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
601.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
621.

wr1teln(; unexpectedly eKOUDtered.;);
01dCarToItlndex :- LLCarToit. Talllelndex;
for 1 :- I to LLStr1D1LeDltb do t_(lJ :-
t_1l1 :- 'a'; t_[2J :- 'a'; t_(3)
LocOUDY :- LLPlnd(t_. IrouP);
repeat

1 :- LLSrad[LLSentPtrJ .data..ynehind.,.;
while.ynebclata[lJ ..ant <> 0 do belln vitb .ync:bclata[l) do

1f «LLCarTolt.Tabldodu - tolten) or (tolton - LocOf...y» and
(LLStaeltILLSentPtrJ .data.WblebCh11d <- .ent) tben belln
1f LLCarToIt.Tablelndex - LLLodOS tbeo belln

vriteln(' TYanalatlOD tenUuted.
;);

loto 1000;
end;

1f LLCarToit. Tablelndu <> OldCarToItlndu tbeo bello
vrlto(' Skipplna to ');
LLPrtSt rlD1(LLQsrToIt.Prl..tVal_);
vrlteln(; 1D 11ae '. LLL1aeCouD.t:3);
end;

1f LLStaeltiLLSeotPtrJ .data.C.adodu <> 0 tbeo bello
(ezec:ute code after .;.)

LLtakeAct ion(LL$tack. [LLSelttPtr] .data .Ca.elndes);
eDd;

if eent0 aax:1nt thenbeltlt fekip to correct aJ8boI 1n
""Uo

LLStaelt(LLSentPtr) .data.lIb1ehCbUd <> .ent do
LLSeatPtt :- LLSentPtr + I.

LLadY8DCe :- fal..;
end {1f ..nt}

elae beala {Ikip to rilbt808t Gode aDd .ilUl reduction}
whilo _t LLStaeltlLLSentPtr] .LaatChUd do

LLSentPtr :- u.5ea.tPtr + 1.
eDd;

loto10;
ond; {tben}

i :- 1+1;
end; {""Ho}

1f LLCurTolt. Tablelndu <>LLLoeIOSt.....
LL1IextToua(LLCarToIt)

ele. 'bella
vrltela(' traulation teraiaate4.');
Iota 1000;
ond

until fala.;
10: {edt polnt for loop}

eDd; ..ynchronize}

'y';

rha}

{1n1Ual18e .entfo.. to be ai08}

{Hnd location of ...y' 1nLLS"u.olTable}
for i :- 4 to LLStrlqLeaathdo

t_(1J :- . .;
t_[IJ :- 'a'; t_(2) :- ; t_[3] :- 'y';
LocOf...y :- LLP1nd(t_. aronp);

{fiD.! locatio. of elMl-of-aouree repr.HDted by
ln LLSyabeI Tabla}t_ll] :- ."; t_[2J :- . .; t_13] :-

'
.;

LLLoeIOS:- LLPiod(t_. ar_);

LLLineCount :- 0;
LLlaltlalin.;
LL8extToIton(LLCarTolt); {eall ladeal .-J.yser tbe Hrat UM}

""Uo
LLTop <> 0 do belln {derivat1on l...t f1n1a_}

LLadyaDc. :- true; {pre8u.e 1.LSeatPtr UY8DCH after iteratloD}
vitb LLStacItILLSe..tPtrJ. dara do la

ca.e ltiDcl of
Iroup. literal: he,iD

1f TablelndoK - LLCarToit.Tabld_ tben belln
attribute :- LLCu.rToIt.attrl_te;
LL8eKt ToIten(LLCarToIt);
ond {d.o lf}

dao if Tabldndu -Loc:Oflhall tben belln
{do _thinal oad

o1ao 1f _t LLStaekI LLSeatPtr) .LaatQaUd tben
1f LLltaeltlLLSeatPtr + IJ.data.lt1nd -

pateb t_
LLTaitektion(LLStaelt I LL8entPt r + I) .data. Caae Index)

el.. teat.J'IICh
el.. t..taJIICb;
eDd; (,roup, Uteral)

ftOll.terwinal: .KP8OCI;
~UOD: LLTalteAetloa(Wtaek (LLSentPtr I.data.e..el..dex);
patch: ;
eact; {ea.e}

:- 0; {a..U8e failure aDd re.et if auc.c...ful}
:- .entindex to LLProdSize do with productlon.U} do
Ut. - lentindex tben {production baa proper lb.}
if (LLCurTolt.Tablolndn 10 .eleet) or (LoeOf...y ln adeet)

belln
utch :- 1;
,ota 10;
ond {if LLCurTolt}

elae
elle

loto 10;
10: {e_rloney edt polot}

ond; {..,ebl

bello {npaod!
where :- ..tch(LLStackILLSentPtr) .data.ProdStart);
if where <> 0 thenwithproduction8(vbere).0

{rho of new produetion vill be plaeed ln U.t}
if cardrh. > o chen beain

LLadvance :- fal.e;
Oldtop : - LLToPi
if LLTop + cardrh. > LUlaxStack then Mlln {oyerflov}

vrlteln(' Internal atack. overflow. I.ecoapl1e .lteletoD after' .,
incr...1na con.tant LLMaxStack');

LLFatal;
end;

for i :- 1 to cardrh. do 'belio
LLTop :- LLTop + I;
witb LLStaek[LLTopJ do belln

parent :- LLSentPtr;
{put data into children froa the aelected production}

data :. Rb.Array[rb.+l-IJ;
LastChlld :- falae;
case data.kind of

action, patch. literal. sroup:;
nontet81nal:

Top :- OldTop + cardrh.;
end; {caae}
ond; {with LLStaelt[LLTopJ}

end; itor 1}
turk rilhtao.tchilda. the laat}

LLStaclt{LLTop].LaltChtld :- true;
{.ove LLSentPtr to the fir.t nev child}

OldTop + 1;LLSentPtr
ond {1f)

else
else

testsynchi
end; (eKpand)

24

629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.

; (withI
11 LL84nae. tllea belia

{Piai.IIed with ellu...t LLSuelr.(LLSe..tPtrl.
Mo.. OQ to nest DOcIe 1n tr..}

72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
101.
109.
110.
111.
112.
113.
114.
115.
116.
117.
111.
119.
120.
121.
122.
123.
124.
125.
126.
127.
121.
129.
130.
131.
132.
133.
134.
135.
136.
137.
131.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.

8c:tl00, patcb: ()

aDd;

prnd
-

{. prnductl""1
record

line:IDte'8r; {liD. Quaber whereproduction Hliu}
lha: lat_r; {lDdex to SyabolT.bl. .atry for lha of prndl
rh8: aOftDeli (1 Into 'Rh.A-rra,)
Cardlha: 0 91&.; {oU8ber of rh. .leMur.}
select: laClet; helectioD let eleMnts}
ce.oive: intl.t; (el-.ent8 to be forced Into lel.etton

let by \llerdirective)
CardS.I: 0.. rableSlze; {DU8ber of .election let ele.eDtl}
null.hIe: Qulltype8; Us production null.bie?}

end;

.yabol -
record

..lue: .trl..;
ProdStart: GOGDeIi
c... klDd.: 8tyle of

DODtera1aal: (aullahIe:
literal, ,roup, actioG,

Utype.);
peteh: ()

er...;
LLSeatPtr :- LLSentl'tr + 1 i

aDd;
; {.mil. I

if LLCurTolr..T.ble1odex <> LLLoc!OS thaa LLf.t.l;
{oaly ..tched 8181n.c part of candidate, which 18 DOt . leateace.

tel'8inate par81na actIon.}
.Dd; {par.e}

belin (LLIIa1DI
readlr_; {let the Ir.-ar fr08 the "8er.}

par.. ;
.Dd; {LLllain}

bella {_I a prolr..1
LLStartTl_ :- clock. (. o.IX .)

lOOO~ln;
wrltala;
vrlt.la(-.*.* IDdof tr...8latlon. -, (clock-LLStartTl_)/I000.0:5:1.. ..cond. CPUti_ .*..-); (. UNIX*)

......

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
ll.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
21.
29.
30.
31.
32.
33.
34.
35.
36.
37.
31.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

prolr.. laaerate (input, output. LLcr.., Coutllle, V.r'tle,
ActPtle, Typeltle, 'lle'lle, LLaalect);

eu;

Cr88&atry .
record c... boole.. of

true:(table: 8tr1ac.);
fal..: (ar_r: lateler);

end;

'.nr
PriDtSelect: \00l.aa; {prlat .electioD .et. of procluctioaa1}
&rrod'ree: bool_; {any error la Ir rt}
0108: aoaael;
SyabolTable: pacIr.ed array[l.. TableSlze J of .yabol;
Ih8Array: packed arr.y[l..Ih.Slze] of IhalleMDti
CardS,.bol: DO ; {a.-bel' of entrte. 1a SyabolTable}
CardSyocb: BOIlDeI; {curreat place tn SyachD8ta arr.y betDl acldr..."}
prndlleUon: pac\ted arr.y(Lo..ProdSkeJ of prod;
'rbl.lIIa: nODDeli {auaber of rba el88eat. la all prod.)
CardProd: DODDelj {maher of productlou}
Al181aalr.a:.tri...; {Stri..Slz. bl...1
eolal..put: booleaa; (eola(1aput) 11
1: 1Dt~leri {loop cOUDter}
.pacer.: ..tofc r; {blaDlt aDd tab char.}
llDecount: GOODeI; {how _ay line.of 11' 1' have beearead}
LLaelect: fIle of char; {where ..1ectloD .et. are

priated oa re4lue. t (%a 1a Ir r)}

LLcr..: fll. of Gr88Eatry; {where coapact fORI of 11' 1' 1. kept)
'ile'lle: fIle of char; {where fUe dcl. ace .tored)
Actlile: fIle of char; {where actIon routIne. are .tored}
Coutrlle: fileof claar; {where 11'_1' d.flDed COD.taata for

lacllloion la aSLETOII &0I
{vbere 11'_1' d.fl.d "ar. for

lacilloion lD aSLITON 10 I
(where Ira_I' defined type. for

ioclu.ioD la Sl:lLI1'Otf 10)
aextact: 1ateleri (ca.. rw.ber of oext .ctioD routine)
SyachDat.: peeked .rray[l..S,.ehSheJ of .yachtype;

{where ayacbrOGlzatiolt data 1. .tored UDtll
writt.. to LLcr.. at the eDd of 11'__1' proce..tna}

Var'lle~ file of char;

TypePUe: fU. of eller;

procedure SortTable i {.ort tbe .,.bol t.ble Into ..cendlna order by
valae fIeld.}

Nay 8. 1981
Var.loa: 1.0
Author: Arthur Py.ter
CoPYrllht (e): The "Ieat. of the OaiY.roity of Callfom1a
Pv.rpo.a: kcept the apeclficatloa of a cODtan-free tr8118latlO8

Ir_r fr08 ataoclard iaput fila... _tput etther
6 or 7 fil..:

LLar_ -. proce.aeel tOnl of tbe Ir_r wldela
will he read by SKELI'fOII

LL.ar - 'a.cal ..r deelaratlou whieb will be
iacloded la SKELI'fOII.

u.c0118t - '..eal coutaat deelaratio... which will
be laeluded io alLltOll.

LLtype - Paacal type d.elar.U wb1eh will he

lacluded In SILItOII.
LULIe - '..cal ftle cleelaratl00a for proar_

atat_nt wb1cb willbe lacladed 10

alLltOll.
LLact - The Ta&ACT proc_r., iDCloded ia

&ELETOII, wb.1cb call. actl_
code aa dtctated b7 tbe Ir--.r.

LLaelect - OD reque.t (18 1. 11' 1'). fo~tt"
a.lectlon ..t.. }

lahel1000; {___rleocy t:att for UDreeo..rable error}
e t

StrlqSlae . 12;
ProdSh. -160;
SyacbSl sa . 40;

Sh. -330;
T.bl.8i&. -135;
IDdOfSource . i

{-.z l...th of yocabulary .yabolal
(-.z _ber of producU 1
{-.z _ber of .yachrou..Uoa .l_atal
{-.z _r of rhe .l_au of prnducu 1
(au: r of DOGterm.u.l.,I1teral.. ... Ir...,.)
{ead of caodidat. _rlterl

type
.etolchar -.at of char;

{iadiuta. curreDt kaowledl. of t...r prod1lCtt08 or aJllltol
18 ll.bl.}

DUllt,.,.. - (Dot.are. ..ver. aull);
lat.et - .at of 1..Tabl.Sl.ai
.triac. - pacltecl array[t..Striq:Siaej of cur;
D01ID81.O nat; {oOG-D8lative iataaer.}
poaltl.. . 1. .aax1at; {poaiti.. Iattlera}
.yachtype - {.,.ehrou..U iafol

packed record
TablaIDdax: iateser; {which lIteral or arou,!}
"Dt: DGDD8li {.mere do we 10 io .eat.ntial tona}

eHi
ItJl. -(actIon. Iroup, literal. 1IOGtera1aal, p8tch)i{llteral:. terat...lwhlcb .taad. for It..lf.

Iroop: 8 tera1nal whlcb 18 . I.nul 11'08' of .trl_.
bue .,.eacUcally ju.t . 81..1. .""1.action: actIon code

p8tcb: ACtion codecalled to rapalr 8 .yota error}

Il_at - {iDfo .bout .yabol of Ir_rl
record

SyucbIDdex: DOllDel; {for "ocabulary .,.bol. polnt. to plac.
10 .YDCbarray vbere ayacb data about tbi. .yabol t.
located; DOt uaed for otber.}

ea.aSelect: DOD881;
{for vocabulary a,.bol. thi. 18 the .yocb cocl8 LLact

I'Ddes; foractIon aDd patcb tbl. 1. tbe LLactladu}
c..e kind: .tyl. of

QODteraiaal, lit.ral, ,roup: (Tablelades:ooaaea.
lIhiehVoe.bSyabol: DOa"I);
{trad.es to .,.bol table eutry.ad relati.. coaat of

vocab .yabola on rba of production}

l.bel 10;
...r

1.j: Inteler;
ChanaeMade: boo1eani
t..,: .yabol;

belia
for I :- 1 to CardSyabol-1 do hell..

CbanaeMade :- falae;
for j:- 1 to CardS,.bol-1 do

If Syabol T.bl. (j
Iluo > SyabolT.blo (j+ II .valuo

{oEha...1
Chanaellad. :- true;

uap :- SyabolT.blo (j
I ;

SyabolT.blo(j1 :- SyabolT.ble(j+11;
SyabolT.ble(j+11 :- t..p;
if asia . j then a1l:i08 :. j+ 1
e1.. if 0:108 . j+l then a~l08
eDd;

if not Chaoaellade then loto 10
end;

10:
end;

then begIn

j;

function OrderedFlnd(newvalue: strings): nonneg;
{Plnd location of newvalue in S)'1IbolTable.
Return index if found; otherwise, return O.
A.sulaeS t.&ble 18 sorted in increasIng order.}

label IOi
...r

low, .1dpolnt, hlah: integer;
be81a

OrderedFind :-0; {presuae failure}

low:- I,
hilh ,- CardSyabol;
If (..ovv.lllo <- SyabolT.ble(h1lhl.valuo) .ad

25

173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
251.
258.
259.
261).
261.
262.
263.
264.
265.
266.
261.
268.
269.
270.
271.
m.
273.

(_alu. >. S,.bolTabl.I1_J .valu.) tbeo

while 1_ < blah do
1£ S,.bolTabl.[lov] .valu. . ne_alu. tbeo beal0

orderedPlnd :. low;
aoto 10
.ad

el.. bello
aldpolot :. (lov+blab+l) d1v 2;
with S,.bol Table raldpolot) do

if .alue > neWY.lue tben
blab :. aidpolot-I

ela. if value < nevvalue then
low ,. aidpolot

e18. belin (value -nevvalue}

01'deredPlnd :- a1dpolat;
10 to 10
end

274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301. label
302. 1'
)03. 1: po.itive;
304. beal0
305. printable:- 6

';
306. writeUioecount:),' - It');
]0]. for 1 :- 1 to Strlna:S1I:e do
308. 1£0(1) . . . tbeo
309. aoto 10
310. .la. 1f 0(1) 10 (., J tbeo wrlU(o(l]) (* ASCII *)
311. elae beal0
312. writ.('ord:

"
ord(o[1]), 3);

313. aoto 10
314. endj
315. 10: write('.');
316. eod; {prlotable}
317.
318.
319. procedure fUl1d(var Id, atrl.,o; {buUd aD Id froa 10put}
320. block: o.tofchar);
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338,
339.
340.
341. end
342. elae if 1 <- StrlqSlse then
343. Id[l) :. ch;
344. rea4eharj
345. .nd;
346. 1£ quoted theo {oUp peat clool., q te}
347. readchar;
348. end; {UUld}
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
)1),

374,

el.. if LlneLenath - LooaStr1aaS1&e - 1 tben

vrltelo(llnecount: 3, . - 1iue lo118er than
(Lo.,Strl.,S1I.-2): 3, . charact.n.

.nd; {wbU.}
1'..41111;
1f LloeLe.,th > LooaStrl.,S1I.-2 tbeo Ir.oet It}

Uo.Leneth ,. Lo.,StrlneS1I.-l
el..

LlneLencth ;- L1neLenatb+l;
CurUne(UoeLeneth) :. . ';
CurLlne(LlneLeoatb+l) :. . 0;
LineMarker ;- 0;
I1necount :- I1necount+l;
eDel;

LineMark.er :- UneMarker+l;
cb :- CurLin. ILineMarker) ;
MextOwr :- CurLine[LineMarker+l];
if LlaeMarker-LineLenatb tben

eolninput true
el..

eolninput
end; {readebar}

teat ia 1pored.');

eDei;
10,

ead;

funct10n find(nevv.lue: .trin..>: nonne,;
{find location of nevvalue 1n SyabolTable.

Return inciex if found; otherwi8e, return O}
label10;
var

1: positive;
bealn

find :- 0; {pre.UM it 18 not found}
for 1 :. I to CardS,.bol do

If SyabolTabl.!I) lu. . _alu. theobello
Uad :. 1;
loto 10;
end;

10:
.ad; IUnd}

function Print5trina(a: 8triaal): char;
Iprlnt a to LLae1.ctl

label 10;
var

i: po. it i..;
bello

PrintStr1na :-
for i :- 1 to Strina:S1ze do belio

1f 0(1) . '
. tb.o

goto 10;
vrite(LLaelect. .[i);
end;

10:
end; {Pr1ntStriaa}

procedure io..ert(var nevvalue: .trina8;
neftind: IItyle);

{insert entry into S,..bolTable}
balln

CardS,.bol :. CardS,.bol+l;
if. CardS)'8bol <- TableSize then

with S,.bolTable(CardSyabolJ do bel In
value :-nevvaIue;
Prod.Start :- 0;
kind :- newkind;
eod Iwith SyabolTabl.1

el.e bello
writeln('.yabol table overflow -- recapile Itaenerate"');
wrlteln('after increasing the constant "tableSh:e"');
goto 1000;
end;

end; {insert}

procedure DoGr r; {set the
'r

r fr08 the uler}
CODlt

LonlStrinaSlze -120;
Vat

CurLine: array[1. .LonIStrina:Size]
NextChar: char; {next character
ch: char; {current character
1: nonnel; {loop counur}
LlneLenath: integer;
LineKarker: integer;

of char;
1n 11ne frea input}
of line frea input}

procedure readcher;

tap: char;
begln

if Llne.Karker)- LlneL.enlth then belln
if eof (input) then beain

wrlteln(llnecount: '3.
.

-- unexpected end of input');
aoto 1000; {eaergency exit}
end.;

LineLength :- 0;
vblle not eoln(1nput) do begin {read 1n line}

LlneLenlth :- LineLenlth+l;
reed (t.p);

{only fUl up throuah LonaStrlD1S1ze-2 chars.lnce
leu two .lou are filled with blanka later}

If LlfteLulth (. LoneStrinlSlu - 2 then
t;urLlneI LloeLe"lth) ,- tap

{COUDt eola 1n line}
(..ke eola a blank)
I_k. NextCbar of laat char a blan1t1

falee;

function printable(s: .trine.): char;
(print I if printable; otherwise print ord(a)}

10;

nr
i: O.._nnt; {ntaber of char. 1n id}
quoted: boolean; {i. tbe 1d lurrouoded by quotel!}

bella
id :- AllBlanu;
1 :- 0;
if ch -

....
readcbar;
_ted :.
ead

elee
quoted :- falle;

wIle «not quoted) &ad (oot (ch 10 block») or
(quoted aad (cb 0 » do bealn

1 :. 1 + I;
1£ 1 . StrlneS1ze+1 tbeo beal0

vriteln(11oecount:3, . - 1,.\101 be.1DDiGl nth
"1d, . exceeds _xiaua pemf..ible leqth of ');

writeln('
"

StrlqSlze:2. '. Oa.ly fir.t
" 5tr1aa5i&e:2,. characterl ezaained.');

thenbea1n {iet 11 .urrouaded by quotel - jUlt l,Dore the.}
10Up peat bealnnlne quot.}

troe

procedure .k1plpace;
bealo

repeat
while cb 1n .pacer. do rea4char;

11. (ch. '(0) aDd (NextCbar . '.') do bealn {aUp c_atol
readcbar; readchar; {.kip palt '(" aad '*')
while (ch <> '.') or (lextChar 0 ')') do r.adcbar;
readcbar; readcbar;
.nd

untll DOt (cn in llpacerl);
end; (.kipapace}

{akip c~1it., apaces and taha}

procedure declarationa; {process the dec:IaratioDI}
{procedure reaci. &r__r deta fr08 f1rlt char up tbrovah
and lncludlna II. cb will equal char follov1na IX when
procedure tem.lnatea.}

nr
tellP: 8trl...;
.elector: char; f 8ecoDd character of dcl -

8peclUe. type of declaratIon}
{neat tokenIn line}neat: at r1..;

26

375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.

fllGetion tlratdel(eaacUd.ate: 8trl,,8): bool.ao;
{baa the aadldate bee.. daclared yet?}

476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522'".
523.
524.
525.
526.
527.
528.
529.
530.
BI.
B2.
533.
534.
535.
536.
537.
538.
B9.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
5B.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.

re.eur; {akip put ..lector}
r t

ca.. lMiectol' of
'e': vrlte(Coaatrl1., cb);

't ': vrlte(Type'11e, ch);

'.':1II'It8(".1"11., cb);
'f'; vrlte(Ptl.'11e, ch);
ead; {c...}

if eolall1put then
ca.. Hlector of

'c': vrlteln(Con8t'11e);

"t": writel..(TypelUe);

''fI': vrltela.(VarPl1.);

"f
0, wr1tela(,U.,U.);

eDel; {c...}
r..ckbar;

until ch - 'X';
ead

el.. beliD {bad a.lector}
Error'rH :- fal..;
vrltela(lioecouat:) . ' - bad ..lector'" ..lector,ow. Sklpp1na to _:st "1"');
while cb 0 'X' clo readcllar;
.ad.

ead
until ..lee tar . '1';

readehar; (aUp put °XO)
ifaxlO8 . 0 thea beliD

Irrorrree :- fal..;
vrlteln('You fOflot to declare 8. 0108 for your .1' 1'. ');
eDd;

eDd; {deeter.tiout

...
1: iat..er; {loop counter}
continue: boolean;
where:DODD.,;

bello
fir.telcl :- true;
wher. :- fiad(caDdidate);
if where > 0 than belln

fir.tdcl :- fal..;
vrite(1in.count: 3,

' - ');
c... S,.bol Table [wh.r. J.klnd of

DOnteraiul: vrit.('Doat.ra1nal ');
literal: vrlte('literal ');
Iroup: vrite('.roup ');
ead;

vrit.('"');
1 ,. I;
continue :- true;
whil. continue do be,in

if 1 - Strin.Size then
coatinue :- false

al.. if candidate [i) - '

,
then

continue :- fal.e
el..

writ.(e.adld.te (11);
i :- i+l;
ead; (whUe)

writeln(
'"

already declared. Second del tgnored.');
Error Free :- false; {fatal error}
end; (if I

ead: {f1ratdcll

bell.. (d.cl..aUona)
CardSyabol :- 0; {ao .18bol. declar.d yet}
.paeera :. [' '. ehr(9»); (bla"" aad tab) (0 ASCII 0)
exl.. ,. 0; UalU.lly exl.. 18 ..ull)
teap :- All.la".;
t (1 J :. !adOfSouree;
iD8ert(t_p, Iroup).

{iuert "..y"}
t (1] :.

'a'; t 121 :. '..'; t [3] ,. ',';
10..rt(t_P. Iroup).
revrite(Var'il., 'LLyar.l ')i
r lte(Typell1.. 'LLtype.I');
r lte(ll1.,I1.. 'LLfI1..1'>:
r.adcbar.
skip.pace; (ftad firat aoo-spac:er 10 clc:l aect1oa)
if eh <> 'X' tbea belin

Error'r.e : - f .la.;
vr1teln(I1Dec:ouat: 3,

' - should Mlin del witb "%".'
,,

Sklppll11 uatl1 "r 18 fooad');
whllech 0 'I' do readchar;
ead; Uf eb)

PrlatSelect :- fal... (pr no .election Ht printout)
r t {proce.. one elecl.r.tion at . t18e aIItil ead of clc:la}

readchar; {read aelector}
..lector :- cb.
If ..l.etor <> 'X' thea bella (oot.ad of dcl ..eUOII)

if .elector 10 ('A' ..'Z'I t_ (eballle D.C. to l.e.)
..lector :- chr(ord(.elector)+32); (* ASCII *)

1f selector - '.' thenbelin (prlDt aelection Hta}
PrintSelKt :- true;
revrit.(LLa_leet); {prepare to write fOl'88tted Ir_r}
r t

r.adcbar
untll cb - 'I';
.ad

elae if ..l.ctor la [~a'. '.', 'l~. 'a') tMa be.ia
{aot for II r.i. llcoaat.i or lltype.1}

re&dcbar; {.kip put ..lector)
.klp.pace;
repea t

fillid(a.ext. .pacera);
if firatdcl(a.xt) tbea

C4.e ..lector of

'0':
be,ia

inaert(oe:a:t. QOoteralnal);
S,.bolTabl.[fiad(..."t») .Dull.ble :. ur.;
eact;

'a':

(la...t .ad of eaadldet. .,.bol)

(0 U1IU 0)
(0 U1IU 0)
(0 OIIU 0)

if ..i08 - 0 tbea belln{del0::1... for fir.t tl_}

in.art(lUtxt. noatera1aal);
SyabolT.bl.{fiad(..."t)] .null.ble ,. uur.;
o:i08 :- fiDd(n..t);
aDd

.l.e {axi... beina redaclared}
writeln(liaacouat: 3,,

- .:a:i... declar.d for lecoad
'ti_. Second del l,DGred.').

iftHrt(aext. Uteral);
ia.ert(ae:a:t. ,roup);
{ea..'

'1°:

'I':ead;
.kip.pace

until ch - 'X'
.ad

.1.e if s.lector In {'f~. 't'. 'c~1 then Maia
(it ia . del for Inclu.ion in U..r, LLtype. LLfl1e,
or LLc:oft8t}

procedure Do'rocluc:tloaa;
{Procedure a..u.ea that cb i. Ur.t char after II. It read.
up thr h ne"t ZI. eh willbe aeeoad X)

procedure DoLeftBeadSlde; (let lhe of praducUoa)
nr

wher.: DOIIIIeI.
te8p: .tri ; {atriac yal.. of Ih8}

bellD with praducUoa[CardProdl do be&10
akip.paee; (.Up IDiU.l bl)

liae :- liaec:ouat;
lh. :- 0; {al_.,a ...ip 1ba. yalue, eyenIf it I. DOtle.aU
if eh 0 '.' tbeo bella

fUl1d(t_. apaeen+{'.'));
where :- Ordered'11M1(t..,>;
if wII..e > 0 tbea bello

if S,.bolTable[wher.).kiad 0 oOllterat...l thao bello
Irror'ree :- fala.;
writela(printable(t_,),

'
.bould he a noat.ra1ul~)

ead
elae if SyabolT.ble[where] .PradStert . 0 thea

(fint alt the for lhe)
Syabol Table [where 1.PradStart :. CardPrad

elae be,iD
Error'ree :- tal..;
vrlteln(priat.bl.(tellp),

'
.bould not have seco.' ,,

.et of produc:tloaa.');
ead;

lhe :. where
ead

el.e beai.
11'1'01"1'.. :- falH.
vrltela(prtatable(te8p),

' 1. uadeclared.');
ead;

aldp.pace;
ead (if eh)

ela. if CarclProcl> 1 then {not tbe firat producttoa}(uae 1he of pr..10u. production)
Ih. :. praducUo..ICardProd-ll.lh.

.l.e M,in
Error'r.. :- fal.e;
writ.ln(llaecount:], ' -- rirlt production should',

'haye explicitri,ht-bancl aid..');
.Dd;

if eh 0 '." tbe.. bell..
teap :- oUlllank.;
teap! I J :. eh;
Errorrree :- fal.e i
vrltelo(,rlotah18(teap) .

'left-band ald. of

{illa.al fol"8 of production}

fOUDd, but
"."

expected after
production')

ead
el.e

re&dcbar; {.kip p.a.t -}
akip.pace;
.ad; (with)

ead: (DoLeftHaadSlde)

procedure DolilhtBaadSid.; {.et the rbs of the production}
nr

TotalVocab: DOane,; {how ..ftJ rha aonterM and tel"88 ..en 10 fart}
ft88e: atriaa.;
ProdS,.achlndex: inte.er;
ProdC..c$clc(:t: Lntesct';

procedure CopYAction; {copy actIon, patch. or synch code to LLact}
{vhen CopyActton returns ch will equal clo.inS brack.et}

27

577. ftr

571. 1: la.t...rj
579. _: bool..a;
580. poait:iate,u; liat..er...lueof a iD .a}

5'1. .,i. witb produ<:Uo.[CardProdldo be,iD
582. ...tact:- Destac.t+l;
583. _rr.y[Thialh.] .CaeeSelect:. .ntact;
584. wr1teln(ktrl1e.

~ I. aes-tact,': M,ln');
515. whUe ch <> '}' 110

(copy r_Uee'
586. if ch . '$' the. belh
517. if .01.laput then itda(AetrUe);
518. rea4charj
589. if cb iD ['0' .."'I thea be,l. 1$. fom}
5to. po.it :-0; fdetera1ne ..1U8 of tDteler}

5'1. whilecb 1. ('0'.. "'] do beala
592. podt :. 10.po.it + orll(cb)-orll('O');
593. if .olal_t the. writela(Aetrile);

5'4. readchar;
595. eed; (while}
596. if podt > 0 the. (...ber actually foll_ $I
597. (replace etrtoa 1n action rout1_)
598. if po.it > TatalVoc:eb+1 the. belia (ill.,.l .a}

5". writd.(linec:ount:3. ' - "600. '$', pollt:1.
'
referlto l,uol Dot to '.

601. 'ito ~l.te rilbt. ');
602. Zrrorrra. :- f.l..
603. eod
604. el.. if po.it .. TotalVocab+ltheetrefer to MJl:t~.

.y8IIo1l
605. write(AetrUe, 'LLSt.eIt [LL8eetPtr+I)..ttrlbute')
606. .1oe _,iD (walk beck to Hod r1&bt _I> .y8IIo1l
607. lloee :. faloe;
601. 1 :. 0; (_ f.r beck_ h...e alItad}
60'. whileeot 4088 110 _liD
610. (walk hock oee _e o...r for eaeb .y8IIol
611. followi.. tb. oee _ ..t.}
612., i :- 1+1;
61). if IhaArr.y[Thl.Iho-1j.k1Dd 18
614. (eoeterwl.eal, literal, ,r_pl thoa
61S. if lhaArr.y[Tb1.Iho-l) .lIb1ciaVoc:ebl,.bol . poait then
616. doae :- true;
617. .od; (whil.}
611. wrlU(AetrU., 'LLStack(LLSe.tPtr-',1:2, .).attri t..);
619. .od (el.. _Ila}
620. .10. {ud.. to attrl u of lbo}
621. wrltelo(AetrU., 'LLStack(LLStaelt(LLSe.tPtr) .pareat) ..ttrlbut.')
622, ead lif cb io ('0' ..'9'])
623. d.. boll0 {ju.t writ. . .od ...at cbor}
624. it.(Aetru.. '$');
625. wrlt.(Aetru.. ch);
626. writeln(l1_count:], I _ I,

627. 'v.rnl.. - $..bolllled 10 (... } r_tl);
621. if .01.10pot the. wrlt.l.(AetrU.);
62'. if cb - '('

tbeo
630. vrltela.(11DecouD.t:3,. - ,
6)1. 'v.rnl.. - { _lIded 10 (... } r_Uo.');
632. readchari
6)3. .011; (eae}
6)4. oDei lif cb}
635. el.. bea1a. {not a 8pecial character - juat copy}
636. wrlt.(Aetrile, cb);
6)7. if oolo1nput thoo wrlt.la(t.c:trile);
6)1. if ch - '(' thon
639. vrlteln(lineeount:3, '- ,
640. 'vard", - { o.beddellln { ... } routla.');
641. readehari
642. oDd; {eloe}
643. If eolninput then vrlteln(AetFl1e);
644. wrltelo(ActrUe);
645. vriteln(ActFlle,'
646. end; iwith productlon}
647. end; {CopyAc:tion}
648.
649.
650.
651.
652.
653.
654.
655.
6S6.
657.
651.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.

66'.
670.
671.
672.
673.
674.
67i.
676.
677.

eod; {', o""tact. '
I');

procedure DoSynehronlzat ion;
label10;
..r

nue: atrina'; {token where lynch take,place}
polit: nonnee; {polition in produ~tlon to recover to}

Me in with production[CardProd] do beein
readebar; {sk.ip palt .}
if TotalVocab >- 1 then

{synch info doe, DOt increa.. Cardlhl .0 Cardlhl
8t111 haro the value it had before lynch info
va. encountered}

if RhIArray[Thhl.h.l.k.lnd in [nonteralnal, croup, 11teralJ then
IhIArray ITblolh.) .Synchl

od""
:
-

CardSyncft+ I
el.e beain

ErrorFree :- fabe;
vrl teln{ 11neeol.int:3,

' -- Synchronlzation Info
'8Ult follow a vocabulary .,.bol.')

{proee., Iynchronlzatlon Inforaatlon}

oDd
elae {lynch precedel aU V'ocab ,,.boh}

ProdSynehlndex :- CardSytlch+l;
repel t

.kip.pace;

f1111dCn.-e, .pacer.);
CardSynch :- CardSyuch+l; {SyftchDeta w111 be .tored here}
SynchData{CardSyueh) .TahlelndeJl: :- Ordered'lnd(naae);

If SyaehDataICardSyaeb!.T.bloInd.. - 0 theo bello (uodedarecl)
vrltela(prlatable(u.e), . 1. Uluteclaru.');
ItrrorPree :- fal..:

671.
679.
680.
681.
682.
683.
684.

eDd;
.kip.pace;
U ch <> '-'tbea beala

DaM :. AlIBl.ak.;
_H] :. cb;
I.rrorpr.e :. falae;
vrlta1D(prlata'b1e(Q.88II!),

'
fouDd 1Iut expect"

af tel' token D88e.');
whl1e cb 0 '}' do ra.debar;
loto 10;
eod

alae readehar; ilUp ,..t -}
U cb <> '>. thoo bello_ :. Allllaoko; _Ill :. ch;

!rror'ree :- falae;
wrlteln(priot.b1e(DAM),

'
foaM ilut ").. ezpected .fter ."');

wh11e ch <> '" 110 roadchar;
loto 10;
eod

a18e raactc bar;
IUp.pace;
poalt :- 0; ideteraine value of D\8ber}
wh11. cb 10 ['0'.. '9') 110 bello

po.it :. 10.pooit+ ord(cb) - ord('0');
r..dehar;
ead;

U pooH > 0 rhen belio
(poait include. only oonter-. aDd ter-. -

TotalVocah baa the current DU8ber seeo)
if (po.it < Tat.lVoc:ab) thea

bello {ille,d to beck up}

!rrorPree :- fal.e;
wrlteln(11aecouat:3,

' -- ayac:bronlzation
'.'_y DOt rel\8e

"'to the left of .yabol where error occur.');
.od; Uf _it <}

SyaebDot.[CarIlSyncb] ..eat :- pooit
.ad Uf poalt »

elle 1£ ch - '.'thenbella ilkip palt reltof rh8}
SynchData[CardSyacbJ .aeGt :- ..not;
re.debar;
eod

el.a bella
I.rrorPree :- fal.e;
vrlteln(prlntable(allM),

,
fOUDd but ".. or 10tt.er expect"');

vbl1e ch <> '}' do re.debar;
Iota 10;
end;

Ikipapace;
if ch - ',' then re.dchar {c~ aepar.tea cl.uaea}
elae 1f ch - ';'tbenbea1D {"clean up. code followa}

readcbar; {akip pa8t .ea1.colon}
CopyAc:tioni {copy code into LLact}
if TotalVoc:el>

-
0 the. (.yncb cod. belloo rb.)

ProdCa8eSelect :- Dext.ct;

eall
olae U cb <> '}' thoo bello

Irrorrree :- fa18.;
vriteln(print.ble(ftA8e) I 'foUDd but C0888 expected
after clauH.');
while ch" <> '}' do r..debar;
loto 10;
.ed

UDtil c.h - '}';
10: r.adchar; (Ikip pa.t c1011q brace)
ood; (witb productioa}
CardSyaeb :- CarIlSyncb+l;

(."" clod.. oyncb d.ta)
SyncbDot.(CarIlSyaeb).Tablelodu :- 0;
SynebDot.(CarIlSyochl t :- 0;

e'Dd;{DoSyuchronlzat1oo}

615.
686.
617.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.
698.
699.
700.
701.
702.
703.
704.
70S.
706.
707.
701.
70'.
710.
7U.
712.
7U.
714.
715.
716.
7J - .
71~.
71'.
720.
721.
722.
723.
724.
725.
726.
727.
721.
72'.
730.
731.
732.
733.
734.
735.

736.
737.
738.
73'.
740.
741.
742.
743.
744.
745.
746.
747.
748.

74'.
750.
751.
752.
753.
754.
755.
756.
757.
751.
759.
760.
761.
762.
763.
764.
765.
766.
767.
768.
769.
770.
771.
772.
773.
774.
775.
776.
777.

prKedure DoSpeclalCoc1e; {proce.1 an 8et1011. patch, or .yach rout1ae}
bell.

readcbar; hk1p pa.t open bracket}
if cb - ',' tben

DoSyachron1c8tlon
el.ebelln {patch or actlon}

witb product1on[CardProdJ 110

If Thi.n. -Ih.S1ze then belin
vr1teln.(llnecount:3, . - 80re r1lht-haod alde',,

ele8eDt' 10 productlol1l tbaDli.it - '. 1ha51ce:4);
vrlteln(' Ibtcoepl1£ "Ieurate.p" .fter lucrea.ioa IhaSlze'};

loto 1000;
eDei

elle bella

Cardlb. :- Carlllbo+l;
Thiln. :- Thi.1h8+1;
with Ih.Array(Thiln.J do

if ch - 'p' tben bello {patch for 'YDCtac:tlc error}kiad :- patch;

roadchar; 101<1p
P"t

p}
eod {if cb}

elle if ch - '.' tbeo belln (nonaal actiOD code)
klDd :- 8ctloa.;
r..dchar;
eod lell. if cb)

el.e belta
wrlteln(llaecount:). .- 11le..l ape:clfler .',

cb. '.10 (..I cod.. A.._ it 10 oct1oo cod..');
kiDd :- .ction;
end; {with}

28

778.
779.
780.
781.
782.
783.
784.
785.
786.
787.
788.
789.
7'JO.
791.
792.
793.
794.
795.
796.
797.
798.
799.
800.
801.
802.
803.
804.
805.
806.
807.
808.
809.
810.
8U.
812.
813.
814.
815.
816.
817.
818.
819.
820.
821.
822.
823.
824.
825.
826.
827.
828.
829.
8JO.
831.
832.
833.
834.
835.
836.
837.
838.
839.
840.
841.
842.
843.
844.
845.
846.
847.
848.
849.
850.
851.
852.
853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
863.
864.
865.
866.
867.
868.
869.
870.
871.
872.
873.
874.
875.
876.
A77.
878.
879.

CopyActloa.;
r..dchar; {altip pe.t clo.tlLl brace}
aDeli {el..}

aad; la18al
aad; IDoSpeeI.lCodel

if cardProd > ProdSlze then _Iln
vrlteln(11necount:3.. - too _oJ production..');
vr1teln(' tecc:aptle "Ienerate.p" with ProdSlze tncr d.'};
goto 1000;
endi

productton(CardProd) .nullable :- not.ure;
DoLeftRaadSlde;
DoR1lhtRandS Ide;
skip.pace;
ead; Iwhilel
{DoProduct 10n.}

180.
881.
882.
883.
884.
88S.
886.
887.
888.
889.
890. end;
891.
892.
893. bel In IDoCr_d
894. LlneLenlth:- 0; {lnH taUy ltne ls eapty}
895. LineMarker;- ..xlnt; {force the read ins of the first input line}
896. linecount:- 0; (no 11nell read yet'
897. revrite(ActFUe. 'LLAct.l'); (* UNIX .)

898. vriteln(ActPt.le. procedure LLTakeActlon(Ca8elndex:integer);');
899. (.at

."
for ca.. .~t)

tOO. vrital..(4etrila. bella');
'JOI. vrita1a(4etrlla. ca.. Ca.aIDdu of.);

902. vrIte1a(4etrile. 0:;');
to3. declaratiou;
904. SortTable; laon tbe .yIIbol tabla I
905. DoProducU ;
906. for 1 :. I to CardSyIIboI do wItb SJ8/IolT.ble[IJ do
907. If (ProdStart . 0) aDd (It1Dd . _tar.Iaal) tbea belh
908. vrlteln('lIoatera1aal ". ya1M, . doe. DOt .ppear OD tbe');
909. writ.ID("left-haad-81c1e of aDJ production.");
910. Errorl'ree :- fal..
911. end;
912. vritel..(4etrile);
913. vrltelD(ActI'11e," eM; (c...}');
914. vrIte1a(4etrlle. eDd; ILLTaiteAetl');
915. eDd; IDoCr_r I
916.
917.
918. procedure Co8pu.teSelectlonSet8; {coapute ..lection ..t of .ach productloa}
919. latore 10 ae1ect field of producUoal
920.
921.
922.
923.
924.
92S.
926.
927.
921.
929.
9JO.
931.
932.
933.
934.
935.procedure Matrldlult(val' I, r, r.8ult: _trlz).
936. {_lUply ..trIeea 1 .Dd r yieldI... .e...al
937.
9Ji1.
939.
940.
941.
942.
943.
944.
94S.
946.
947.
948.
949.
950.
951.
952. ...d;

953.
9S4.
9SS. proeed...e FlndIlull.ble;

9S6. l.bel 10;

9S7.
9S8.
9S9.
960.
961.
962.
963.
964.
96S.
966.
967.
968.
969.
970.
971.
972.
973.
974.
91S.
976.
977.

'la.
979.
980.
981.

type
_trIa -packed .1'1'.,[1.. TableS1ae] of IDt8.t;

..r
t18er: 1'..1; {lteep track of t1_ uaed for cC8putatlon}
AllTet'88: lat8et; (8et of all literal. aDd aroup. - the terw.1ul.)
1,j: tnteger; {loop couater}

81*: ..crt1l; {bold. "bellD8 directly witb" relatloD or181ul1y
."...tuaI17 beC08e8 __.lH vttb"relatloa)

IDEO: ..crlx; {hold. "I. direct ead of. relatloD ori.toally
rf'eatually beC0888 "I. ead of" relation}

{hold. "i. followed directly by" relation
which eveat...lly beC08e. "la followed by"
aad then "e:neoded t. followed by"}

..r
i,j,lt: inteaer;
te8p: iot o!ti

bella
for I :. I to CardSJllbol do (IaitIally It 10 eaptyl

re...a(1) :. [I;
for j :. I to CardSJllbol do bellA {j I. the eol_ Indexl

teap:. ();
for It :- I to CardSJllbol do lboaild j-th eo1_ of ..trlz .1

If j I.. .(It) thea tellp :. teap + (It);
for 1 :- I to CardSJllbol do (I 10 the row lndexl

If (l11)*te.p) <>
() then

{i-th cow and j-tb colU8ft yield non-e.pty product}
re...ltl1l re...lt(1) + (j];

end; (for jl
{",,«I_ltl

{coapute nullable nonterainah and productio118}

oar
chanae: boolean;
1.j: inceaec; {loop counters}

proeedure DoSelectiOQSet~ fadclltioaal ..lection .et info 1. ,roee.Md}
(Zu.. aut088tlcally c08l*t.a ..lection .at for
each produc.tion. Bowe r, _I' can add other
el nt. for error proce..laa .uch ,I. "any", or
be can tell Zuaebow to reaol.e .election Ht
conflict.. }

oar
~: .erina.;
where: nonnea;

bello.

(aelecttoD ..t eI_nt}
{location of 1I88e in SlllbolTable}

belln
chanae:- f.l..;
for i :- 1 to CardProddo with productlon(i) do

If Cardlh. -0 thea bel In
SJllbolT.ble[Ih.) .null.ble
nullable :- null;
chanee :- true
ead; {If Cardlh. . O}

vbile chana. do Main {add to 11.t of DUll.ble.}
chanae :- fal.e; {au.t ..ke a chanae each teeration}
for 1 :- 1 to CardProd do beain with productlon{ 1J do

if nullable -notaure then Mlin
for j :- rha to Cardl.h.8+rb.-l do with Rb.Array[j) do

c..e klDd of
Iroup. liter.l: bealn

DUllable :- 'Gev.r;
aoto 10;
end; IlfOllp,l1teral/

actlO11, patch: i

nonteraine1 :
ca.e S,..bolTable(Tablelndex).nullab1e of

Dull;

{cur.or point. to .1' trblch stlnal.be.lnnlq of .electloa..~ialo}
r.adchar; {.kip pa.t'%'}
.kip.pace;
while eh 0 ';' do with prodw:Uoa[CardProdl do belin

flllId(.pacer"(';'»;
r. :- OI'deredPID111(~);

If where> 0 the.. 1e1_at he. beea declared I
If SJllbolT.ble[where).It1Dd Ia [Uter.l. Iroupl t_

Iel_at 10 . ter.ID.e11
reaolv. :- re8Ol.8 + [wbere]

{addele8entto re.ol..e which en.ure. tbi. .1__t
viII eod up in s.lectionset of tbi. prodac.tloa ...
Doe 1n .electioa .et of alternative produceioaa}

el.e bel in {elellent i. not le.al selection .et ...ber}
ErrorFree ;- fal..;
vrlteln(prlntabl.(U8e),

'
should be a tera1ul.')

.ad
.l.e bel in {ele8eDt has !lOt beeu declared}

ErrorPree :- fal.e;
vriteln(prlntable(~).

'
i. undeclar.d.');

eDd;
.kip.paee;
ead; Iwithl

end; {DoS.l«etiodet}

bella wIth prod..etlo..(CardProdl do helia IDoll1lhtRaadSId~ I
resolve :- (]; (DO re.ol"anta UDtil found on rh. of productioa)
CardSel :- 0; h.lectioa Ht ele8ene8 not cOllputed y.t}

TotalVocab :- 0; {no QOD.teru or teraa seenyet}

{haven't .eea .yneh code applicable to entire rb. yet.}
ProclSyncblndll!x :- 0;
ProdCaseSelect :- 0;
rb. :- 'D11.lhril; {belln storina rha el...nt. after l..t

ele8eat of pre...iou8 production}
Cardne :- 0; {IIO rluJ el...nt. yet}
vMle ch <> ';' do belin (ha n' t reached ead of rhe yet}

if ch - ' {' tbell {action. patch. or aynch routi.}
DoSpecl.1Code

else if cb . '%' tben {aelectioD aet info}
DoSeleetloaSet

e1.e If Thlolhe < lheSiu the.. bella laonoal .r-boll
Carda. :- Cardlha+l; {.DOthar rba ele8eat}
Thien. :- Tbl.lha+l;
TotalVocab :- Tot.lYoc.ab+l; {anotber tem or QOIttet1l}
with Ih.Arr.y[Thlolhel do be8In

VhichYocabSJ1Ibol :- TotalYoc.ab;
filUd(.pacer..!';'»;

bre D.O.yach Iuo ""tl1 fouadl
Syncblnclex :- ProdSynchlndex;

{pr GO sJDCh cl.an up code either}
ea.eSelect: -ProdCaseSelece;
T.bleladu :. OrderedP1Dd();

if Tablelndez > 0 tbea
Itiad :- SJllboIT.able[T.bletndex).ltlnd

el.. beain
Error'ree :- fal..;
wrlteln(print8ble(DaM).

'
i. undeclared.');

kind :- aODterainal; {treat a. a nonterw.iul aiDee thi.
18 808t general vocabulary cl }

.ad
ead; {-.lth}

end {el.e}
el.e if Thi.n. -Ib8Si&e then belin {prods too lona}

writelnOinecount:),
' - lu.aber of right-hand lide'.,

elellent. in production. loncer thao l1a1t -
"

IbaSize:4);
vr1teln(' IecOl8'P1le Wleaerate.p" after la.cre..tq IhaSiae'};
loto 1000;
end;

skip.pace; {akip to ne:at rh. el...nt}
ead; {vbile}

readchar; {skip pa.t ';'}
ead; (withl

end; (Dol1lhtRaadSIde)

bealn {DoProduction8}
nextact :- 0; {no actions yet}
CardSynch :- Oi {no synch data yet}

CardProd :-Oi {ao producttoft8 yet}
ni.lbs :- 0; {no rh. eleaents y.t}
vriteln(' All declarations processed -- Ca.rdSy.bol:3,

. a.,..~l..');
slr.1p8pace;
while (eh <> 'X') o. (MutCher <> '1') do belln (.nother producUoal

Cardprod :- CardProd+l;

29

r: _110
nullable :- oe r;
pto 10;

; Ian.. I
DOt.ure: ,oto 10;
18111: ;
ad; lcue S7"1>oIT.blel

e"'; le.oe U"'Inullahle :- null;
S7"1>oIT.ble[lha) .aull.ble :. Dull;
chana. :- true;

; IU aul1ebl.I
10:; {.arl, .xit for loop I

; {for 1 I

e"'; {vb1le eba",.1
In_ll.blel

982.
983.
,...
"5.,...
"7.,...
",.
'90.
991.
99;.
993.
994.
995.
996.
997. ;

998.
999.

1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008. e"';
1009.
1010.
1011. procedure Iefl.dY..(var aT: ..trta);
1012. {coapute refleIt"e tra.tttve cloaure of at}
1013.
1014.
1015.
;016.
1017.
1018.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026,
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037,
1038.
1039.
1040.
1041.
1042. v.r
1043. 1: Int.l.r;
1044. _r.: bteau;
1045. tnp: .trI",.;
1046. bello
1047. t_:. Alll1eolta;
1048. tnp[lJ ,- IDdOfSourc.;
1049. ¥bere:- OrdereclrI"'(t_);
1050. for 1 :- I to CardS7"bol do
1051. Uf '7"1>01 18 .t tbe eDd of tbe ...108 t_ _Of Source
1052. 18 It tbe of '7"bo1l
1053. U ...108 10 lEO[1J tbea
1054. !IFI(I] :. EIn[IJ + (_raJ;
lOSS. .ad; {buod..lo'ollow.O,I
1056.
1057.
1058. proc"ure lo'ol1_.,(VIr In, lEO, III: utr1l:);
1059. {z 18 foll_ bp 7 U rf 18 a .ubetrI", of _ ..ot.oU.1 fo..1
1060. ..ar
1061. t_: utrIa;
1062. beliD (IdodOf . Is'ol1_4I, . lelIo.VIthl
1063. I18trI"""lt(IEO, In, t_);
1064. I18trI_It(t_, III, In);
1065. .ad. I Is'oll_',1
1066.
1067.
1068.
1069.
1070.
1011. beliD
1072. {pre 110 1. 01'1,1..11, "t. direct of" relatioa}
1073. leflnTr.o.(IEO);
1074. ; (IdadOf)
1075.
1076.
1077. proe"ure 18DlrectllMlOf(y.r 1110: _trla);
1071. (. 18 tbe dIr.et of C U tbere 18 . praducUoe
1079. C -) ¥bere . 1818I11.blal
1010. I.bel 10;
lOti, fir
1082. I,J: Iat_r;
1083. _II.

fUDCtioD8othll.ble(lDdez:DOIIDI!I): boolean.
U. S7"1>oIT.bl.[IDdu).v.lu. oull.bl.!)

bella ..Ith S7"boIT.ble[I"'n) 40
caae kiDd of

DODterainal: if DUllahle . null then Wotlullahle
el.e IotNull.ble :- true;

literal. ,roup: Iotlullahle :- true;
eDdi {ca.e ILiDd}

{lIotRull.bl.I

:. falae

1084.
1085.
1086.
1087.
10...
1089.
1090.
1091.
10'2.
1093.
1094.
10'5.
1096.
1097.
1098.
1099.
1100.
1101.
1102.
1103.
1104.
1105.
1106.
1107.
1108.
110'.
1110.
1111.
1112.
1113.
1114.
1115.

1116.
11l7.
1118.
111'.
1120.
1121.
1122.
1123.
1124.
IUS.
1126.
1127.
1128.
112'.
1130.
1131.
1132.
1133.
1134.
IUS.
1136.
1137.
1138.
1139.
1140.
1141.
llU.
1143.
1144.
1145.
1146.
1147.
1148.
114'.
1150.
1151.
1152.
1153.
1154.
1155.
1156.
1157.
1158.
115'.
1160.
1161.
1162.
1163.
1164.
1165.
1166.
1167.
1168.
116'.
1170.
1171.
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1181.
1182.
1113.
1184.

for 1 ,. I to CardS78I>o1 do { DO dIr.ct of S78l>oITabl.[1J1
IIIIO(1J :- [I;

for 1 :. I to Car"r'" 40 Witb pr_UOD!II do bello
for j ,- rba-+Cardlba-I d to rba 40 Witb IhaArr.,[JJ 40 bqIa

"..reh frOOl rIlbt to l.ft oe rba of pr_tiOD}
It DaArr.,(JI.k1Dd 10 l_t.nI..l, IrouP, lIt.ralJ tbaa bqia

IIIIO[IhaArr.,IJJ .T.bleI"'...J :-
llIIIOl_r.,[J! .T.blal...u! + (lba);

{DO polot ...rebI", palt fIrlt DOo ull.bl. .781>011
It IoatRull.bl.(lbaArta,lJ] .T.bl.IDdex) tbeo loto 10;

; {If _r.,1
; {for JI

10:
; {for 11

; {I.D1reet_Of I

ver
i.j,k: toteler;
dODe: booleaa;
teap: lntlet;

bel 10
for t :- 1 to CardS,.bol do t..ke relation reflexive}

IT(IJ :. IT(I] + (1);
repeat {c08pute clo.ur.}

done :- true; { DO chanae until prOYeD otbenrl...}
for J :. 1 to CardS7"bol do bello

(j 18 the eol1_ Iadexl
t_ :. II;
for It :. I to CardS7"bol do {build j-tb eol_ of ITI

If j 10 IT[It] tbeo teap :. tnp + (ltJ;
for i :. 1 to CardS7"bo1 do belin {i 18 th. row Iodexl

If DOt (J 10 IT(I» theo
If (IT(IJ*teap) 0 (J tben belin

{i-tb row .ad j-th colU81 yield non ,t, productl
IT(I) :. IT(1) + [j);

done :- f al.e;
endi

(for 11
.Dd; !for JI

until done;
end; {l.efleaTrana}

proc.dure bt I8Poll '(var un, lEO: _tr1&);
{... IDdOfSource Ioto to "18 foll_ bp" ralatIODI
{pr.._ un 18 orilioell, "18 foll_ bp"I

{locaUOD of _OfSourea 10 S78I>oIT.bl.I
{lDdOfSoaree pac1cI" Witb blaalta}

procedure 1.~Of("ar lEO: _trta);
{ . 18 end of C if tbere 1. a der1vatiOG C -> vi

tD .a1 DU8ber of Itep.}

procedure 1.PollOftdDlrectlyly(..ar IPDt:_tria);
{I 18 foll_d direetl7 by C If there 18 . pr"'ucUoe

D -) wlee.. ¥bere . 10null.bl.}
l.bel 10;
VIr

l.j.t: iDteler;
bello

for 1 ,- I to CardS7"1>o1 do Ipr.._ a7"bol 1. DOt foll_d bp 80,tll1..1
lPOllIJ ,- [J;

for 1 ,- I to CanIPrad 40 Witb productIoe[I! do
for j ,- rba to rba-+Ca_-l do Witb DaArr.,IJ] do bella

It k1Dd 10 [oODt.nI..I, &roup, lIt.rall tbe.
for It :- 1+1 to rba-+Cardlba-I do bqIo

It _ta,[ltj.k1Dd 10 (_t.nI..l, lIt.ral, .r_J tbaa
bqb

IPD.[TableI zJ ,- IPD.[Tabl.I z] +
(_ta'[It).T.bleI z) ;

{doe't ...reb ,..t fInt _l1.bl. .781>011
If Ioathl1ebl.(_r.,[ItJ.TableI...u) tbeo loto 10;

; {If _r.,1
; Ifor Itl

10:
; {for JI

; {laPoll_Ir.etl,.,.I

proca4ur. le&I..DIreetl,witb(..r _: _trb);
{C bqioa directl, With I It tbere 18 . pr_tIOD
C -) _r. .. 18 DUll.bl.}

l.bel 10;
v.r

l.j: lat...r;
_IIa

for 1 ,- I to CardProd 40 Witb pr_tiOD[1J 40 bello
for J ,- rba to rh8+Cardlba-1 40 With _ra,IJJ 40

It
U'"

10 [_t.nI..l, IrouP, lIt.ralJ tbaa bqlo
_(lbaJ ,- _(lbaJ + [T.bl.I"'uJ;
It Ioatloan.bla(Tabl.I...u) tbaa pto 10;

; {if
U"'I10:

ad; (for 11
; {1e&1uD1reetl,wIth)

proca4ure le&ioaVIth(vat III: utrIa);
{CbqID8WitbI If tber. 10 . "rIv.tIOD C-> ..
1. .., r of It.p. I

bqIo
lafluTra..(IV);
; {leIID8VIthl

procedure PlrltS,..l(r rs: _trla);
{tenI..l b 10. PiratS78I>o1of I It tber. 10 . "rIv.tIoe
C-)

""
1088' _r of .t.,.1

bello
for 1 ,. I to CardS78I>o1do

It IIyMolT.bl.[I) .1t1... - ooat.nIoal tbeo
PS(iJ ,- PS[I)* AlIT....

.1..
PS(i] :- [II;

; {PInt&7"1>o1l

procedure PlrltProd(".1' rs: _tria);
{tenl1.ul b 1. In Pir.tprod of production C -) v
if C -> . -> b&for Hatent1al fom 'bE In ..y
o_r of It.p.I

{.tore coepated 8D8V8ra io "..lect" fteld of produetioa
.iaee thi. i8 part of the aelec:tiOD Nt iuo}

l.bel 10;
var

i,j: iate,er.
bello

fot 1 :- I to CardProd 40 With pr ctIoe(1J do bello
.'1'88_ .election aet i8 ty}..Ieet :- II;
.acId 'iratS,.bol. of rh8 al_ata up thru

firet DOG-DUllable el88eat}
for j

:- rba to rba+Cardlh.-1 do wIth IhaArra,{J! do bealo
if kilUl il IS6I1tlral.sal, HtUI1, .rou~) tUI ia

..leet ,- .el.et + 'S(TablaIDdu);
If Ioatlull.bl.<TableIadu) tbeo pto 10;

30

1185.
1186.
1187.
1188.
1189.
1190.
1191.
1192.

eM; I1t It1MI
eM; {to< jl

10:
eM; {to< 1}

eM; {r1ntProdl

procedure Bandl...olv.nt.;

..lectton ..ta}
1 1 10;
.ar

1,j: lDte,er;
be.iII

tOt I
It

{Itv. priority to r..ol..nte in

1193.
1194.
1195.
1196.
1197.
1198.
1199.
1200.
1201.
1202.
1203.
1204.
1205.
1206.
1207.
1208.
1209.
1210.
1211.
1212.
1213.
1214.
1215.
1216.
1217.
1218.
1219.
1220.
122l.
1222.
1223.
1224.
1225.
1226.
1227.
1228.
1229.
1230.
1231.
1232.

:. 1 to CatcIPtod do with ptoductio"[11 do
1'..01.. 0 [] tbea beala
tOt j :. SyaboITeb1.(lha} .PtodS"tt to CatcIPtod do

If ptoductioa(jl.1be 0 Ihe thaa
Iota 10

.1..
pr04uetloaUJ .a.lect :- procluctio1l.[jJ ...lect-r..ol..;

10:
..lect :- ..1eet + 1'8801..;
.DeI; {if ra.ol..}

ead: (_1 01 1

procedure I.Coalliet.; {report coalliet. ~ .1te~tlYe
prodactiOll8 ... r..olft: cooflicta .. iDdleated

'"
.,pI_nul

..18ctloo ..t tato .tor" in reaoiv.}
1 1 10:
.ar

..,.: bool..Di
l,j,k: lnte.er;
iDter..ee: Int..ti

be.1..
8n1 :- fal..;
tot 1 :. 1 to Cat4Prod do with ptoductiOlll11 do be.1..

tOt j :. 1+1 to CatdProd do
If ptoductiOll(jl.lbe

"
lbe thaa be.1..

latereect :- .elect*productlon[j] .aelect;
producti_IJ)...I.ct :. ptoductio..(jl.eelect - I..t.neet;
If I..t.neet 0 II the.. be.1a (coalUct I)

if QQt ..,. t 1..
if Pr1atSeI.ct t be.1a

wrltela(LLaelect, Itbere are aelectloa aet coalliet;.,",
I .. indicated: I);

WTltela(u...lect) ;
eDd;

writelaC "There are ..lectlon .et coaflicte ..
IM1cated:

'
);

writela;
aa., :- true
ead;

tot It :. 1 to C8<dS,..bol do
If k ia iatereect tben be.ia

If PriDtSelect tben
vritelD(LL8elect. SyaboITable(k).Y8loe, I la I.Iprode .t 11nee I.

ptoducUoa(1I.U... : 3.,
OM '. ptoduct1_{j) .U...: 3. . witb'.. l.ft-bead 81". '. SyabolTeble(lbe) .ftl_):

""itela(SJllboIT.blelltJ ...1_. ' 1.. '.
'prOfte at linea

"ptoductloa(1).U... : 3.,
eM '. ptoducUoa{jI.U...: 3.

' witb'.,
l.ft-haM 81d. '. S,..boITabl.llbe].nl_):

1233.
1234.
1235.
1236.
1237.
1238.
1239.
1240.
1Z41.
1242.
1243.
1244.
1245.
1246.
1247.
1248.
1249.
1250.
1251.
12'2.
1253.
1254.
1255.
1256.
1257.

12".
1259.
1260.
1261.
1262.
1263.
1264.
1265.
1266.
1267.
1268.
1269.
1270.
127l.
1272.
1273.
1274.
1215.
1276.
1277.
1278.
1279.
1280.
1281.
1Z82.
1283.
1284.

eM;
.M;

eM (1f ptoducUoa}
81ae IOto 10; fao 8Dre alt8nat1y..}
10:
.M; (fot II

if PrlatSe1.ct thea bel1a
wrlteln(LL8elect); vrlt.1n(LL8elect); eDd;

ead; {lIaadleCoaf11ct.}

be.1a (ec.puteSel.ctloaSe"1
tlMr :- clock; {keep traclt of bow 8Ach t18e to cOllpUte .electloe ..t.}

(* tJIIU 0)

wrlteln(IStartiac to c08pUte aelectlon aeta -
'

f CarctProd:3.,
productio);

r1_11.bl.; (d.t vh1ch lyaboh .ad ptodl 8<. aull."le

- ator. auver. 1a S,.bol Tabl. aDd productiOla8
re.pectl...1,}

{C08pUte ..t of all teratD8la}
AlITe.. :. []; (1altlell,. _t,.1
tOt 1 :. 1 to CariSyabol do

if SyaboITable(1) .It1M 1.. [Ut..al. .roupl the..
AlIT... :. AlITe.. + (I);

for 1 :- 1 to CardS}'8bol do Uu1tlally. lOW 1. e8pty}
-(1) :. II:

...1ueDlrectlyllitb(_);

...1ueVith(_):
r1..tSyabol(_):
'Ir.tProd(BOW

);

(.t thia po1..t ..leeUoa ..t tot each prodaeti_
alread,Il1c1 flratof rha .. CD8pUte4la
UntProd - juat ... Pollow lato If _Med }

1285.
1286.
1Z87.
1288.
12".
1290.
1291.

1eD1teetllldOtUDID); (c_tea "18 d1tect eIId of" ..leUoa}
la8G40f(lDID); (traaefo...ia direct"'" ot" l..to "ia or)
1erollow4D1teet1y8J(IPD8);
1aroll_I1(1". IDID. _); (traueto... "ia toll_ d1tectl,.

"""
1..to "10 toll_ Ioy")

btellde4leroll-,.(lPDI. 1DlD): (8441 1ato tOt IDdOfSoarca
_rur to

"ia toll_
"""I

1292.
1293.
1294.
1295.
1296.
1297.
1298.
1299.
1300.
1301.
1302.
1303.
1304.
1305.
1306.
1307.
1308.
1309.
1310.
1311.
131Z.
1313.
1314.
1315.
1316.
1317.
1318.
1319.
1320.
1321.
1322.
1323.
1324.
1325.
1326.
1327.
1328.
1329.
1330.
1331.
1332.
1333.
1334.
1335.
1336.
1337.
1338.
1339.
1340.
1341.
1342.
1343.
1344.
1345.
1346.
1347.
1348.
1349.
1350.
13'1.
1352.
1353.
1354.
1355.
1356.
1357.
13n.
1359.
1360.
1361.
1362.
1363.
1364.
1365.

Ie... _ ... rollow 1ato to ..Ieet Held)
tot I ,. 1 to Cat4PrM do witb ptoducUoa(1) do

if aull."I.
"

GUll t (MAl te 1 lyabole)
..l.ct :. oaleet + 1PD'll_1;

BaDdleI.e80l..aate;
BaMleeo..tUcto;
fot I :. 1 to CetcIPtod do with pt04ucUoa(1) do

tOt j ,. 1 to CardSyabol do
if j la aelect tbeG

CardSel :- CardSel+l;
vrlteln('S-colldaCPU t18e to c:08pUte .election ..te ,

(cloclt-U_t)/I000.o :5:2); (t1_ 10 la ai1Ueecollda)
(* OIIU *)

.M; (c-put.Se1eeU_"}

procedure SaveCr_r; {a 8ntire .r_r on di.t ID Ucr_.
Prln~ ar_r with ..lectl08 Hta OG LL8elect
if <equelted.1

9a<
luaValue: inteaer; {a~ber of ..18ctlon aet or ..ocabulary .I_at.

OG curreat lIneof LLaelect.}
1.j: aoane.; {loop couater}
_herOfTerwinale:GOIUleI;

WblchTerainal: arra,(1..TableSize]of 1nteaer; {which__red
te l SJllbol TebieUI 10}

be.1..
revrlte(LLlr_);

{writ. S,..bol Tebl.}
..berOfTeml_!. :- 0;
fo< 1 ,. 1 to CatdSyaboi do with S,..baiTabl.U) do

If lt10d In (Uteral. .toupl the.. belia
{writ. eyabo1 .ad 1t1n4}

_be.ofT.ruaala :. _be'OfT 1nela+ 1;
LLcr.". table :- ...lM;
put(~t..);
If lt10d . .roup thea

LLct..' . teble (1I :. '.'el.e
LLc tebl.(l I :. 'I';

put(~t..);
IIh1chT._aaII11 :. _.ofT._GOIa;
.od; (it It1M)

wrltela(Coutrlle.' 1J.Tabl.Sla8- '. berOfTerainal.:4.';');
(DOWtbe productIou)

If PrlatSelect tbe.. be.iD f,rlDt beadl... of aelectioD .et report.}
wrlteln(LL8elect. 'Gr_r production. v1th aelectlon Hta added: I);

vritela(LLaelect) ;
wrltela(LLaelect. IProcl' Li_' Produc:tIOD');
""itel..(LLeelect) :
eDd;

LLct..- ..t_t :. S,..boITebl.(u1oa).ProdSta<t; put(LLcr..);
tor j :. 1 to Cat4Prod do

with pt_U_(jl do he.1..
if Pr1..tSeleet the.. 1..

""it.la(u.-leet) :
wr1te(Ll..8elect. j:3,11oe:9, ' '.Pr1..tStd...(SyaboITable [lhe I ..alue).

'
. ');

.M; (it Pr1..tSelect}
LLcr..' ..r_r :. SyabolTablel1be] .PtodSta<t; put(LLct_);
Ucra'" _Ir-.r :- Cardaha; put(U-araa);

lue :- 0; {1IOYOe8b .yabo18 OD curreat 11De of u..elftct yet}
tOt 1 :. tbe to the+Car4lhe-1 do-with IhIAtray[l! do bel1a

if Pr1atSelect the.. hea1a
if 10. -6 tbe beain

vrltela(IJ.aelect) ;
wrlte(LLaelect, . .);

lue :- 0
eM: (it _aluel

lluaValue:- "".lue .. 1;
if klDd In {aontera1ul, Uteral, aroup] theo

,,,,It.(LLeelect. PrlatSttl...(SJllbol Tabl. (Tebl.1MU!
...1...»

el.. If k.1od. action tbeD
vr1t.(u.-l.ct.

'
(0..1 ')

elee
llu8Value:- ""al"e - 1; {didn't priDt uythtoa}

eM;
ca.. klDd. of

GOaterat...l: beala
LLct..' ..<_t :"

otd('a'); put(LLcr..);
LLcr..'" ..I' r :- S,.bolTable(TablelDd.ez] .hodScart;
put(LLct..) ;
LLcr r_r :- CU.Select; put(LLlr.);
LL&r."..r_r :- SyucbI ; pat(LLar.);
ead;

aroup: 1a
LLcr_- ..t_r :. ord('..); put(LLcr..);
Ll4r.- ..r_r !o 1III1ebTImul [T.bIllun]: pat
(Uoct_>;
LLar r-.ar :- Ca..Select; put(LLcr_);
Ucr_" .ar_r :- SyachIDCle.;put(LLcr_>;

1366.
1367.
1368.
1369.
1370.
1371.
1372.
1373.
1374.
1375.
1376.
1377.
1378.
1379.
1380.
1381.

1382.
1383.

31

1314.
1315.
1386.
13.7.
13...
1389.
1390.
1391.
1392.
1393.
1394.
1395.
1396.
1397.
1398.
1399.
1~.
1401.
1402.
1403.
1404.
1405.
1406.
1407.
140..
1409.
1410.
1411.
1412.
1413.
1414.
1415.
1416.
1417.
1411.
1419.
1420.
1421.
1422.
1423.
1424.
1425.
1426.
1427.
1428.
1429.
1430.
1431.
1432.
1433.
1434.
1435.
1436.
1437.
1438.
1439.
1440.
1"1.
1442.
1443.
1444.
1445.
1446.
1447.
1448.
1449.
1450.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
1458.
1459.

aDIII;
literal: ..111

Ulr.. ..r_r
Uocr_- _11'__1'
t..LIr.A.Ir-.r
Ller." .Ir_r

;
patch: 1.

LLar_A _11'__1'
LL8r.A _'1'_1'

;
acU : 1.Ulr... ..r_rUlr.....r_r

.....
e8d; {~...}

; {If}

:- ord('.'); ",t(Ulr_);
:- CaMS.lact; putCLLlr_);

:- ord('I'); ",t(Ulr..);
:- IIhlchT.r8laal[T.hl.ladea];
:- CoaoSaloct; ",t(Ulr_);
:- 8JOChI ; ",t(Ulr..);

:- ord('p'); ",t(Ll4r..):
:- ea..Select; pat (LLar_> ;

{write t .alectl.. oet lofo}
If PrllltSaloct t"'o 111

vr1tela(LL8elect) ;
writ.(LLa.lect. . 1#);

;
Ulr r_r :- CardSaI; ..t(Ulr..);
aavalue :- OJ {bow aD, ..laet108 ..t .1_Bta priDt" oe

curro.t lb. of tl.8elect}
for I :. I to Card818bol do

if 1 in _leet tbeD "'lDUlr_" ..r_r :- IllUchT.r8laal{l];",t(Ulr..);
If 'rlotSaloct t"'o 1.

If _alae. 6 tbo. ,,10
wrltelo(LLaelect);
writ.(LLoeloct.

'
');

_.Iue :. 0;
; {If _aluo}

llu89a1ue:- 1_ + 1.
wrlte(LLoelect. PrI.tStrloa(SyahoIT.U.[I) .oalae»;

; (If 'rl.tSaloct)
; {If 11

If 'dotSaI.ct t_
vrltelD(LL8elect. # j

");

e"';
{with prod1lCtl }

{write_ Lor.._r.J h}
writelo(Coa.t'ile,.. LLlhaSl.8.". tbt.n.:4. ";")j

{write t OJDChroa1&.Uoo lofo}
for I :. 1 to CardSJOCh do 10

If SJOChDat.(I] .T.bld 0 0 tboo
Ulr... ..r_r :. IIhlchT.r8laal[SyochDat.[I].T.hld)

el..
LLar.....r_r :. 0; put(Ll4ra);
Ulr... ..r_r :. SyochJ)at.[I]...ot; ",t(UI...);
; {for 11

.04; {SavoGr_r}

10 {..1o pro.ra}
Irror'ree :- trae; (initiAll, DO
for 1 :- 1 to 5tr1aaS!.. eta

Allllaolt8(1) :. . ';
revrlte(Con8trl1e, '-LLcout.1 #);

w1 teln;
DoCr.-ri
if Irror'r.. tben belln

Co8puteSelect iooSet.;
SaveCr.-rj
....

el..
writ.la('Selection

vrlteln(Con.tF11e.
vrlteln(Co1llltFl1e t
vrlteln(ConatFile.

1000:
writeln;

....

error. 1n ar r}

(* OIIU *)

.eU not c08pUted bec.u.e of fatal error..);
LLProd.Slze . '. CardPr04 t . j .) j

LLSyn,c:hSlze . '. CardSyach.';');LLStrlqLeqth . '. StrlqSlze. . i');

118~.
1186.
1187.
1188.
1189.
1190.
1191.
1192.

.ad; {if kind}
.ad; {for j}

10:
.ad; {for I}

eu; {rlratPTod}

128~.
1286.
1287.
1218.
1289.
1290.
1291.

I.D1roc:tlDdOf(IOIO); (e_t.. "i. 41rac:t _ of" ..1&ti081
IaIDdOf(IOIO); {tr.aafo..."18 .iroc:t _ of" l.to "18 _ of"}
Ia'ol1_irectlyJy(IPDI);
Ia'ol1_Jy(IPD., IOIO. _); {tr...fo... "18 fo11_ .iroc:tly

~" i.to "i. fo11_ ~.}
1n...I..II..oU y(IPD.. 1010); {_a lato for ID4OfSooare.
_ritaI' to

"i. foU ~"}
procedure HandleR.lolv.ncl;
selection seta}
1 1 10;
...r

1.j: iate.er;

"'liD
for 1

if

{Itv. priority to r..ol.antl in
1292.
1293.
1294.
129~.
1296.
1297.
1298.
1299.
1300.
1301.
1302.
1303.
1304.
130~.
1306.
1307.
1308.
1309.
1310.
1311.
1312.
1313.
1314.
131~.
1316.
1317.
1318.
1319.
1320.
1321.
1322.
1323.
1324.
132~.
1326.
1327.
1328.
1329.
1330.
1331.
1332.
1333.
1334.
133~.
1336.
1337.
1338.
1339.
1340.
1341.
1342.
1343.
1344.
1343.
1346.
1347.
1348.
1349.
1330.
1331.
1332.
1333.
1334.
1333.
1336.
1337.
1338.
13~9.
1360.
1361.
1362.
1363.
1364.
1363.

{eaa ... add Pollow lafo to ..lect field}
for 1 :- 1 to Cor..r04 do with pr_UOD(1) 40

If ...l1.ble
"

.uU. t"'.
{.d. tonlioel .yaIIo181

ooleet :- ..l.et + In.(lhel;
BaDdl ol..at. ;
II8DcIleCoafllcta;
for 1 :- 1 to Cord.r04 .0 with pr_tiOD(11 40

for j
:- 1 to Cor.S18bol .0

if j In ..lect tbea
Cor.Sel :- CordSe1+1;

writ.lo('Second. CPU t1_ to c08pute .election ..t. -
'

t
(elock-U_r)/I000.0 :~:2); {U_ 1. 1. II1lU..e_1

(* OIIIX *)
.ad; {~t.Sel.eUooSerol

procedure SaveGr__r; (entire
11'_1' on dt.1t in LLar_.

Priot 11'._1' witb ..lectloa ..t. 08 LL88lect
If roqu..t".1

..or
""&1u.: intelet; {D\8ber of l.lectlOD let or vocabulary el t.

on c.urrent line of LL8elect.}
i.j: DOOne.. {loop counter}

berOfTera1n.l.: DOIlDeI;
WblcbTe~nal: array[l..TableSlz.) of lnteler; (vblch ouaber.d

t.nolnel S18bolT.bl.(i) 101

"

1193.
1194.
119~.
1196.
1197.
1198.
1199.
1200.
1201.
1202.
1203.
1204.
120~.
1206.
1207.
1208.
1209.
1210.
12U.
1212.
1213.
1214.
121~.
1216.
1217.
1218.
1219.
1220.
1221.
1222.
1223.
1224.
1223.
1226.
1227.
1228.
1229.
1230.
1231.
1232.

:- 1 to Cord'r04 .0 wit" praduetio.(1) do
r..ol... 0 [I t"'. "'liDfor j :- S18bolT.ble(lhel,'r04Stort to Cor"rod 40

if pr04uetloo[j) .lhe 0 lhe then
,oto 10

.1..
produc:tlon{jI._leet :- productloo{j) ...1ect-r..ol.e;

10:
.elect :- .elect + reeolft;
.od; \1f r..olY.}

; { l ol..ot.}

proc.chara ..DClI.Conflict.; {report conflict. 88HII alteruti.e
prodvctlOU aDd r..ol.. coafllct. a. lulc_teet by _ppl_atal
..laeCloo at info .torM 10 r..ol..}

10...1 10; .

...r
8o.y: bool.ao;
i,j,k: iote.er;
iotereect: iot..t;

"'Ii.aay :- tal.e;
for 1 :- 1 to Cor.'r04 40 witla pr04ucUoo(11 .0 "'Ii.for j :- i+1 to Cor.Prod do

If productiOD[j) .lhe - lhe the. beli.
ioter..ct :-.elect.,roductlon[j I.H18ct;

p-rocluctloa[jJ ...leet :- productloa(j) ..elect - laterNct;
If i.tar..et 0 II thea "'Ii. {eODfliet I}

If DOt .ey tbe. beliD
If Pri.tSeleet tbe. belin

wrlt.la(LLaelect, 'there are ..lectloa ..t eoafllet;",
I .. IncUe.ted:');

wrlt.lo(IJ.8elect) ;
eDd;

vritelo('There are aelaction .at coafllct. a.
ladie.t":

'
);

writalo;
any :- true
eDd;

for k :- 1 to CordS18bol do
if k la lntereect tben beala

if priotSelect tbea
vritela(LLaelect,S,.bolTaltle[k) ..81ue,

'
La

'proda at 11..e.I,

producUoe(1) .U.. : 3.. _ '. r_UOD[j) .U..: 3, ' wit"'.,
left-he" o1d. '. SyabolT.bl.U".) lue);

writ.l.(SyaIIolT.ble(lt) 1ue.
' 1. '.,

prada at 1i_.
"pr_Uo.(i).l1ae : 3.

"
aDd. I, produc:tion(j] .11De:),

'
vtth',,

l.ft-bead o1d. '. S18bo1T.bl.(lhe) lue);

1382.
1383.

i.
rovrlte(LIer_);

(write S18bol T.ble 1
_berOfTera1nals :- 0;

for 1 :- 1 to CordS18bo1 do with S18bolT.blo(l) .0
If kiad In [Uter.l, 8roup) the. "'Ile(write a18bol .n. k1adl

_berOfTenliaalo :- _berOn.no1nalo+1;
Uc-r-'" . tahle :- ..lue;put(Ll4r_);
if kInd - Iroup then

LIer_".t.bl.(I) :- 'I'
el..

LIero.- . robl. (II :- '1';
put(LLcr_);
Vh1ehTenoleal(i) :- _berOfTenliaalo;
eDd; (If kiDd}

vritela(Coaatrl1e,' LLTahleSiae.', 18uaberOfTeninals:4,';");
(aowthe productions)

if PrintS8lect then belia (print beadiOC of selection aet report.)
vrlteln(LLaelect,"Cr__r productioo.with aelectioo ..ta acWecI:');
wrltelo(LLs.l.ct);

writol.(LLoeloc:t. 'Pr04' Li..,
writ.lD(LLooleet) ;
eDd;

LIer.- .Ir_r :- S18bolT.bl.(oxi08) .ProdStart; put(LIer_);
for j :- 1 to CordPr04 40

with produeUOD(j) 40 "'Ileif .ri.tSeleet the. boli.
writelo(LLa.1ect) ;
writ.(LLaelect, j:3,1iDe:

"

I
",

Pri.tStriq(S18bolT.ble(lbe) 1u.).
'
. ');

eDd; \1f 'ri.tSel.et}
LLar_" .Ir_r :- S18bolT.bl.(lhe) .'r04Start; put(LLar_);
LLar ar_r :- Card8ha; .,..t(LLar_);
8u8Value :- 0; {DO~It .J'8hol. aD curreDt line of LLee1..-et yet)
for i :- rh8 to rha+Cardlha-l do-vtth Ih.Array{1j do bealD

if ?rintSelect tbeD helin
if lu. -6 then belin

vrite1n(LL8el.ct) ;
vr1te(LL8e1ect,

"tfu8Va1ue ;- 0
eod; \1f _due}

Ru8Value ;- Mu8Value . 1;
if kind In [nontera1ul. literalt croup] tben

wrl t.(LLoel.et. Prl.tSt rle8(S18bolT.ble (T.bl.lad.,.]
lne»

else if Uod -action tb8a.

wr1t.(LLoeleet,
'

{...} ')
el.e

llu8Value:- luaValue - 1; {didn't print _ythi.}
end;

c.se kind of
noa.teninal: belio

LLcr ..r r
LLcr ..r r
put(LLcr_h
LLar .Ir_r C..eSelect;put(LLcraa);
LLcr..- .&r_r :- Sync:hIDdes; put(LLar_);
oDd;

,roup: beliD
LLar.-.lr_r :- ord("I'); put(LIer_);
LlCr..- .Ir_r ;- 1III1chTam1D8l[TablIlDdu);put
(LIer_);
LLar ..ar_r :- c...S.lec:t; put(LLcr_);
LLar .&r_r :- SJ'DC..I ; puteLLar_>;

1233.
1234.
123~.
1236.
1237.
1238.
1239.
1240.
1241.
1242.
1243.
1244.
124~.
1246.
12'7.
1248.
1249.
1230.
1231.
12~2.
12~3.
1234.
1235.
12~6.
1231.
12~8.
12~9.
1260.
1261.
1262.
1263.
1264.
1263.
1266.
1267.
1268.
1269.
1270.
1271.
1272.
1273.
1274.
127~.
1276.
1277.
1278.
1279.
1280.
IZ81.
1282.
1213.
1284.

8Dd;
.Dd {if produeUo.1

.1.. loto 10; {00 80fe alternative.)
10:
.ad; {for 11

if Pri.tSel.et tboo beli.
vriteln(LLaelect); writelneLLaalect);eDd;

.Dd; (BaacilaCoaf1icts)

"'Ii. {C08puteSol.eUoeSeul
tiMr :- clock; {keep track of bow '81ch t18e to C08put. ..lectioa ..ta}

(* OIIIX *)
wr1teln("StartlD1 to c08pute aelection sets - ", CardProd:3,

"
productions.');

Pi_n.ble; {d.tonliae vh1eh a18bolo oad proda are .uU.bl.

- ator. alL8vers in S,.bolTable and production.
r.specti"ely}

{':08pute .et of .11 teni_l.)
AllT :- (I; (iDiU.Uy _tyl
for i :- 1 to CordS18bol .0

if Syabo1T.bl.(1) .k1ad i. [lit.rol. Iroup) the.
lilT :- lilT + (1);

for 1 :- 1 to Cor.Syabol .0 {1e1ti.Uy. 811II1. _ty}
_(i) :- [J;

"lioeDir.et1yVith(_);
"liuVith(_);.1rotSyaIIol(_);
.irotProd(_);

lot thie polot ..loc:UOD ..t for .ach prodoct1OD
alreadyinclucte. ftr.tof rh8 .. COIIpUte410
'irot'rod - juet 'oU_ ioto if }

Production');

');

1366.
1367.
1368.
1369.
1370.
1371.
1372.
1373.
1374.
137~.
1376.
1377.
1378.
1379.
1380.
lJaI.

or.('e'); put(LLar..);
S18bolT.bl. (T.ble Iod."J .'r04Start;

31

1314.
1385.
1386.
1387.
1311.
13...
1390.
1391.
1391.
1393.
1394.
1395.
13".
1397.
1391.
13".
1400.
14CI1.
1~2.
1403.
1~4.
1~5.
1~6.
1~7.
I~'.
1409.
1410.
1411.
1412.
1413.
1414.
1415.
1416.
1417.
1411.
1419.
1420.
1421.
1422.
1423.
1424.
1425.
1426.
1427.
142..
1429.
1430.
1431.
1432.
1433.
1434.
1435.
1436.
1437.
1431.
1439.
1440.
1441.
1442.
1443.
1444.
1445.
1446.
1447.
1448.
1449.
1450.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
145..
1459.

eu;
Uter.l: Maio

LLc:r.- .Ir_r
LLc:r.A.Ir.-r
LLar." ..r r
LL8r.- .Ir.-ar

;
patch: he.iD

LLar..' .Ir_r
LJ.ar ..r_r-;

aetiol!: _,111
1Jcr.'" .Ir.-r
LJ.&r."_.r-.r-;_; Ic.n}_; IH}

:. or4I'I'}; ",tIUcna);
:. IIh1chT l(Tahl.I J;
:. CU.lalect; ",tlUer_);
:. SJDChl_; ",tlUer_);

:. or4('p'); ",tlUer_);
:. C..eSelect; ",tlUer_);

:. or4I'.'); ",tlUer-);
:. C...Select; ",tlUer_);

hrrlte out ..1ectl00 Ht ido}
H PrbtSeI.ct theD helio

wri t.loILLed.ct);
writ.ILLe.I.ct.

'
X');

-;
Ucr_'.lr_r :. Car4SeI; ",tlUer_);

1ue :- 0; (bow_DY..leetloe Mt .l-.ata priDt" _
<:urr.ot U_ of UoIelect}

for i ,. I to C.r4SJ8ho140
H I io ..Iect theo Maio

Uer..' .Ir_r ,. lIhichT...8&l(i]; ",tlUer_);
if Priotlalect theo hello

if _01 . 6 tIleD Ma18
vrltell1(LL8elec:t).
vrlte(LL8elec:t. I ');

""alue :-O.; {if _alua}
llu8Value :- luaValue + i.
wri tel LLaeI""t. PriotStr1811 s,uoIT."I. (1] ...1",,»;

e"';
{if PdotSeI""t}

_; {if 1}
if PriotSelect theo

vrlteln(LL8elect.
'

;');
; {vi tll pr"'uctioe}

{writ. _ lerl. _Array 18}
wrltela(Coaatfl1e,' LLIh.Slae.". !Ia18ab8:4, ';");

{write out eyochrooh.Uoe Wo}
for I ,. I to Car4Syoch do ""110

H SyocllDate[i).T."I.l04ea 0 0 t o
Uerae' .Ir_r :. lIhichT...D8l [SyacbData[II. T."I.I "Je18.
LLsr." .Ir r :- 0; put{LlCr_);
Uer..' .Ir_r :. SyocllDat.U) t; ",tlUer_);
; {for 1}

.04; {SeveGr_r}

helio {_io prolr..}
IrrorFr.. :- true; {initiallyDO error. 18 Ir_r}
for 1 :- 1 to Strl'ft1S1ze 40

41111._.UJ :. . ';
revrlte(Con8tFl1e. ~LLcoo.t.l~); (*"IX *)
writ.ln.
DoCr r.
if Error're. then beCln

Co8puteSelect ionSet. i
s."aCr.-r;

-.1..
writelnC'Selection .et. n.ot cOIIputed beeauH of fatal error. ');

vrltelo(Con.tPil., LLProd.Slae . ~, CarclPro4l. ~;~);
vrlteln(CoutFile, LLSynchSla..

"
CartlSyoch. ';~);

vrlteln(Con.tFl1., LLStrinaLeftltb . ~. StriacS1.., ~i~);
1000:

wrlceln.j
e....

/>

32

SCREEN EDITOR
LETS USERS DEFINE

:/'FUNCflON KEYs.
(

BOOSTS PRODUCTIVITY

User-definable function keys (macros) are

available for the first time on a microcomputer

screen editor that can run on all major hard-
ware systems, including the IBM Personal
Computer and the Apple IITM, according to

Volition Systems, developer of the software.
Called the Advanced System Editor (ASE),

the software can be adapted to a variety of ter.

minals and can increase productivity at the key-
board by at least 25 percent, according to Joel
J. McCormack, company chairman.

ASE is now available for all versions of the

UCSD PascaITM system. It offers OEM's, soft-

ware suppliers and end users important ad-

vances over the original screen«iented editor,

which as been a major strength of all UCSD

Pascal development systems.

"ASE brings microcomputer users the text
editing and program development resources

usually associated with much larger comput-

ers," McCormack said. These include features

that were not available on the original editor-

the. capability of editing very large files, func-

tion keys that can be easily trained, file selec-

tion by menu rather than human memory, the
ability to edit a new me while still within an-

other, and simplified keystroke sequences to

accomplish the most common actions.

"Because all commands derive from arbitra-
ry key sequences, it is easy to customize ASE

to most keyboards, giving manufacturers and
systems houses great fleXibility in the choice of

terminals," McCormack continued. In addi-
tion, he noted, ASE can take advantage of
features such as the insert line capability that

are found on more and more terminals today.
Application developers can defme the keys

they want their users to have because ASE

comes with a separate configuration program
enabling redefmition of commands or capabili-

ties based on the user or application. "Coupled

with macros tailored to a software developer's
application packages, enhanced, more effective
packages result," he said.

ASE is the only unbundled UCSD Pascal

editor that is available without a full develop-

ment system for distribution or incorporation

into hardware and software systems.

The software is fully supported for all ver.

sions of the UCSD Pascal system. The IBM
PC operates under UCSD Pascal systems as
well as the Philips P2000, Digital's new Profes-

sional series, the Xerox 820, and all Texas In.

struments minis and micros including the Bus-

iness Systems 2000 and the Home Computer.

Versions of UCSD Pascal run on all major mi.
crocomputer-based systems including those in-
corporating 8080's, Z-BO's, LSI-II's, 6502's,

6800's, 6809's, 8086's, Z8000's, and 68000's.
Apple Pascal is a UCSD Pascal derivative.

The Advanced System Editor was designed

speciflC8lly to improve productivity at the key-
board during program development and text
editing. It incorporates user«iented conven-
iences not usually found in microcomputer
editors.

"Because we are professional programmers
with experience on a wide range of computers,"
McCormack said, "we included the features
found on larger systems that we knew would
speed work flow, and we eliminated bottle-
necks and sources of frustration."

The overall result has been to increase the
capacity of ftles that can be edited, automate
repetitive tasks, reduce keystrokes, and boost
the capabilities of the editor so that memoriza-
tion is minimized and almost all work can be
done without extra manipulation outside the
editor.

File handling has been simplified immensely
because the file size is limited by available disk
space rather than by RAM memory size as
was the case before, McCormack said. With
ASE, a single file may fill an entire disk vol-
ume, so users are not forced to juggle split files.

User-deflned function keys (macros), which
are not available with the original UCSD Pas-
cal screen editor, are another major benefit to
users. These keys allow a user to automate
tasks that recur within their particular pr0-
gram development or text editing environment.

Any sequence of keystrokes, including edi-
tor commands, can be "taught" to one of eight
function keys. Once taught, pressing the func-
tion key, in effect, causes the same keystroke
sequence to be repeated. Such macros are easy
to use, but powerful enough for complex oper.
ations. Macros can, in fact, call other function
keys, and they can also be used to make a
change that affects an entire group of ftles.

The function ke) remembers the sequence
taught to it until the editing session ends or the
key is redefined by the user. Definitions can be
saved in a terminal-independent fashion within
the file being edited or within libraries of
defmitions.

"User-definab1e macros yield significant
time savings for any task that must be done re-
petitively but selectively," McCormack noted.

In addition to user -definable function keys,
Volition looked for other ways of reducing
keystrokes and making keyboard time more
productive.

"The screen-Qriented editor had already
done some keystroke optimization, but we
took it much further," McCormack said.

Almost all moving commands are accom-
plished with just one keystroke. Furthermore.
they can be used in exchange or delete modes.
whereas before the moving commands were
only available at the outermost edit level.

Single keystroke cursor positioning com-
mands have been added to permit additional
cursor movements such as moving word by
word, moving backwards by a screen, moving
to the beginning or end of a line. deleting by
words, or returning to the home position.

Variable tabs are aI80 available.

ASE lets the user recall searc::b or replace-

ment strings with a single keystroke. The
editor also enables the user to move portions of

the text horimntally (openinl or closing
space). This feature enables usen to mo~ col-
umns of data relative to each other.

Nested editing and menu selection of f1Ies
are two important features that contribute to
user satisfaction and reduce overhead. Now
with ASE, both can be accomplished without
having to leave the editor and go into the filer.

With the previous editor, memorizatioo was
required because files were listable only by the
mer, and that showed only the file name, size
and date last used. However, ASE is desiIUIed
to reduce memorization. There is a menu avail-
able when entering the editor and when select-
ing files to be copied. The first line of each file
is available as a memory jogger. Furthermore,
a menu of the file markers is available.

"With ASE, menu selection makes the 'what
file?' decision a one-<:haracter, multiple-choice
answer by offering the selection of editable
ftles and, if desired, the first lines of those
files," McCormack said. Use of menus is not.
mandatory, however.

Nested editing lets users work on one file,
leave it to work on another or to retrieve infor-
mation from another, then Kpop" back to the
precise place where they were working in the
original file. Nested editing sessions can de-
scend to a depth of six flies, disk space permit-
ting. As a result, it is possible to edit numerous
files and move text from one file to another
without leaving the editor.

Other features of ASE not found in the orig-
inal UCSD Pascal editor include extended, or
"paint-mode," exchange, and change logging.
With extended exchange, characters can be ex-
changed, inserted or deleted anywhere on the
screen. It's particularly useful to users who
want to create character graphics or to rule
tables because instead of being restricted to left
to right movement, they can now type in any
direction they want.

Change logging allows the user to maintain
a dated log of what was done in each editing
session. That's an especially useful record to
have if a number of programmers have worked
on development of a program over a period of
time. It is also useful for documents that have
had multiple authors.

KMost users spend the majority of their time
entering or altering text with an inadequate
editor, and their productivity and satisfaction
suffer," McCormack said. KWebelieve ASE is
a vastly improved tool for text manipulation."

ASE is offered for distribution and sublicens.
ing, with substantial discounts offered for
quantity purchases. Telephone support is pro-
vided. It is immediately available from Voli-
tion Systems, P.O. Box 1236. Del Mar. CA
92014, (714) 457-3865. with single copies for
evaluation priced at SI75.00.

ASE object and source code are available.

35

ASE caD be IIIIap(ed for use on DOD-standard

~ d the UCSD Pacal system.
Volition Systems works to improve the pro-

ductmty d computer users and the quality or
their tools. h cooceotrates on systems software
devdopment IDd on IOftware development and
hardware desip. Volition specializes in Pas.
cal, ModuIa-2 and related 1Oftware, and it has
deIiped banhrare an:bitectura for biIb-levcl
IaD8uqes UDdercontract to other 00IDp8I1ics.

'DIUCSD PIaJ is a trademark of the RElents
or the Uniwnity or California. Apple is a
tr8demart or Apple Computer,lnc.

ASE'DI- ne ~ s,... Editor1M
Still usiD&the standard ICftICOeditor?
If 10, you're wastin& your time! ASE, the

Advanced System Editor, will sipifiamdy in.
aeue your editin& tbrouIbPut. ASE Ids you:.Rrduce the number or teystrotes you have

to type.

· Select fi)es for editin& without ever having
to inwte the filer.. Automate repetitive editin& tasks with fWJC.

tion keys, 10 you caD sit beck and relax
while ASE docs the editin& for you.

If you area' convinced that ASE is an abs0-
lute necasity, ask any ASE UIICI'or try it your-
sdf. Once you've used ASE, you'll never want
to ID beck!

WII8t Is ASE?

ASE is a powerful text editor suitable for
both word processing and JII'08I'8IDIDinenvi.
ronments. h incorporates many improvements
into the staDdard UCSD PacalICftlCO editor.
ASE featun:s include: - -

1) . edId8&:ASE is not limited by
memory si2Ie when editing text fdes; you
caD edit files as larJe as an entire disk
volume. Source and destination files caD be

"
specified to reside on different disks.

1) KeyMrete ...,etM., ASE introduces a

number or 5inIJe-keystrokc nnmrnandlo
which speed up editin&: you caD IIIO¥eto
the next word, the Dext c:barIcter occur-
rence, the be&inninI or end or aline, or the
previous 1CftICO.Most moviD& commands
caD also be used in eXfcban8e and DfeIete,
aJIowin&you to delete to the Dext word,
c:har1cter oa:urrence, or end or the line.

3» ExteMeII exdla8Je: Excbanae mpde allows
you to insert, delete, or exc:banae dw8c-
ters anywhere on the 1CftICO.Most edit
commands caD be in~ while in ex-
cbao8e mode. The typinc direction in ex-
cbao8e mode can be c:ban8ed to 10 up,
down, or left, 85 well 85 riIbt, makin& it
easyto drawmticallinel anddiqrams.

.. N__ ~ ASE allowsyou to edit
IIIU&bcr.. ill tb; miIIdI; or III ;dit ICIIionj
wbaa tile nested edit IeIIioD ia finiabed, the

editor "papaw beck to the previous edit ses.
sion. The copy buffer is saved 8CI'OISnested
edit sessions, aJIowin&you to easily move
text from one file to another_ Edit sessions
can also be c:bained totetber, allowing you
to edit a series or fi)es without leavin& the
editor .

5) FIe __ IeIectiG8: ASE displays a menu

or avaiJable text fi)es when you type "1" to a

file name prompt. You 110 lon&er have to

memorize aD the fi)es on your disks, or ron.
standy flip between the filer and editor
while editin& a number of files. Typing "1"
to the file menu prompt displays the flBt
text line in each listed ftle, helping you to
remember the rontents of each ftle.

6) F88dIo8 bJs: Function keys can be 'train.

ed' to remember a sequence of keystrokes;
typing a function key causes it to auto-
matically perform its routine. Function
keys areatly simplify repetitive editin&
tasks; their power is limited only by your
ima&ination.

ASE is available now for aD versions of the
UCSD Pacal system. A 100 page manual is in-
cluded.

UCSD Pascal is a trademark or the Regents of
the University of California. ASE and Ad-
vanced System Editor are trademarks of Voli-
tion Systems.

1HE msrORY OF THE DISER
MODULA COMPUTER

1970 is an important date in the history of
computers. It was then that Pascal was imple-
mented and began its rise to enthusiastic ac-
ceptance by the programmin& world. This
easy-to-leam, well dermed language was
created by Dr. Niklaus K. Wirth of Zuricb,
Switzerland.

Even as major universities, software houses,
and computer companies were enhancin&
Pascal to suit their own particular needs,
Wirth was assessing those needs and positin&
the next seneration software development
tool. The early stage of this new project was
the creation of the language Modula. A re-
search tool, ModuIa was not a general-purpole
pI'OIJ'aJJUDin&language, but rather a vehicle
for Wirth to explore real-time control systems
and for casting new light on the subject of
assembly coding.

A year's sabbatical at Xerox Palo Alto Re-
search Center (PARC), gave Wirth further in-
sight into the concept of modules and hiIb-
level programming languages. He went bact to
Switzerland in 1977 to begin the project which
hils tx'OU8btto the wtrid the MxIuIa CcmpuII:r.

The research environment of the Institute
fur Informatik at the ETH, Zurich, Switzer-
land provided the freedom to enter into the
deisp of not only a language, but concurrent-
ly the computer architecture best suited to im-
plement the language. Initially, the Ianguaae, a
skillful bIendin& of Pascal and Modula and
called Modula.2, was compiled and nm on a
PDP-II. This was quickly followed, in 1979,
by the first prototype of the new computer-
then called the Ulith. By 1980, the Ulith had
supported the software development Wirth
had envisioned and ten Uliths were in use at
the ETH.

Limited production of the Ulith bep.n at
Modula Research Institute in Provo, Utah. By
1981, twenty machines were in use with tWen-
ty more to follow in the year to come. These
were situated primarily in the research and
development ueas of major universities and
industries.

In addition to proving to be the ideal work-
station for software development, 1981 saw

the addition of a laser beam printer to the
lilith, the LPB-IO. Extensi~ text editin& and
formattin& was a natural for this system livina
the user camera-ready. typeSet quality copy
from the printer.

A key component of this system was the
Mouse. With three IJI'OIWDJIIAbiebuttons.
many functions of text editin& were areatJy
facilitated. Additional software, incIudioa bit-
map graphics, coupled with the Mouse, sup-
ported various desian functions.

It was time to brina this personal Mll'Uta-
tion to the marketplace. In January, 1983, the
DISER Corporation was formed to begin fulI-
fIeged production of the computer, heuc:dorth
to be known as the MODULA COMPUTER.

MODULA-Z

The language Modula-2-the notation in
which this system presents itself to the soft-
ware engineer-is desiped as a total systems
programming Ianguaae. An assembler is not
needed. The Ianguaae is suited to both hiah-
level pI'OIJ'amming in a macbine-independent
manner and Iow~ pI'OInIIDII1inaof macbiDe-
dependent aspects, such as device handIina
and storqe allocation. The entire operatin&
system, the compi1er, the utility pI'OIJ'IJIIS,and
the library modules are pI'OIraIDJDedexclusi~-
Iy in Modula-2.

The compiler is subdivided into four parts.
Each part processes the output of its predeces-
sor in sequential fashion and is, therefore, called
a pass. The first pass performs lexical and syn-
tactic analysis, and it coIJects identifiers, aIlo-
catin& them in a table. The second pass pr0-
cesses declarations, JCDeI'atin& the SIH:8lled
symbol tables that are accessed in the third
pass to perform the type-amsistency checkin&
in expressions and statements. The fourth pass
generates code; its output is called M-axle.

OPERATING ENVIRONMENT

The operatin& system is an "openft system. It
is divided into three principJe puts; the tintina
loader, the file system, and routines for key-
board input and text output to the display. The

file system III8pI 8bItnct files tIequrJDca at
words and c:barICten) 0IIt0 disk pilei and pr0-
vides the nec:aury baic routiDeI for c:reItin&,
namina, writiDa, radina. 9QIitiooiDa. and de-
Ietina files. The !older and file system praem
themselves to the Modula.2 pnIII'8IDIIICr.
modules (peckqes) whole routineI can be im-
ported into any procram. WI1enner. propIID
terminates, the buic operatina system 1Cti-
yates the command interpreter wbicb requests
the file name of the next procram to be Io8ded
and initiated.

The computer u "seen by the compiJerft is
implemented u a rnicroprop'ammed interpre-
ter of the M-QXIe.The M-QXIeis desianed with
the principle pis of obtainin& . biP density
of code and of makin& the procell of its leD-
eration relati~ systematic and sttaiIbt-
forward. A hiah density of code is desirable not
only n the interest of savina memory spICe,
but also for reduciDa the frequency of instruc-
tion fetches. A comparison between two differ-
ent, but stroDIIY related compilers, revealed
that M-axle is shorter than code for the
PDP-II by a factor of almost four. This SID"-
prisin& rllUle is clear evidence of the inap-
propriate structure of conventional computer
instruction sets, incIudioa thole of most
modem microprocessors that are still desiped
with the human assembly Ianguaae coder in
mind.

COMPUTER HARDWARE

The hardware consists of a central process-
ing unit based on the Am2901 bit-tlice proces.
sor, a multi-port memory with 128K words of
16 bits, a JDicrcH:odememory of 2K instruc.
tions implemented with PROMs, a controller
each for the display, the disk, and interfaces
for 'he keyboard, . cunor tractina device c:aIIed
the mouse, and an RS-232 serial line interface.
The central proa:s8OI' operates at . buic cJoct
cycle of 150 ns, the time required to interpret a
micro-instruction. The most frequendy occur-
ing M-axle instructions GulI~ to aobut 5
micro-instructions on the averqe.

The display is based on the raster scan
technique usin& 832 lines of 6<10dots each.
Each of these 532,480 pixels (picture elements)
is represented in main memory by one bit. If
the entire screen is fully used, its bitmap oc.
cupies approximately 25% of memory. The
display is refreshed through a 64-bit bus. The
representation of each pixel in prosram ac-
cessible memory makes the display equally
suitable for text, technical diqrams, and
grapbics in general.

In the case of text, each character is generat-
ed by oopyjna the character's bitmap into the
appropriate place of the screen's bitmap. This
is done by software, supported by appropriate
microcodedroutines,\NIl ~KIing to special
M-axle instructions. This solution, in contrat
to hardwrae cbaracter generators, offers the
possibility to vary the cbaracter's _, dUct-

ness (boldface), inclination (italics), and mn
style. In short, different foots can be displayal.

37

'Ibis feature, which is particularly attnlCtive
for text processin&, requires a substantial
amount of computjn& power to be available in
sbort bursts. The writina of a run screen, i.e.
conversion of c:bar8cters from ASCII code to
aJI1'eCtly positioned bitmaps, takes about one
fourth of a second. Using a small font, a full
ICIeCIImay display up to 11,000 characters.

The disk used is a Honeywell-Bull IH20
cartrid8e disk with a capecity of 10MBytes and
a potential transfer rate of 720 kBis resuJtina
in an actual rate of 60kBis for reading or writ.
ilia of sequential fdes. Disk sectoB, each 000'
taining 256 Bytes, are allocated in multiples of
8 01\ the same track. AIJoc:ation is entirely

_dynamic, and hence DO storqe oootnlCtion
processes are needed to retrieve "holes."

The mouse is an input device that transmits
sipaJs to the computer which represent the
IDOUIIe'Smovements on the table. These move.
ments are translated (apin by software) to a
cursor displayed on the screen. The mouse also
bas t.hree software-programmable buttons.

Reference: Wirth, N., 17Ie PenonDJ Computer

Ulith. Report 40. Institute fur Informatik.,
ETH Zurich, Switzerland;April 1981

Diser Corporation
P.O. Box 70
385 East 800 South
Orem, Utah 84057
Tel. 801.227.2300
Telex 453213

A COMPARISON OF
MODULA-2 AND PASCAL

Medala-2- The Logical Successor to Pascal

In the years following the entral1cc of Pascal
into the realm of computer languages, Pascal
became increasingly appreciated for a number
of reasons:

- clear definition of data structures and
algorithms

- detection of syntax programming errors
- protection against illegal values being

assigned to variables

- overcoming, in most instances, the need
for subsets

Designed originally as a teaching language
by Dr. Niklaus K. Wirth, the language tends to
lead programmers to write well-structured pro-
grams. In addition, it is relatively easy to learn
and essentially self-documenting.

As its popularity grew so did its
"extensions". In particular, attempts to
enhance real-time applications and IK>device
handling. But these "solutions" created new
problems.

While the rest of the world tried applying
"fixes" to Pascal, Wirth analyzed the needs
that had been identified and answered them
with a complete lanallaF. Modula.2. Tht
bISic advancements fall into four catqOries:

I. modulestructure -
Inherentmanagementof complexprogram.
milia problems oa:urs because Modula-2
supports structuring them as individual
tasks.

2. separate compilation -
Tht defmition-module allows individual
modules to be compiled separately without
sacrificing error checking.

3. real-time primitives -
Coroutines allow for real-time program.
ming operations are defined in one or two
separate modules. These modules are the
only ones needing revision as a program is
transported to another computer.

4. portability through encapsulated machine-
dependent operations -
Modula-2 programs are completely portable
because macbine-dependent programming
operations are defined in one or two
separate modules. These modules are the
only ones needing revision as a program is
transported to another computer.

In summary, Modula-2 is the logical successor
to Pascal. it provides the solutions to Pascal's
problems:

Pascal's Problems

fixed arrays

globaJ variables only

1ack of separate com-
pilation hindering
large complex
programs

rigid order of
declarations

Boolean expressions

are not conditionaUy
evaluated

limited00
facilitation
does not allow low-
level programming

Modu\a-2's Solutions

open arrays
local variablesalso
separate compilation
providing h"braries

of modules

related declarations
may be grouped

evaluations of condi.
tions are ordered
allowing branching
upon satisfaction

standard library
of 00 modules

controlled low-level
access providing
macbine-level
prOparnming

VOLITION SYSTEMS

Dear fellow USUS Member:

You've probably had an experience like this:·You spent two qonizing days hunting
down a mysterious "System bug. The cause?
You chan&ed a UNIT last week and forp to
recompile a program that uses it.

·You gave up trying to use your serial card
with interrupts-it was too hard to program in
assembly and too slow in Pascal.

·You like UCSD or Apple PascalTM, but

have some doubts about it~veryone keeps
saying the future I.1ekJnasto UNIXTM.

You're frustrated, yet you stick with UCSD.
After aU, look at the alternatives!

Anyway, that's how I felt before discovering
Modula-2, Nitta. Wirth'. 18test program-
mlnglupqe. EE 1imes, a Ieadin&electron-
ics newsweekly,has calJedModula.2"the suc-
cessorto Pascal."They're right.

With Modula.2, I'm more productive
writing and maintaining code, and I can do
things that just weren't possible with the Pascal
system. Better yet, ru be able to move my pr0-
grams to other operating systemS, thanks to
the standard library Volition Systems provides
with aU its Modula-2 implementations.

Because you already know Pascal, you'll be
able to pick .. M04a1a-2 ill a matter of boars
and become proficient in less than a week.
Furthermore, ModuJa-2 is based on the effi.
cient 11.0 architecture and is compatible with
your existing UCSD Pascal and Apple Pascal
software.

Sincerely,

Roger T. Sumner
aucr Programmer

UCSD Pascal is a trademark of the Regents of
the University of California. UI,IX is a
trademark of Bell Laboratories. Apple is a
trademark of Apple Computer, Inc. ASE is a
trademark of Volition Systems.

What is Modala.2

Tht Modula-2 programming language was
designed by NikJaus Wirth, Pascal's creator, as
a simple but powerful alternative to assembly
language, Pascal, 'C, and Ada. Modula.2 is
easily learned by Pascal programmers, and it
solves Pascal's problems in a coosistent and
structured fashion. Modula.2 language fea-
tures include modules, QOIJCtJlTCl1tprocesses,
separate compilation, dynamic array parame-
ters, and low-level machine access.

Modala-2 ORUCSD Pascal

Modula-2 on UCSD Pascal is a software de.
velopment system based on the version II
UCSD Pascal system. The Modula-2 compiler
accepts the full language with minor imple.
mentation restructions. Programs are com.
piled into P-axle.

Separate compilation is fully supported,
with up to SOseparately compiled modules per
program. No 1inking is required-module bind.
ing is performed at run time. Modula-2 pr0-
grams can call other programs as procedures.
Interrupts are fully supported, allowing real.
time programming in ModuJa.2. System-de.
pendent library modules provide access to the
UCSD Pascal me system and UCSD Pascal in.
trinsics. Standard library modules provide
Modula.2 prosrams with a standard operating
environment.

38

Standard library

Standard library modules are implemented
either as a stand.alone system or as an inter.
face to an underlying operating system. Be.
cause all implementations present the same
module interfaces, programs that use standard
library modules are portable across all Modu.
la.2 systems. Standard library facilities include:

U Console I/O: The module InOut includes
routines for reading and writing basic data
types to the standard input and output files.
Standard I/O defaults to the system console,
but can be redirected to disk files. The mod.
ule Terminal provides console input and
output and keyboard polling.

2) File I/O: The modules Texts provides

routines for reading and writing basic data
types to text streams. The module Files in-
cludes routines for reading and writing byte
streams and arbitrary data types to files.
Random and sequential file access is sup.
ported. Directory operations allow pro.
grams to change disk file names or delete
disk files.

3) Storage management: The module Storage

includes routines for dynamic variable allo.
cation and deallocation_ Storage can allo-
cate variable-sized buffers and indicate
whether a given amount of storage is avail.
able.

4) Program execution: The module Program

enables a Modula.2 program to call other
programs as procedures. In addition to pro.
viding code overlays, this facility simplifies
the construction of large software systems;
major parts cn be written and tested as in-
dividual programs. before being incorpor.
ated into the system as subprograms. Mod.
ula.2 programs and subprograms communi.
cate by sharing library modules.

S) Exception handling: The modules Texts,

Files, and Program include facilities for
program control of run.time error handling
and recovery.

6) Process scheduling: The module Process.

Scheduler provides process scheduling and
synchronization facilities via the type
SIGNAL and the procedures WAIT and
SEND.

7) Strings: The module Strings includes the

string operations Insert, Delete. Pos. Con.
cat. and Length.

8) Decimal arithmetic: The module Decimals

provides decimal arithmetic and COBOL-
style formatting routines suitable for busi-
ness applications.

9) Math functions: The module MathLibO in-

cludes the mathematical functions sin. COSo
arctan, exp, In, and sqrt.

System Components

The Modula-2 system includes a fast onc.
pass compiler, library manager utility. and a

module library. Standard library modules pr0-
vide I/O. program execution, storage alloca.
tion, strings, math functions, and decimal
arithmetic_ A copy of Nitlaus Wirth's new
book ~ ill MotbIIII-2 is provided
along with complete system documentation.

System-depende8t F8dIities

In addition to the standard module library,

the Modula.2 system provides access to sys.

tem-dependent facilities. On the Apple II and
1/1,special modules are provided to access Ap-

ple graphics and peripheral devices, and the in-

terrupt system connects to the Apple hardware

interrupt system. A utility program is also pro.

vided which can convert Apple Pascal intrinsic

units into library modules.
On the Sage, a special library module is pro-

vided for performing 32-bit arithmetic, and the
interrupt system connects to the event system

defined in the Sage BIOS. Note that the Sage

system includes UCSD Pascal.based system

software and utilities.

Modula.2 Yer58 UCSD pascaITM -
Seyen SipiticaBt DUferftlCft

I) Modules versus tmits ~ Modula.2 divides

its separately compiled modules into separate

definition and implementation modules. allow-
ing version control and easier library manage-

ment. UCSD Pascal bundles a unit's interface

and implementation pans into one compila-
tion, preventing version control and making

library management awkward. Modula-2's im.

port/export statements and identifier qualifica-

tion (e.g. "modulename.identi provide explicit
scope control over identifiers obrained from

other modules_ UCSD Pascal offers no identifi-

er scope control between units. Finally, Modu-
la.2 allows the declaration of local modules to

improve the organization of compilation units.

UCSD Pascal does not allow local units.

2) 110 _ Storace Maagement - Modu.
la-2 provides all I/O and storage management
routines as library modules, allowing such
routines to be redefmed or removed from the
runtime system. UCSD Pascal I/O and storage
routines are hardwired into the operating
system.

3) Concurreacy - Modula.2 provides co.

routines as the basic form of concurrency. Co-
routines are simpler and faster than UCSD
Pascal semaphores, and can also be used to
construct most forms of process scheduling:
rendezvous, message passing. signals, or
semaphores.

4) Low.lenl Programming - Modula-2

provides explicit language features for low-
level programming: type transfer functions.
absolute-address variable declarations, bitsets,
address arithmetic. and interrupt handling. In
UCSD Pascal. low-level programming relies on
assembly language or unsafe programming
tricks which violate the Pascal language.

S) P.-eten - Modula.2 providesproce'
dure types: they are a generaIizatjon fA P-=aJ's
procedure parameter, and permit the defini.
tion of procedure parameters and procedure
variables (a powerful concept new to most Pas.
calers). Modula.2 also provides open array pa.
rameters which accept arrays of any size.
UCSD Pascal provides neither the procedure
parameters nor conformant arrays defmed in
standard Pascal.
6) Statements It: Expressions - Modula.2
provides a LOCP/EXIT statement, a FOR
statement with arbitrary step values, and a
CASE statement with an ELSE part and sub-
ranges allowed in case constants. Functions
can return any type as a function result. Mod.
ula.2 defines short~rcuit Boolean expression
evaluation for simpler and more efficient pro-
gramming. Constant expressions may appear
anywhere a constant is allowed. Pascal pr0-
vides none of these useful features.
7) Syntax - Modula-2 programs are more

readable than Pascal. Identifiers are signifICant
to any length (not just the first 8 characters).
The INC and DEC procedures eliminate the
need for 'i: =:i + I' statements. 'There is no BE.
GIN/END statement, because structured
statements (IF. WHILE) are terminated by
END.

VOLITION INTRODUCES
MODULA.2 FOR IBM PC

Nik.laus Wirth's new programming language.

Modula-2, is commercially available on the

IBM Personal Computer for the first time, ac.
cording to Volition Systems in Del Mar, CA.

Modula-2 comes as part of a cor')\ete soft.
ware system based on a version II UCSD Pas.

cal- operating system. The system, developed
by Volition, features a fast, easy-to-use version

of Modula.2 and works well even in the 64K

IBM PC environment. a feat not achieved by

other UCSD Pascal.based systems.
Wirth developed Modula.2 to overcome

real.world deficiencies he recognized in Pascal,

which he created earlier as a teaching lan-
guage. The new language-<lesigned to utilize

standard software modules~ffers great flex.
ibility in the development of large, complex

systems. It is paticularly suited for large in.

dustrial and commercial applications.

Volition's implementation of the new Ian.
guage offers a two.fold savings for software

program developers using the IBM PC. accord.
ing to Joel J. McCormack of Volition.

First, the use of standard software modules

and separate compilation with automatic ver.
sion control can save time and money during
program development and maintenance.

"In addition. program developers will wel-
come Modula-2's portability." McCormack pre.

dicted. "'because programs written in Modula.2

for the IBM PC are directly transferable to the
Apple II system. In effect. they can double

39

their tuget market with a very minimal
effort."

Volition's Modula-2 system for the PC in-
dudes a comprehensive module library, Modu-
18-2compi1er, and tutorial programs designed
to bring Pascal programmers up to speed on
Modula-2 in a matter of hours.

The implementation makes special provi-
sions for the needs of software developers, pre.
senting a nioely integrated development envi-
ronment. The compiler and editor oommuni-
cate with each other to reduce development
time, modules are dynamically linked so there
is no separate linkage process required, and
friendly user interface and consistent promptS
are provided.

All the attractive features of Modula- 2 are
provided: low-level machine access, real-time
control, ooocurrent processes, and type-secure
separate compilation with automatic version
oontrol.

Real number and transcendental mathemat-
ical support is provided directly by the 8087
numerics procc:ssor. Performance using the
8087 is oonsiderably faster than it would be
without it.

"Interrupt bandling is fully supported-pro-
grammers can now write real-time or multi-
tasking applications in Modula-2 instead of
resorting to error-prone assembly language,"
McCormack said.

Volition's unique development in the imple-
mentation is the standard library, a collection
of modules that offers facilities normally pro-
vided by an operating system. The library pro-
vides console 110, random access files, disk di.
rectory operations, format conversion, strings,
decimal arithmetic, storae management, pro-
gram execution and process scheduling. The
standard hbrary provides a portable interface
to the underlying operating system.

"With Modula.2, you can develop portable
softwue systemS that run without change on a
number of different operating systems," Mc-
Cormack said. "This should be of obvious in-
terest to software developers faced with
writing applications which must run on all of
today's popular microcomputers."

In addition to the IBM PC system, Volition
currently provides Modula-2 for the Apple II
lunder Apple Pascal-I and for the Apple 11/
lunder 5OS1and as pan of a complete software
system for computers based on the 80801Z80
and 68000 processors.

Modula.2 for the IBM PC is immediately
avai1able from Volition Systems. The complete
Modula-2 System includes Pascal and MOOu-
la-2 compilers, module library, the Advanced
System Editor lASE), p--NIX command shell
!that provides a UNIX-like programming en-
vi-ronmentl, and a complete set of utility
JIIOPIUIIS.

The system is priced at SS9S. Educational,
retailer, and distributor discounts are
IYIiIIbIc.

Volition Systems concentrates on systems

software deve10pment and on research and de.
velopment in hardware and software. Since the
company was founded in 1980, it has been a
1eader in the implementation and dissemina-
tion of the Modula-2language and other high
level languages and in the design and develop-
ment of advanced computer architectures.

MRI ANNOUNCES MODULA-2
COMPILER FOR IBM PC

IBM PC owners can buy a full Modula-2
compiler for only S40 from the Modula Re-
search Institute, a nonprofit organization in
Provo, Utah. MRI has adapted the compiler
for the IBM PC from the original Modula-2
compi1er developed by Niklaus Wirth at the
Institute for Informatics of the ETH in Zurich.
The IBM PC compi1er generates intermediate
M-oode similar in concept to the P-code of the
original Zurich Pascal compiler.

Although the 4-pass Modula-2 compiler re-
quires more compile time than a single-pass
Pasca1 compi1er, it provides M-code that is

30" more compact than the p--codeand exe-
cutes at 1east 2Q4I, faster. Use of M-code
makes it possible to use programming tools
transported from Wirth's Lilith, an optimized
programmer's workstation that directly ex-
ecutes M-oodes and is also available from
MRI. MRI is now developing an M-code-to-
native~ translator for the IBM PC to opti-
mize execution time on the IBM PC at the ex-
pense of code compactness_

The S40 compiler for the IBM PC runs
under DOS 2.0, requires l28k of RAM and 2
floppy disk drives, and is distributed with sam-
pie programs on two single-sided IBM floppy
disks. Source code for the compiler is available
from MRI on IBM PC floppy or 9-track tape
for an additional $160. MRI also has versions
of the compiler for the 68000 and the PDP-Il.

MODULA-2 SOFfW ARE FROM
VOLITION TO LAUNCH

SPRINGER. VERLAG LINE

Volition Systems Modula-2 will be the first

software offering from Springer-Verlag, the in-

ternational publisher of scientific, technical

and medical books and journals, according to
Volition Systems in Del Mar, CA.

Springer-Verlag New York Inc. will be han-
dling Volition Systems Modula-2 software
packages for worldwide distribution through

the publisher's traditional retail channels. Voli-

tion's implementation of Niklaus Wirth's new
Modula-2 programming language will be avail-

able for the Apple II and lie, the IBM Personal
Computer and the Sage II and IV
wmputm.

Until now, Volition has concentrated on

sales of Modula-2 to OEM's, systems houses,
software developers and manufactueres. "This
agreement will signiflCaDtly expand our mar-
keting effort at the retail level," according to
Joel J. McCormack of Volition Systems.

"We expect the broader availability of Mod.
ula-2 software will spark additional interest in
this superior new programming language, par-
ticularly in the academic, scientific and tech-
nical fields where Springer's titles are highly
respected," he continued.

Modula-2 software will be distributed as
part of Springer's Computer Science Software
Project and will be available beginning in Oc-
tober. Also available from Springer is Niklaus
Wirth's book Programming in Modulo-2,
which includes a complete description of the
language.

Wirth created Modula.2 (from MODUlar
LAnguage) to overcome the real-world de-
fICienciesof Pascal, a language which he previ-
ously created. The new language uses modules
to facilitate development and maintenance of
large, complex software systems, making it es-
pecially useful in large industrial, commercial
and scientifIC applications.

11 Volition Systems Modula-2 is available
as a complete software development system
and includes a comprehensive set of standard
library modules and utilities as well as tutorial
programs, system documentation and Wirth's
book. Springer-Verlag will package and pro-
vide support for the systems it sells through its
distribution channels.

Volition Systems concentrates on systems
software development and on research and de-
velopment in hardware and software_ Since the
company was founded in 1980, it has been a
leader in the implementation and dissemina-
tion of the Modula- 2 language and other high-
level languages and in the design and deve1op-
ment of advanced computer architectures.

Springer-Verlag is a le:iding international
scientific, technical and medical publisher with
185 science journals and 900 new titles re-
leased annually. Located in New York, Berlin,
Heidelberg and Tokyo, it maintains a world-
wide network of interlocking editorial, produc-
tion, marketing and distribution centers and
publishes reference works, original research
and advanced texts.

40

ucso Pascal System Users Society UCSO p-System User's Society

u
n

GET MORE FROM YOUR PASCAL SYSTEM
JOIN USUS TODAY

usus IS the USER'S GROUP for the most widely used. machine-independent
software system.

If you use UCSD Pascal". Apple Pascal"" or the UCSD p-System, USUS wililink you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and Influence the development of
UCSOPascal and the UCSO p-System and to help them learn more about their systems. USUS ISnon-
profit and vendor-Independent.

Members get access to the lalesl UCSO p-System Informat!on and 10extenSive Pascal expertise.
In USUS. you have formal and mformal opportunities to communicate with and learn from other
users Via:

.NATIONAL MEETINGS

. USUS NEWS AND REPORT

. ELECTRONIC MAIL

. SOFTWARE LIBRARY

. SPECIAL INTEREST GROUPS

'uCSD Pascal ana the '.JCSD o-SYSlem are TrademarkS ,)I-me qeqenrs Of 'he UnlverSII'V 01 California
.-AODle Pascal ISa Iraoemark 'JI AODleCampuler Inc

USUS MEMBERSHIP APPLICATION
,Please complete OOlh sldeSI

I am applymg for $25 IndiVidual membership
$500 organization membership
$_ air mall service surcharge

Rates are for 12 months and cover surface mailing of the newsletter If you reside outside North
Amenca. air mall service ISavailable for a surcharge. It ISas follOws: $5.00 annually for those In the
Canbbean. Central Amenca and COlumbia and Venezuela: $1000 annually for those m South Amenca.
Turkey and North Afnca: and $15.00 for all others Check or money order Should be drawn on aU S.
bank or US. office.

Name/Title

Affiliation

Address

Phone I TWX/T elex

Ophon
Ophon
Option

Do not pnnt my phone numoer In USUS rosters
print only my name and count", ,n USUS rosters
Do not release my name on mailing lists

41

-

usus MEMBERSHIP BENEFITS

. NATIONAL MEETINGS tWice a year let you learn from experts and try out the newest products.
Meetings feature hardware and software demonstrations. tutorials. technical presentations and
Information. reduced-cost software Iibrary access. special Interest group (SIG) meetmgs. and a chance
to Query "malor" vendors.

. USUS NEWS AN D REPORT brings you news and mformation about your operating system four times
a year. It contains technical articles and updates. library catalog listings. SIG reports. a software
vendor directory and organizational news.

. ELECTRONIC MAil puts USUS subscribers In touch with a nationwide network of users. Compu-
Serve MUSUS SIG IS for data bases and bulletin board communications. GTE Telemail accommo-
dates one-to-one messages.

. SOFTWARE EXCHANGE LIBRARY offers an extenSive collection of tools. games. applications.
and aides In UCSD Pascal source code at nominal prices.

. SPECIAL INTEREST GROUPS zero in on specific problems. represent member Interests with
manufacturers.

For more information. contact: Secretary. USUS. P. O. Box 1148. la Jolla. CA 92038. USA.

Computer System:_ Z-80_ 8080_ PDP/lSI-11_ 6502/Apple_ 6800_ 6809
_ 9900_ 8086/8088_ Z8000_ 68000_ MicroEngine_ IBMPC
Other

I am mterested In the fOllowing Committees/Special Interest Groups (SIGs):

_ Advanced System Editor SIG_ Apple SIG_ Application Developer's SIG_ Communtcatlons SIG_ DEC SIG_ File Access SIG_ Graphics SIG_ IBM Display Writer SIG_ IBM PC SIG

_ Meetings Committee_ Modula-2 SIG_ NEC Advanced PC SIG_ Publications Committee_ Sage SIG_ Software Exchange Library

-"- Technical Issues Committee_ Texas Instruments SIG_ UCSD Pascal Compatabllity SIG

Malt completed application with check or money order payable to USUS and drawn on a U.S. bank or
US office. to Secretary USUS. PO Box 1148. La Jolla. CA 92038. USA.

42

FormerlyPasaJJ N~

2903 Huntington Road
Qeveland, Ohio 44120

Please enter my 0 New or 0 Renew

membershipin Pascal Users Group. I understand I will receive "Pascal&:
Modula2" whenever it is published in this calendar year.

Pascal&:Modu/a2 should be mailed

I year 0 in USA 525 0 outside USA535
3year 0 in USA 550 0 outside USA 580

o AirMail anywhere $60

o AirMail anywhere $125

(Make checks payable to:
"Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $ on check number

(Invoice will be sent on receipt of purchase orders. Payment must be
received before magazine will be sent. Purchase orders will be

billed $10 for additional work.)

(I have diffICulty reading addresses.
Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction. Here is myoid address label:

--

Formerly Pasall N~

2903 HuDtlOgton Road
Oeveland, Ohio 44120

Back issues are requested and sent in sets.

~15 0 set 0 Issues 1...8 (January 1974-May 1977)
Out of Print

$250 set I Issues 9.. .12 (September 1977-June 1978)

525 0 set 2 Issues 13. . . ~6 (December 1978-october 1979)

525 C set 3 Issues 17. . .20 IMarch 1980-December 1980)

525 [] set 4 Issues 21 . . .23 (April 1981 (mailed January 1982)-
September 1981 [mailed March 19821)

Requests from outside USA please add 55 per set.

All memberships entered in 1983 will receive issue 24 and all other issues
published in that year. Make check payable to: "Pascal Users Group."
drawn on USA bank in US dollars.

Enclosed please find US 5 on check number

(I have difficulty reading addresses.
Please forgive me and type or print clearly.l

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

43

Joining Pascal User Group?

.Membership is open to anyone: Particularly the Pascal user, teacher maintainer, implementor, distributor, or just
plain fan.

. Please enclose the proper prepayment (check payable to "Pascal User's Group;.

. When you join PUG any time within a year: January I to December 31, you will receive all issues of Pascal &
ModuJa2 for that year.

· We produce Pascal & ModultJ 2 as a means toward the end of promoting Pascal and communicating news of events
surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves and prefer to
share it through Pascal & ModultJ2. We desire to minimize paperwork, because we have other work to do.

Renewing?

· Please renew early (before November) and please write us a line or two to tell us what you are doing with Pascal,
and tell us what you think of PUG and Pascal& ModultJ2.

Ordering Back Issues or Extra Issues?

· Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year means
that we eliminate many requests for back issues ahead of time, and we don't have to reprint important information
in every issue-especi.ally about Pascal implementation!

· Issues I. . . 8 (January, 1974-May 1977) are out of print.

· Issues 9. . .12, 13.. .16. & 17. . .20, 21.. .23 are available from PUG(USA) all for S25.00 a set.

· Extra single copies of new issues (current academic year) are: SIO each-PUG(USA).

Sending Material For Publication?

· Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, conference
announcements, reports, implementation information, applications, etc. are welcome. Please send material single-
spaced and in camera-ready (use a dark ribbon and lines 15.5 em. wide) form.

· All letters will be printed unless they contain a request to the contrary.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:

. teaching programming concepts

. developing reliable "production" software

. implementing software efficiently on today's machines

. writing portable software

Pascal implementations exist for more than 105 different computer systems, and this number increases every
month. The "Implementation Notes" section of Pascal News describes how to obtain them.

The standard reference ISO 7185 tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active
members in more than 41 countries.

.--
I

.

I
I

I
I
I
I

2903 Huntington Road
Cleveland, Ohio 44120

t Return to:

1,903 Huntington Road
Jevdand, Ohio 44120

Return Postage Guaranteed Address Correction Requested

If the number on the mailing label in brackets is not [84] or higher,
it is time to renew for 1984. Please detach and mail the self-addressed card below.

BULK RATE
u.s. POSTAGE

PAID
WILLOUGHBY,

Permit No. 58

I

,

Renew my subscription for 1984
at $25 for the year.

Check Enclosed

Bill Me

Address Change Below

I

